1
|
Saba N, Awad SA, Jawaid M, Hashem M, Fouad H, Uddin I, Singh B. Mechanical performance and dimensional stability of Washingtonia/Kenaf fibres-based epoxy hybrid composites. Sci Rep 2024; 14:24242. [PMID: 39414833 PMCID: PMC11484752 DOI: 10.1038/s41598-024-73300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
In this study, Washingtonia fibres (AW) and Kenaf fibres (KF) were utilized as environmentally friendly fillers to improve the quality of the resin matrix. The mechanical, morphological, and physical properties of the WA/KF biocomposites were assessed throughout this research. The mechanical tests (tensile strength and moduli, elongation at break, flexural strength along with moduli, and the impact properties) were carried out. The hybrid biocomposites (3AW/7KF) exhibited the highest tensile strength (16.05 MPa) and modulus (4.6 GPa) among pure and other hybrid biocomposites. The impact strength and resistance of hybrid biocomposites (1AW/1KF and 7AW/3KF) showed the highest impact strength (1694 J/m2) while the 3AW/7KF hybrid biocomposite, the impact strength value was 1630 J/m2 (17.2 J/m). SEM images indicated good distribution and bonding of hybrid biocomposites. The investigation using morphological tests (Scanning Electron Microscopy (SEM)) displays the longitudinal roughness on the surface, which acts as a very significant function in the adhesion between the AW/KF fibres and the resin. Furthermore, the results of SEM confirm better bonding in the biocomposites, fibre fracture, pull-out, fibre shearing, and tearing in the pure and hybrid composites. From the water absorption test, it was observed that, when increasing the immersion time of biocomposites, the WA percentage of KF biocomposite significantly increased (37%) compared to other biocomposites. However, the hybrid and pure biocomposites exhibited more resistance to increase the WA percentage after increasing the immersion times, compared to other biocomposites. Furthermore, the thickness swelling (TS) of hybrid biocomposites increased compared to pure biocomposites. The biocomposite sample (3AW/7KF) was thicker on the 7th day exhibiting the greatest increases in thickness swelling (4.98%) while the hybrid biocomposite exhibited greater WA value compared to other correspondence samples. Finally, the KF and AW hybrid blends can be appropriate for several applications, for example, textiles, machinery part production industries, medicine, and automobiles, and construction, specifically buildings, bridges, and structures such as boat hulls, swimming pool panels, racing car bodies, shower stalls, bathtubs, storage tanks. Overall, the findings exhibit that the hybridisation of natural fibres (KF/AW) is a sustainable approach for obtaining biocomposites with advanced mechanical and thermal performance. Hence, they could be used in numerous specific applications, including automobile panels, structural products, sporting goods and furniture tools.
Collapse
Affiliation(s)
- Naheed Saba
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Sameer A Awad
- Department of Medical Laboratories Techniques, College of Health and Technology, University of Al Maarif, Al Anbar, 31001, Iraq
| | - M Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, UAE
| | - Mohamed Hashem
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box. 12372, Riyadh, Saudi Arabia
| | - Hassan Fouad
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Egypt
| | - Imran Uddin
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Balbir Singh
- Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Kanaan AF, Piedade AP. 3D Printing and Blue Sustainability: Taking Advantage of Process-Induced Defects for the Metallic Ion Removal from Water. Polymers (Basel) 2024; 16:1992. [PMID: 39065309 PMCID: PMC11280497 DOI: 10.3390/polym16141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Additive manufacturing (AM), commonly known as 3D printing, allows for the manufacturing of complex systems that are not possible using traditional manufacturing methods. Nevertheless, some disadvantages are attributed to AM technologies. One of the most often referred to is the defects of the produced components, particularly the porosity. One approach to solving this problem is to consider it as a non-problem, i.e., taking advantage of the defects. Commercially, LAY-FOMM®60 polymer was successfully used in AM through a material extrusion process. This filament is a blend of two polymers, one of them soluble in water, allowing, after its removal from the printed components, the increase in porosity. The defects produced were exploited to evaluate the metallic ion removal capacity of manufactured components using non-potable tap water. Two experimental setups, continuous and ultrasound-assisted methods, were compared, concerning their water cleaning capacity. Results revealed that continuous setup presented the highest metallic ion removal capacity (>80%) for the following three studied metallic ions: iron, copper, and zinc. High water swelling capacity (~80%) and the increase in porosity of 3D-printed parts played a significant role in the ion sorption capacity. The developed strategy could be considered a custom and affordable alternative to designing complex filtration/separation systems for environmental and wastewater treatment applications.
Collapse
Affiliation(s)
- Akel F. Kanaan
- Federal University of Paraná, Department of Chemical Engineering, Curitiba 82590-300, PR, Brazil;
| | - Ana P. Piedade
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
3
|
Łukaszewska I, Bukowczan A, Raftopoulos KN, Pielichowski K. Examining the Water-Polymer Interactions in Non-Isocyanate Polyurethane/Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogels. Polymers (Basel) 2023; 16:57. [PMID: 38201722 PMCID: PMC10780322 DOI: 10.3390/polym16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Non-isocyanate polyurethane (NIPU) networks physically modified with octa(3-hydroxy-3-methylbutyldimethylsiloxy)POSS (8OHPOSS, 0-10 wt%) were conditioned in environments of different relative humidities (up to 97%) to study water-polymer interactions. The equilibrium sorption isotherms are of Brunauer type III in a water activity range of 0-0.97 and are discussed in terms of the Guggenheim (GAB) sorption model. The study shows that the introduction of 8OHPOSS, even in a large amount (10 wt%), does not hinder the water affinity of the NIPU network despite the hydrophobic nature of POSS; this is attributable to the homogenous dispersion of POSS in the polymer matrix. The shift in the urethane-derived carbonyl bands toward lower wavenumbers with a simultaneous shift in the urethane N-H bending bands toward higher wavenumbers exposes the breakage of polymer-polymer hydrogen bonds upon water uptake due to the formation of stronger water-polymer hydrogen bonds. Upon water absorption, a notable decrease in the glass transition temperature (Tg) is observed for all studied materials. The progressive reduction in Tg with water uptake is driven by plasticization and slaving mechanisms. POSS moieties are thought to impact slaving indirectly by slightly affecting water uptake at very high hydration levels.
Collapse
Affiliation(s)
- Izabela Łukaszewska
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland; (A.B.); (K.N.R.)
| | | | | | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland; (A.B.); (K.N.R.)
| |
Collapse
|
4
|
Soni A, Das PK, Yusuf M, Pasha AA, Irshad K, Bourchak M. Synergy of RHA and silica sand on physico-mechanical and tribological properties of waste plastic-reinforced thermoplastic composites as floor tiles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124566-124584. [PMID: 35599290 DOI: 10.1007/s11356-022-20915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The usage of waste for the development of sustainable building materials has received an increasing attention in socio-eco-environment spheres. The rice husk ash (RHA) produced during burning of rice husk and the ever-increasing plastic wastes are useless causing detrimental effects on the environment. This research supports the idea of sustainability and circular economy via utilization of waste to produce value-added products. This research explores the potential of waste plastics, RHA, and silica sand as thermoplastic composite materials. The different composite samples were prepared through waste plastics which includes low- and high-density polyethylene and polypropylene with incorporation of RHA and silica sand in proportions. The study investigates the effect of filler/polymer in 30/70, 20/80, and 10/90 (wt. %) on the workability of the developed composite materials. The workability of the composites was found to improve with filler reinforcement. The experimental results showed the maximum density of 1.676 g/cm3 and mechanical strength of 26.39, 4.89, and 3.25 MPa as compressive, flexural, and tensile strengths, respectively. The minimum percentage of water absorption was 0.052%. The wear tests resulted in a minimum abrasive and sliding wear rate of 0.03759 (cm3) and 0.00692 × 10-6 kg/m. The correlations between wear mechanisms and responses were morphologically analyzed. The developed composites verify the feasibility of RHA and plastics waste as a cost effective and environmentally competent product. The results and discussions provided a direction for the future research on sustainable polymeric composite materials.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Mohammad Yusuf
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia.
| | - Amjad Ali Pasha
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Kashif Irshad
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Researcher at K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum and Mineral, Dhahran, 31261, Saudi Arabia
| | - Mostefa Bourchak
- Aerospace Engineering Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
Gabalski MA, Smith KR, Hix J, Zinn KR. Comparisons of 3D printed materials for biomedical imaging applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2273803. [PMID: 38415266 PMCID: PMC10898812 DOI: 10.1080/14686996.2023.2273803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 02/29/2024]
Abstract
In biomedical imaging, it is desirable that custom-made accessories for restraint, anesthesia, and monitoring can be easily cleaned and not interfere with the imaging quality or analyses. With the rise of 3D printing as a form of rapid prototyping or manufacturing for imaging tools and accessories, it is important to understand which printable materials are durable and not likely to interfere with imaging applications. Here, 15 3D printable materials were evaluated for radiodensity, optical properties, simulated wear, and capacity for repeated cleaning and disinfection. Materials that were durable, easily cleaned, and not expected to interfere with CT, PET, or optical imaging applications were identified.
Collapse
Affiliation(s)
- Mitchell A Gabalski
- Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kylie R Smith
- Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jeremy Hix
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Radiology, Michigan State University, East Lansing, MI, USA
- Advanced Molecular Imaging Facility, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kurt R Zinn
- Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Radiology, Michigan State University, East Lansing, MI, USA
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Maia LS, de Bomfim ASC, de Oliveira DM, Pinhati FR, da Conceição MOT, Barud HS, Medeiros SA, Rosa DS, Mulinari DR. Tuning of renewable sponge‐like polyurethane physical‐chemical and morphological properties using the pullulan as a reactive filler. J Appl Polym Sci 2023. [DOI: 10.1002/app.53619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lana S. Maia
- Department of Chemistry and Environmental State University of Rio de Janeiro (UERJ) Rio de Janeiro Brazil
| | - Anne Shayene C. de Bomfim
- Department of Materials and Technology School of Engineering and Science, São Paulo State University (UNESP) São Paulo Brazil
| | - Daniel M. de Oliveira
- Department of Materials and Technology School of Engineering and Science, São Paulo State University (UNESP) São Paulo Brazil
| | - Fernanda R. Pinhati
- Department of Chemistry and Environmental State University of Rio de Janeiro (UERJ) Rio de Janeiro Brazil
| | | | - Hernane S. Barud
- Department of Biotechnology Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA) Araraquara Brazil
| | - Simone A. Medeiros
- Chemical Engineering Department Engineering School of Lorena, University of São Paulo São Paulo Brazil
| | - Derval S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC) Santo André Brazil
| | - Daniella R. Mulinari
- Department of Mechanical and Energy State University of Rio de Janeiro (UERJ) Rio de Janeiro Brazil
| |
Collapse
|
7
|
Großmann L, Kieckhöfer M, Weitschies W, Krause J. 4D prints of flexible dosage forms using thermoplastic polyurethane with hybrid shape memory effect. Eur J Pharm Biopharm 2022; 181:227-238. [PMID: 36423878 DOI: 10.1016/j.ejpb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Thermoplastic polyurethanes are versatile materials due to their flexible and elastic properties. In research, medicine, and pharmacy, they are used in dosage forms, implants or as components of medical devices. To gain a deeper understanding of the influences on unfolding or expanding dosage forms, in this publication, 3D printing was used to produce differently shaped and foldable objects from various technical thermoplastic polyurethane filaments. The shape memory behaviour of the dosage forms was exploited to fold and package them in water-soluble hard gelatin capsules. The unfolding time and dimensional recovery of the 3D printed dosage forms were investigated as a function of material properties and shape. As an example, for the use of flexible dosage forms, 3D models have been designed so that their unfolded size is suitable for possible gastric retention. Depending on the shape and material, different unfolding behaviours could be shown. Over a storage period of 60 days, a time related stress on the 4D printed objects was evaluated, which possibly affects the unfolding process. The results of this work aim to be used to evaluate the behaviour of 3D printed unfolding and expanding dosage forms and how they may be suitable for the development of innovative sustained drug delivery concepts or medicinal devices. The basic principle of a hybrid shape memory effect used here could possibly be applied to other drug delivery strategies besides gastric retention.
Collapse
Affiliation(s)
- Linus Großmann
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Maximilian Kieckhöfer
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| |
Collapse
|
8
|
Bhosale YK, Perumal T, Varghese SM, Vincent H, Ramachandran SV. Utilization of shallot bio-waste (Allium cepa L. var. aggregatum) fractions for the production of functional cookies. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Shallot harvesting and processing produce various waste streams, and the current study aims to investigate the effects of shallot bio-waste powder (SWP) substitution on different flour properties. Increased SWP to 50% substitution of stalk and petiole showed a rise in swelling capacity (43.33%) and water absorption (342.22%), and oil absorption (320.73%), respectively. Foaming capacity improved from 48.00% in control to 60.26% in 30% flower substitution and further decreases to 51.28% at 50%. Pasting properties reduced at higher SWP substitution and the highest drop in peak viscosity was observed at Stalk-50 (457.33 cP). Subsequently, developed functional cookies showed enhanced fiber, ash, total phenol, and total flavonoids with 3, 2, 7, and 5 fold, respectively. Cookies developed with higher substitution were of darker color and higher hardness and fracturability. Sensory evaluation with fuzzy analysis revealed better acceptance for stalk and petiole (10%) and peel (5%) of final cookies with elevated nutritional value.
Collapse
Affiliation(s)
- Yuvraj K. Bhosale
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| | - Thivya Perumal
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| | - Shery M. Varghese
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
- Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Hema Vincent
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| | - Sinija Vadakkepulppara Ramachandran
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| |
Collapse
|
9
|
Zanini NC, de Souza AG, Barbosa RFS, Rosa DS, Mulinari DR. Eco-friendly composites of polyurethane and sheath palm residues. J CELL PLAST 2021. [DOI: 10.1177/0021955x20987150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work prepared eco-friendly biocomposites of polyurethane (PU) and sheath palm residues, using castor oil as a polyol. PU composites filled with natural fibers were prepared at different loading rates: 0 to 20 wt.%. Results indicated that the sheath palm was hydrogen-bonded to PU chains and increased the foams' density. Pore size decreased with an increase in fiber content, from 256 to 116 µm. The fiber's addition improved the ductility of PU foams (compressive modulus from 4.74 to 0.26 MPa) and the foams' crystallinity index (from 5.4 to 15.4%). Compared to pristine PU, the composites showed high hydrophobicity (reaching 123° of contact angle for PU-15%) and thermal stability (Tonset from 96 to 96.3°), and high density (from 41 to 60 kg.m−3), making the developed composites an excellent option for environmental applications, such as oil removal and contaminant adsorption.
Collapse
Affiliation(s)
- Noelle C Zanini
- Department of Mechanical and Energy, Universidade do Estado do Rio de Janeiro, Resende, Brazil
| | - Alana G de Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rennan FS Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Daniella R Mulinari
- Department of Mechanical and Energy, Universidade do Estado do Rio de Janeiro, Resende, Brazil
| |
Collapse
|
10
|
Moustafa H, El-Wakil AEAA, Nour MT, Youssef AM. Kenaf fibre treatment and its impact on the static, dynamic, hydrophobicity and barrier properties of sustainable polystyrene biocomposites. RSC Adv 2020; 10:29296-29305. [PMID: 35521099 PMCID: PMC9055917 DOI: 10.1039/d0ra05334a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
Abstract
Natural fibre-polymer adhesion can be improved by treating the fibre surface or polymer. In this study, resorcinol-hexamethylenetetramine mixture (R-HMT) is used as a chemical treatment for kenaf fibre waste to extend the interfacial adhesion between the fibre-polystyrene matrices. The effect of the untreated and treated kenaf fibre (designated as UK and TK fibre) on the thermal (DSC), viscoelastic, mechanical, hydrophobicity, and barrier properties of polystyrene (PS) was studied. Four different percentages of each type of fibre (10, 20, 30, and 40 wt%) were used. The chemical structure of the TK fibre was confirmed by Fourier-transform infrared spectroscopy (FT-IR) analysis. The compatibility of the fibre-polymer was investigated by scanning electron microscopy (SEM). The results showed that the use of the treated fibre at 30 wt%, enhanced the tensile strength by 148% and 212% compared to neat PS and PS/UK-30, respectively, indicating a good fibre bond adhesion. The DMA data demonstrated that the storage modulus increased significantly, especially for the PS/TK-30 composite. Meanwhile, the glass transition temperature (Tg) shifted to a lower temperature for both types of fibre. Also, the hydrophobicity of the PS composites, which was determined by thickness swelling measurements, was improved when the TK fibre was inserted. Furthermore, water vapor and oxygen transmission rates were determined. A good correlation between most of the properties for the PS composite-based treated fibre was observed, which revealed the possibility of using these materials for sustainable automotive components and gas sensitive packaging applications. Natural fibre-polymer adhesion can be improved by treating the fibre surface or polymer.![]()
Collapse
Affiliation(s)
- Hesham Moustafa
- Polymer Metrology & Technology Department, National Institute of Standards (NIS) Tersa Street, El Haram, PO Box 136 Giza 12211 Giza Egypt +20 2338 6745 1 +201017345800
| | - Abd El-Aziz A El-Wakil
- Polymer Metrology & Technology Department, National Institute of Standards (NIS) Tersa Street, El Haram, PO Box 136 Giza 12211 Giza Egypt +20 2338 6745 1 +201017345800
| | - Mohamed T Nour
- Fire and Explosion Protection Department, National Institute of Standards (NIS) Tersa Street, El Haram, PO Box 136 Giza 12211 Giza Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (Former El Tahrir St.) Dokki Giza PO 12622 Egypt
| |
Collapse
|
11
|
Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F. Development of Photovoltaic Module with Fabricated and Evaluated Novel Backsheet-Based Biocomposite Materials. MATERIALS 2019; 12:ma12183007. [PMID: 31533207 PMCID: PMC6766262 DOI: 10.3390/ma12183007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
Photovoltaic backsheets have considerable impact on the collective performance of solar cells. Material components should withstand certain temperatures and loads while maintaining high thermal stability under various weather conditions. Solar modules must demonstrate increased reliability, adequate performance, safety, and durability throughout the course of their lifetime. This work presents a novel solar module. The module consists of an innovative polyvinylidene fluoride-short sugar palm fiber (PVDF-SSPF) composite backsheet within its structure. It was electrically and thermally evaluated. The current-voltage characteristics (I-V) were obtained using the solar module analyzer, PROVA 210PV. A thermal evaluation was accomplished using a temperature device, SDL200. The thermal test consisted of two different assessments. The first targeted the surface and backsheet of the developed module to correlate their performance from within. The second assessment compared the thermal performance of the fabricated backsheet with the conventional one. Both tests were combined into a heatmap analysis to further understand the thermal performance. Results revealed that the developed module exhibited reasonable electrical efficiency, achieving appropriate and balanced I-V curves. PVDF-SSPF backsheets proved to be thermally stable by displaying less heat absorbance and better temperature shifts. Additional research efforts are highly encouraged to investigate other characteristics. To enhance performance, further analyses are needed such as the damp heat analysis, accelerated aging analysis, and heat dissipation phenomena.
Collapse
Affiliation(s)
- M H Alaaeddin
- Advanced Engineering Materials and Composites Research Center, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Center, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Laboratory of Bio-Composite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - M Y M Zuhri
- Advanced Engineering Materials and Composites Research Center, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - E S Zainudin
- Advanced Engineering Materials and Composites Research Center, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Laboratory of Bio-Composite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Faris M Al-Oqla
- Department of Mechanical Engineering, Faculty of Engineering, Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
12
|
Lightweight and Durable PVDF-SSPF Composites for Photovoltaics Backsheet Applications: Thermal, Optical and Technical Properties. MATERIALS 2019; 12:ma12132104. [PMID: 31261926 PMCID: PMC6651121 DOI: 10.3390/ma12132104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022]
Abstract
Photovoltaic module backsheets are characterized according to their thermal, optical, mechanical, and technical properties. This work introduces new fabricated backsheets for PV modules using polyvinylidene fluoride (PVDF) reinforced with short sugar palm fiber (SSPF) composites. The preparation of composites undergoes multiple phases of fabrication. Thermal, optical, and technical investigations of their properties were conducted. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, in-situ scanning probe microscopy (SPM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and prolonged technical testing were accomplished to expansively understand the complex behavior of composites under various conditions. The optical properties of PV backsheets are critical components in determining the reflectance, absorbance, and transmittance of light. The PVDF–SSPF composites exhibited exceptional compatibility and thermal stability, further revealing a homogenous composite structure with enhanced interfacial bonding between the short fiber and polymer matrix.
Collapse
|
13
|
Papastergiou M, Chriti D, Damalas DE, Raptopoulos G, Paraskevopoulou P. Poly(urethane-acrylate) aerogels from the isocyanurate trimer of isophorone diisocyanate. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Hybrid and Nonhybrid Laminate Composites of Sugar Palm and Glass Fibre-Reinforced Polypropylene: Effect of Alkali and Sodium Bicarbonate Treatments. INT J POLYM SCI 2019. [DOI: 10.1155/2019/1230592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In recent years, the hybrid composites of cellulosic and synthetic fibres are tailored to yield materials with reduced cost and weight. Prior to the fabrication of the hybrid composite, in most case, the cellulosic fibre needs surface modification for proper bonding. Therefore, this study investigates the effect of sodium bicarbonate treatment on the physical and mechanical properties of the hybrid and nonhybrid laminate composites of sugar palm and glass fibre-reinforced polypropylene. The findings will be compared with the conventional alkali treatment. The laminate composites were fabricated using the film stacking technique and hot compression process. Prior to the fabrication process, the sugar palm fibre in it which is naturally woven mat was treated with 4 wt% and 10 wt% alkali and sodium bicarbonate, respectively. All the laminate composites were investigated by tensile, flexural, and impact test, water absorption, and morphological examination. The tensile strength increased with both alkaline and sodium bicarbonate treatments for the hybrid and nonhybrid composites. The increase was more pronounced with the alkaline-treated SPF composite (L03) which displayed the highest value of 61.75 MPa, while that of the sodium bicarbonate-treated SPF composite (L04) recorded 58.76 MPa against 53.01 MPa for the untreated SPF composite (L02). The same trend was observed for the flexural strength. In overall, the alkaline treatment yielded better performance in comparison with sodium bicarbonate treatment.
Collapse
|
15
|
Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3010027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural composites can be fabricated through reinforcing either synthetic or bio-based polymers with hydrophilic natural fibers. Ultimate moisture absorption resistance at the fiber–matrix interface can be achieved when hydrophilic natural fibers are used to reinforce biopolymers due to the high degree of compatibility between them. However, the cost of biopolymers is several times higher than that of their synthetic counterparts, which hinders their dissemination in various industries. In order to produce economically feasible natural composites, synthetic resins are frequently reinforced with hydrophilic fibers, which increases the incompatibility issues such as the creation of voids and delamination at fiber–matrix interfaces. Therefore, applying chemical and/or physical treatments to eliminate the aforementioned drawbacks is of primary importance. However, it is demonstrated through this review study that these treatments do not guarantee a sufficient improvement of the moisture absorption properties of natural composites, and the moisture treatments should be applied under the consideration of the following parameters: (i) type of hosting matrix; (ii) type of natural fiber; (iii) loading of natural fiber; (iv) the hybridization of natural fibers with mineral/synthetic counterparts; (v) implantation of nanofillers. Complete discussion about each of these parameters is developed through this study.
Collapse
|