1
|
Landi C, Liberatori G, Cotugno P, Sturba L, Vannuccini ML, Massari F, Miniero DV, Tursi A, Shaba E, Behnisch PA, Carleo A, Di Giuseppe F, Angelucci S, Bini L, Corsi I. First Attempt to Couple Proteomics with the AhR Reporter Gene Bioassay in Soil Pollution Monitoring and Assessment. TOXICS 2021; 10:toxics10010009. [PMID: 35051051 PMCID: PMC8779689 DOI: 10.3390/toxics10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022]
Abstract
A topsoil sample obtained from a highly industrialized area (Taranto, Italy) was tested on the DR-CALUX® cell line and the exposed cells processed with proteomic and bioinformatics analyses. The presence of polyhalogenated compounds in the topsoil extracts was confirmed by GC-MS/MS analysis. Proteomic analysis of the cells exposed to the topsoil extracts identified 43 differential proteins. Enrichment analysis highlighted biological processes, such as the cellular response to a chemical stimulus, stress, and inorganic substances; regulation of translation; regulation of apoptotic process; and the response to organonitrogen compounds in light of particular drugs and compounds, extrapolated by bioinformatics all linked to the identified protein modifications. Our results confirm and reflect the complex epidemiological situation occurring among Taranto inhabitants and underline the need to further investigate the presence and sources of inferred chemicals in soils. The combination of bioassays and proteomics reveals a more complex scenario of chemicals able to affect cellular pathways and leading to toxicities rather than those identified by only bioassays and related chemical analysis. This combined approach turns out to be a promising tool for soil risk assessment and deserves further investigation and developments for soil monitoring and risk assessment.
Collapse
Affiliation(s)
- Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Pietro Cotugno
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Lucrezia Sturba
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Federica Massari
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Daniela Valeria Miniero
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Angelo Tursi
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Enxhi Shaba
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Peter A. Behnisch
- BioDetection System BV (BDS) Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, 30625 Hannover, Germany;
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology and Proteomics Unit, Centre of Advanced Studies and Technology, “G. D’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology and Proteomics Unit, Centre of Advanced Studies and Technology, “G. D’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
- Correspondence: (L.B.); (I.C.); Tel.: +39-0577-234938 (L.B.); +39-0577-232169 (I.C.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
- Correspondence: (L.B.); (I.C.); Tel.: +39-0577-234938 (L.B.); +39-0577-232169 (I.C.)
| |
Collapse
|
2
|
Liberatori G, Cotugno P, Sturba L, Vannuccini ML, Capasso G, Velardo R, Besselink H, Massari F, Tursi A, Corbelli V, Behnisch PA, Corsi I. Occurrence and spatial distribution of dioxin and dioxin-like compounds in topsoil of Taranto (Apulia, Italy) by GC-MS analysis and DR-CALUX® bioassay. CHEMOSPHERE 2021; 279:130576. [PMID: 33894519 DOI: 10.1016/j.chemosphere.2021.130576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to assess the occurrence and spatial distribution of PCDD/Fs and dioxin-like compounds in topsoils of Taranto (Apulia Region), one of the most heavily industrialized and contaminated area of Southern Italy. A combined approach of chemical analysis by GC-MS/MS and AhR reporter gene bioassay was applied in a subset of topsoil samples (n = 20) collected in 2017-18 from ten sites embracing three levels of risk (from high to low) in the framework of a large survey inside Taranto municipality. TCDD-BEQs and GC-MS/MS TEQWHO and TEQTHEORETICAL revealed a decreasing trend with the distance from main industrial settings and landfill areas. A strong correlation between TCDD-BEQs and TEQWHO values (R2 = 0.85) and TEQTHEORETICAL (R2 = 0.88) was also found. In 3 out of 10 topsoil investigated, BEQs and TEQWHO/THEORETICAL resulted above Italian National Regulatory Limits for ∑PCDD/Fs in green, private and recreational used soils (10 ng TEQ/kg d.w. D.Lgs 152/2006) and for ∑PCDD/F/dl-PCBs in agricultural and farming soil (6 ng TEQ/kg d.w. D.M. 46/2019). GC-MS/MS pattern revealed the highest prevalence of dl-PCBs in 6 out of 10 sites, followed by PCDFs and PCDDs. Those sites are all located in proximity of main industrial steel and iron ore sinter plant, steel plant's landfills and illegal dumping sites. An update on occurrence and spatial distribution of PCDD/Fs and dl-PCBs contamination of Taranto urban soils was obtained and the DR-CALUX® bioassay was further recommended as a suitable screening tool for environmental and human risk assessment.
Collapse
Affiliation(s)
- Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy.
| | - Pietro Cotugno
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Lucrezia Sturba
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Gennaro Capasso
- Special Commissioner for Urgent Intervention for Remediation, Environmental Enhancement and Upgrading of Taranto, Taranto, Italy
| | - Raffaele Velardo
- Special Commissioner for Urgent Intervention for Remediation, Environmental Enhancement and Upgrading of Taranto, Taranto, Italy
| | | | - Federica Massari
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Tursi
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Vera Corbelli
- Special Commissioner for Urgent Intervention for Remediation, Environmental Enhancement and Upgrading of Taranto, Taranto, Italy
| | | | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
3
|
A Comparative Assessment of Analytical Fate and Transport Models of Organic Contaminants in Unsaturated Soils. SUSTAINABILITY 2020. [DOI: 10.3390/su12072949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Analytical models for the simulation of contaminants’ fate and transport in the unsaturated zone are used in many engineering applications concerning groundwater resource management and risk assessment. As a consequence, several scientific studies dealing with the development and application of analytical solutions have been carried out. Six models have been selected and compared based on common characteristics to identify pros and cons as well as to highlight any difference in the final output. The analyzed models have been clustered into three groups according to the assumptions on contaminant source and physico-chemical mechanisms occurring during the transport. Comparative simulations were carried out with five target contaminants (Benzene, Benzo(a)pyrene, Vinyl Chloride, Trichloroethylene and Aldrin) with different decay’s coefficient, three types of soil (sand, loam and clay) and three different thicknesses of the contaminant source. The calculated concentration at a given depth in the soil for the same contamination scenario varied greatly among the models. A significant variability of the concentrations was shown due to the variation of contaminant and soil characteristics. As a general finding, the more advanced is the model, the lower the predicted concentrations; thus, models that are too simplified could lead to outcomes of some orders of magnitude greater than the advanced one.
Collapse
|
4
|
Cavallini A, Lippolis C, Vacca M, Nardelli C, Castegna A, Arnesano F, Carella N, Depalo R. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction. PLoS One 2016; 11:e0152181. [PMID: 27008165 PMCID: PMC4805276 DOI: 10.1371/journal.pone.0152181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb.
Collapse
Affiliation(s)
- Aldo Cavallini
- Laboratory of Cellular and Molecular Biology, Dept. Clinical Pathology, National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, via Turi 27, 70013, Castellana Grotte (BA), Italy
- * E-mail:
| | - Catia Lippolis
- Laboratory of Cellular and Molecular Biology, Dept. Clinical Pathology, National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, via Turi 27, 70013, Castellana Grotte (BA), Italy
| | - Margherita Vacca
- Unit of Pathophysiology of Human Reproduction and Gametes Cryopreservation, Dept. of General Surgery, Gynecology, Obstetrics and Anesthesiology, University Hospital of Bari, Consorziale, Policlinico. piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Claudia Nardelli
- Unit of Pathophysiology of Human Reproduction and Gametes Cryopreservation, Dept. of General Surgery, Gynecology, Obstetrics and Anesthesiology, University Hospital of Bari, Consorziale, Policlinico. piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandra Castegna
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”, via E. Orabona 4, 70125, Bari, Italy
| | - Fabio Arnesano
- Dept. of Chemistry, University of Bari “A. Moro”, via E. Orabona 4, 70125, Bari, Italy
| | - Nicola Carella
- Laboratory of Cellular and Molecular Biology, Dept. Clinical Pathology, National Institute for Digestive Diseases, IRCCS “Saverio de Bellis”, via Turi 27, 70013, Castellana Grotte (BA), Italy
| | - Raffaella Depalo
- Unit of Pathophysiology of Human Reproduction and Gametes Cryopreservation, Dept. of General Surgery, Gynecology, Obstetrics and Anesthesiology, University Hospital of Bari, Consorziale, Policlinico. piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|