1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Alotaibi AF, Rodriguez BJ, Rice JH. A nano-imprinted graphene oxide-cellulose composite as a SERS active substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3385-3391. [PMID: 38751361 DOI: 10.1039/d4ay00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cellulose is a sustainable material capable of forming optically active nanoarrays on its surface. We created a composite of cellulose acetate (CA) and graphene oxide (GO), by mixing GO (0.1 mg mL-1) into CA. This was then imprinted with nanoscale surface features that form Bragg-like modes in resonance with the excitation laser when a thin layer of silver is vapor deposited onto the surface of the substrate. The addition of GO leads to improved surface-enhanced Raman scattering (SERS) signal strengths, obtaining an average SERS signal increase of 1.4-fold following the inclusion of GO. The combination of photonic and electromagnetic effects with charge transfer-based processes that support the SERS chemical mechanism and the possible presence of electromagnetic hot spots from the roughened surface results in an enhanced SERS signal strength when GO is added. This work shows the potential for nanoimprinted graphene oxide/cellulose acetate composites as flexible sensor platforms to detect target molecules.
Collapse
Affiliation(s)
- Aeshah F Alotaibi
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Physics, College of Science and Humanities, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | - Brian J Rodriguez
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - James H Rice
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U. Novel Approaches in Fabrication and Integration of Nanowire for Micro/Nano Systems. Crit Rev Anal Chem 2022; 52:1913-1929. [DOI: 10.1080/10408347.2021.1925523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | | | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| |
Collapse
|
4
|
Pospíšil J, Hrabovský M, Bohačiaková D, Hovádková Z, Jurásek M, Mlčoušková J, Paruch K, Nevolová Š, Damborsky J, Hampl A, Jaros J. Geometric Control of Cell Behavior by Biomolecule Nanodistribution. ACS Biomater Sci Eng 2022; 8:4789-4806. [PMID: 36202388 PMCID: PMC9667466 DOI: 10.1021/acsbiomaterials.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Many dynamic interactions within the cell microenvironment
modulate
cell behavior and cell fate. However, the pathways and mechanisms
behind cell–cell or cell–extracellular matrix interactions
remain understudied, as they occur at a nanoscale level. Recent progress
in nanotechnology allows for mimicking of the microenvironment at
nanoscale in vitro; electron-beam lithography (EBL)
is currently the most promising technique. Although this nanopatterning
technique can generate nanostructures of good quality and resolution,
it has resulted, thus far, in the production of only simple shapes
(e.g., rectangles) over a relatively small area (100 × 100 μm),
leaving its potential in biological applications unfulfilled. Here,
we used EBL for cell-interaction studies by coating cell-culture-relevant
material with electron-conductive indium tin oxide, which formed nanopatterns
of complex nanohexagonal structures over a large area (500 ×
500 μm). We confirmed the potential of EBL for use in cell-interaction
studies by analyzing specific cell responses toward differentially
distributed nanohexagons spaced at 1000, 500, and 250 nm. We found
that our optimized technique of EBL with HaloTags enabled the investigation
of broad changes to a cell-culture-relevant surface and can provide
an understanding of cellular signaling mechanisms at a single-molecule
level.
Collapse
Affiliation(s)
- Jakub Pospíšil
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,Core Facility Cellular Imaging, CEITEC, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Miloš Hrabovský
- TESCAN Orsay Holding a.s., Libušina tř. 863, Brno 623 00, Czech Republic
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | | | | | - Jarmila Mlčoušková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Šárka Nevolová
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | - Josef Jaros
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| |
Collapse
|
5
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
6
|
Delvart A, Moreau C, D'Orlando A, Falourd X, Cathala B. Dextran-based polyelectrolyte multilayers: Effect of charge density on film build-up and morphology. Colloids Surf B Biointerfaces 2021; 210:112258. [PMID: 34891063 DOI: 10.1016/j.colsurfb.2021.112258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022]
Abstract
We have studied the growth process of thin polyelectrolyte (PE) films fabricated by the layer-by-layer assembly (LbL) and composed of Dextran sulfate with high (DexS H) and low (DexS L) sulfation rate and poly(allylamine hydrochloride) (PAH). Film growths were monitored by combining Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), Surface Plasmon Resonance (SPR) and Atomic Force Microscopy (AFM). Even though, the two films growth up to 10 bilayers, QCM-D showed that polyelectrolyte pairs do not display similar behaviours. (PAH/DexS H) systems lead to linear growth, i.e. amounts deposited increase both for PAH and DexS H, while the PAH/DexS L pair generated zig-zag shaped asymmetric growth. Film water contents were determined by QCM-D solvent exchange and SPR experiments. DexS L contains less water than DexS H and in agreement with the QCM-D dissipation values that suggest the formation of more rigid films in the case of DexS L than DexS H. Surface morphology investigated by AFM display distinct surface patterns since DexS H form thin films with fibril-like morphology covering all the surface while heterogeneous films with "puddle-like" aggregates were imaged in the case of DexS L. Difference of charge compensation and charge neutralisation between both systems likely lead to dissimilar growth mechanisms that are tentatively proposed in this paper.
Collapse
|
7
|
Tahir U, Shim YB, Kamran MA, Kim DI, Jeong MY. Nanofabrication Techniques: Challenges and Future Prospects. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:4981-5013. [PMID: 33875085 DOI: 10.1166/jnn.2021.19327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofabrication of functional micro/nano-features is becoming increasingly relevant in various electronic, photonic, energy, and biological devices globally. The development of these devices with special characteristics originates from the integration of low-cost and high-quality micro/nano-features into 3D-designs. Great progress has been achieved in recent years for the fabrication of micro/nanostructured based devices by using different imprinting techniques. The key problems are designing techniques/approaches with adequate resolution and consistency with specific materials. By considering optical device fabrication on the large-scale as a context, we discussed the considerations involved in product fabrication processes compatibility, the feature's functionality, and capability of bottom-up and top-down processes. This review summarizes the recent developments in these areas with an emphasis on established techniques for the micro/nano-fabrication of 3-dimensional structured devices on large-scale. Moreover, numerous potential applications and innovative products based on the large-scale are also demonstrated. Finally, prospects, challenges, and future directions for device fabrication are addressed precisely.
Collapse
Affiliation(s)
- Usama Tahir
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Young Bo Shim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Muhammad Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Doo-In Kim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
8
|
Kim DH, Kim S, Park SR, Fang NX, Cho YT. Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33618-33626. [PMID: 34196537 DOI: 10.1021/acsami.1c06286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial liquid-repellent surfaces inspired by biomimetic structures provide a wide range of functional surfaces for various practical applications, such as self-cleaning, antisticking, oil/water separation, and droplet manipulation. However, functional biomimetic structures cannot be fabricated using conventional techniques. For example, mushroom-like topologies on the skin of springtails, which are referred to as "doubly reentrant structures," have attracted significant attention owing to their extraordinary liquid-repellent properties. Current methods of fabricating these reentrant structures have several limitations, such as complex material systems, processing steps, and additional chemical treatments. This study proposed a simple micro-shape-deformed approach to fabricate mushroom-like reentrant structures by digital light processing, a three-dimensional (3D) printing technique, with volumetric shrinkage. The nonuniform cross-linking process and light propagation during photopolymerization caused the deformation of the topological patterns atop the micropillar arrays, resulting in bent structures for mushroom-like shape-deformed microarchitectures. This 3D-printed shape-deformed microstructure exhibits a highly stable liquid repellency without perfluorinated coatings.
Collapse
Affiliation(s)
- Do Hyeog Kim
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongnam 51140, Republic of Korea
| | - Seok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States of America
| | - Seo Rim Park
- Department of Smart Manufacturing Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongnam 51140, Republic of Korea
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States of America
| | - Young Tae Cho
- Department of Smart Manufacturing Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongnam 51140, Republic of Korea
| |
Collapse
|
9
|
Mullen E, Morris MA. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1085. [PMID: 33922231 PMCID: PMC8146645 DOI: 10.3390/nano11051085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option.
Collapse
Affiliation(s)
- Eleanor Mullen
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| | - Michael A. Morris
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| |
Collapse
|
10
|
Sitsanidis ED, Schirmer J, Lampinen A, Mentel KK, Hiltunen VM, Ruokolainen V, Johansson A, Myllyperkiö P, Nissinen M, Pettersson M. Tuning protein adsorption on graphene surfaces via laser-induced oxidation. NANOSCALE ADVANCES 2021; 3:2065-2074. [PMID: 36133099 PMCID: PMC9418809 DOI: 10.1039/d0na01028f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 06/14/2023]
Abstract
An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence microscopy confirmed the selective aggregation of protein molecules towards the irradiated areas. In addition, the attachment of b-BSA was detected by a reaction with fluorescently labelled avidin-fluorescein isothiocyanate (Av-FITC). In contrast to chemically oxidized graphene, laser-induced oxidation introduces the capability for localization on oxidized areas and tunability of the levels of oxidation, resulting in controlled guidance of proteins by light over graphene surfaces and progressing towards graphene microchips suitable for biomedical applications.
Collapse
Affiliation(s)
- Efstratios D Sitsanidis
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Johanna Schirmer
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Aku Lampinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Kamila K Mentel
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Vesa-Matti Hiltunen
- Department of Physics, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Andreas Johansson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
- Department of Physics, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Pasi Myllyperkiö
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Maija Nissinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä P. O. Box 35, FI-40014 JYU Finland
| |
Collapse
|
11
|
Narayanamurthy V, Jeroish ZE, Bhuvaneshwari KS, Samsuri F. Hepatitis C virus (HCV) diagnosis via microfluidics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:740-763. [PMID: 33511975 DOI: 10.1039/d0ay02045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Humans are subjected to various diseases; hence, proper diagnosis helps avoid further disease consequences. One such severe issue that could cause significant damage to the human liver is the hepatitis C virus (HCV). Several techniques are available to detect HCV under various categories, such as detection through antibodies, antigens, and RNA. Although immunoassays play a significant role in discovering hepatitis viruses, there is a need for point-of-care tests (POCT). Some developing strategies are required to ensure the appropriate selection of POCT for HCV detection, initiate appropriate antiviral therapy, and define associated risks, which will be critical in achieving optimal outcomes. Though molecular assays are precise, reproducible, sensitive, and specific, alternative strategies are required to enhance HCV diagnosis among the infected population. Herein, we described and assessed the potential of various microfluidic detection techniques and confirmatory approaches used in present communities. In addition, current key market players in HCV chip-based diagnosis and the future perspectives on the basis of which the diagnosis can be made easier are presented in the present review.
Collapse
Affiliation(s)
- Vigneswaran Narayanamurthy
- Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
| | | | | | | |
Collapse
|
12
|
Dorgham A, Wang C, Morina A, Neville A. 3D tribo-nanoprinting using triboreactive materials. NANOTECHNOLOGY 2019; 30:095302. [PMID: 30530947 DOI: 10.1088/1361-6528/aaf70c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tribology: the science of friction, wear and lubrication has never been associated in a positive way with the ability to manufacture at the nanoscale. Triboreactivity, when the contact between two surfaces promotes a chemical reaction, has been harnessed in this study to create highly tenacious nano-features. The reported 3D tribo-nanoprinting methodology has been demonstrated for organic and inorganic fluids on steel and silicon substrates and is adaptable through the interface tribology. The growth rate, composition and shape of the printed features were all found to be dependent on the nature of the printing liquid and shearing interfaces in addition to the applied temperature and contact force. The reported methodology in this study opens unprecedented future possibilities to utilize the nanoprinted films for the expanding fields of microelectronics, medical devices, flexible electronics and sensor technologies.
Collapse
Affiliation(s)
- Abdel Dorgham
- Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
13
|
Zhang X, Cox L, Wen Z, Xi W, Ding Y, Bowman CN. Implementation of two distinct wavelengths to induce multistage polymerization in shape memory materials and nanoimprint lithography. POLYMER 2018; 156:162-168. [PMID: 31105340 PMCID: PMC6519971 DOI: 10.1016/j.polymer.2018.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here, a process is introduced for forming dual stage thiol-Michael/acrylate hybrid networks photocured by two different wavelengths, demonstrating its use in nanoimprint lithography (NIL) and shape memory materials. Initiated with a visible light sensitive photobase and a UV-sensitive radical initiator, thiol-Michael-acrylate hybrid polymerizations were programmed to proceed sequentially and orthogonally, with base-catalyzed thiol-Michael photopolymerization as the first stage and radical mediated acrylate photopolymerization as the second stage. By regulating the photopolymerization formulations, i.e. thiol-to-acrylate ratios, initiator loadings and irradiation conditions, a series of materials with highly tunable mechanical performance was achieved, with ultimate Tg values ranging from 23 to 70 °C. With a photopatternable first stage and a readily reconfigurable second stage, its implementation in nanoimprint lithography (NIL) enabled surface features on the scale of 10 nm to be formed on a photopatterned substrate. Additionally, the dual stage polymer results in a relatively homogenous polymer network with a narrow glass transition temperature (Tg), which enables rapid response in applications as shape memory materials, with shape-fixity values above 95% and shaperecovery values above 99%. With its unique photocuring process and programmable mechanical properties, the two color light controlled photopolymerization can be exploited as a useful tool in a wide range of materials science applications.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, United States
| | - Lewis Cox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, United States
| | - Zhibin Wen
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Weixian Xi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, United States
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, United States
| |
Collapse
|
14
|
Pipette Petri Dish Single-Cell Trapping (PP-SCT) in Microfluidic Platforms: A Passive Hydrodynamic Technique. FLUIDS 2018. [DOI: 10.3390/fluids3030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microfluidics-based biochips play a vital role in single-cell research applications. Handling and positioning of single cells at the microscale level are an essential need for various applications, including genomics, proteomics, secretomics, and lysis-analysis. In this article, the pipette Petri dish single-cell trapping (PP-SCT) technique is demonstrated. PP-SCT is a simple and cost-effective technique with ease of implementation for single cell analysis applications. In this paper a wide operation at different fluid flow rates of the novel PP-SCT technique is demonstrated. The effects of the microfluidic channel shape (straight, branched, and serpent) on the efficiency of single-cell trapping are studied. This article exhibited passive microfluidic-based biochips capable of vertical cell trapping with the hexagonally-positioned array of microwells. Microwells were 35 μm in diameter, a size sufficient to allow the attachment of captured cells for short-term study. Single-cell capture (SCC) capabilities of the microfluidic-biochips were found to be improving from the straight channel, branched channel, and serpent channel, accordingly. Multiple cell capture (MCC) was on the order of decreasing from the straight channel, branch channel, and serpent channel. Among the three designs investigated, the serpent channel biochip offers high SCC percentage with reduced MCC and NC (no capture) percentage. SCC was around 52%, 42%, and 35% for the serpent, branched, and straight channel biochips, respectively, for the tilt angle, θ values were between 10–15°. Human lung cancer cells (A549) were used for characterization. Using the PP-SCT technique, flow rate variations can be precisely achieved with a flow velocity range of 0.25–4 m/s (fluid channel of 2 mm width and 100 µm height). The upper dish (UD) can be used for low flow rate applications and the lower dish (LD) for high flow rate applications. Passive single-cell analysis applications will be facilitated using this method.
Collapse
|