1
|
Ballestín R, Torres J, Ponsoda X. TSQ Incubation Enhances Autometallographic Zinc Detection in Cultured Astrocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:759-770. [PMID: 39027929 DOI: 10.1093/mam/ozae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/01/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Zinc is a critical ion for a large number of cellular functions. In the central nervous system, zinc ions are involved in synaptic transmission. Therefore, zinc homeostasis is essential, and cells have developed a variety of mechanisms to control cellular zinc concentration, including the zincosome formation. Alterations of free zinc levels have been associated with brain dysfunction and are present in many illnesses and syndromes. Astrocytes are implicated in the maintenance of the neuronal milleu and brain homeostasis. In this work, we have analyzed the combination of direct (TSQ) and indirect (autometallography) zinc detection methods to increase sensitivity for studying zinc uptake by rat astrocytes in vitro. Zincosome formation was visualized with the zinc fluorochrome TSQ by light microscopy. Additionally, we improved both zinc precipitation and cellular fixation methods to preserve zinc ions and make them suitable for autometallography development. Our tests pinpointed paraformaldehyde and sodium sulfide as the more adequate methods for cellular fixation and zinc precipitation, respectively. TSQ incubation and pH of the fixative were shown to be crucial for autometallography. Using this improved method, we visualized the zinc content of zincosomes at the ultrastructural level both as silver autometallographic precipitates and as electrodense sulfide-osmium zinc precipitates.
Collapse
Affiliation(s)
- Raúl Ballestín
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100 Burjassot, Valencia, Spain
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100 Burjassot, Valencia, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Blixhavn CH, Haug FMŠ, Kleven H, Puchades MA, Bjaalie JG, Leergaard TB. A Timm-Nissl multiplane microscopic atlas of rat brain zincergic terminal fields and metal-containing glia. Sci Data 2023; 10:150. [PMID: 36944675 PMCID: PMC10030855 DOI: 10.1038/s41597-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.
Collapse
Affiliation(s)
- Camilla H Blixhavn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Finn-Mogens Š Haug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Danscher G, Rasmussen S. nanoGold and µGold inhibit autoimmune inflammation: a review. Histochem Cell Biol 2023; 159:225-232. [PMID: 36864314 PMCID: PMC10006034 DOI: 10.1007/s00418-023-02182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
The newest data on metallic gold have placed the noble metal central in the fight for the safe treatment of autoimmune inflammation. There are two different ways to use gold for the treatment of inflammation: gold microparticles > 20 µm and gold nanoparticles. The injection of gold microparticles (µGold) is a purely local therapy. µGold particles stay put where injected, and gold ions released from them are relatively few and taken up by cells within a sphere of only a few millimeters in diameter from their origin particles. The macrophage-induced release of gold ions may continue for years. Injection of gold nanoparticles (nanoGold), on the other hand, is spread throughout the whole body, and the bio-released gold ions, therefore, affect multitudes of cells all over the body, as when using gold-containing drugs such as Myocrisin. Since macrophages and other phagocytotic cells take up and transport nanoGold and remove it after a short period, repeated treatment is necessary. This review describes the details of the cellular mechanisms that lead to the bio-release of gold ions in µGold and nanoGold.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Biomedicine, Århus University, Århus, Denmark
| | - Sten Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Wang Z, Peng C, Zhang Y, Wang L, Yu L, Wang C. Characteristics of Zn Content and Localization, Cu-Zn SOD, and MT Levels in the Tissues of Marginally Zn-Deficient Mice. Biol Trace Elem Res 2023; 201:262-271. [PMID: 35064869 DOI: 10.1007/s12011-022-03119-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023]
Abstract
Zinc (Zn) is an important trace element in the human body, and Zn deficiency affects the Zn content of major tissues. Marginal Zn deficiency is more common than severe Zn deficiency in humans. The objective of the present study was to compare the content and distribution of Zn and the change in the copper (Cu)-Zn superoxide dismutase (SOD) and metallothionein (MT) levels of soft tissues. Mice were fed with 30 mg/kg (control) or 10 mg/kg (marginally Zn-deficient, MZD) Zn diet for 35 days. We observed that only the Zn contents of serum, bones, and muscles in the control group were higher than those in the MZD group. Autometallography (AMG) was used as a method for staining Zn ions, and the semi-quantitative result indicated that the AMG products of the liver, duodenum, heart, lung, testes, and epididymis in the control group were higher than those in the MZD group. Furthermore, the contents of MT and the activities of Cu-Zn SOD in the testes, brain, duodenum, and liver were higher in the control group than those in the MZD group. However, the AMG products and the activities of Cu-Zn SOD of the kidney in the MZD group were more/higher than those in the control group. These results indicated that a change in the total Zn content of soft tissues may be not obvious and insensitive, and thus, more attention should be given to the distribution and localization of Zn ions. The functional indicators, MT and Cu-Zn SOD, are suitable biomarkers for evaluating zinc nutritional status. The brain, testes, duodenum, and liver are susceptive organs to Zn deficiency.
Collapse
Affiliation(s)
- Ziqiong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Cheng Peng
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yuting Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Lei Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Lu Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
5
|
Bruna N, Galliani E, Oyarzún P, Bravo D, Fuentes F, Pérez-Donoso JM. Biomineralization of lithium nanoparticles by Li-resistant Pseudomonas rodhesiae isolated from the Atacama salt flat. Biol Res 2022; 55:12. [PMID: 35296351 PMCID: PMC8925236 DOI: 10.1186/s40659-022-00382-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background The Atacama salt flat is located in northern Chile, at 2300 m above sea level, and has a high concentration of lithium, being one of the main extraction sites in the world. The effect of lithium on microorganism communities inhabiting environments with high concentrations of this metal has been scarcely studied. A few works have studied the microorganisms present in lithium-rich salt flats (Uyuni and Hombre Muerto in Bolivia and Argentina, respectively). Nanocrystals formation through biological mineralization has been described as an alternative for microorganisms living in metal-rich environments to cope with metal ions. However, bacterial lithium biomineralization of lithium nanostructures has not been published to date. In the present work, we studied lithium-rich soils of the Atacama salt flat and reported for the first time the biological synthesis of Li nanoparticles. Results Bacterial communities were evaluated and a high abundance of Cellulomonas, Arcticibacter, Mucilaginibacter, and Pseudomonas were determined. Three lithium resistant strains corresponding to Pseudomonas rodhesiae, Planomicrobium koreense, and Pseudomonas sp. were isolated (MIC > 700 mM). High levels of S2− were detected in the headspace of P. rodhesiae and Pseudomonas sp. cultures exposed to cysteine. Accordingly, biomineralization of lithium sulfide-containing nanomaterials was determined in P. rodhesiae exposed to lithium salts and cysteine. Transmission electron microscopy (TEM) analysis of ultrathin sections of P. rodhesiae cells biomineralizing lithium revealed the presence of nanometric materials. Lithium sulfide-containing nanomaterials were purified, and their size and shape determined by dynamic light scattering and TEM. Spherical nanoparticles with an average size < 40 nm and a hydrodynamic size ~ 44.62 nm were determined. Conclusions We characterized the bacterial communities inhabiting Li-rich extreme environments and reported for the first time the biomineralization of Li-containing nanomaterials by Li-resistant bacteria. The biosynthesis method described in this report could be used to recover lithium from waste batteries and thus provide a solution to the accumulation of batteries. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00382-6.
Collapse
Affiliation(s)
- N Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile
| | - E Galliani
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile
| | - P Oyarzún
- Laboratorio de Análisis de Sólidos, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile
| | - D Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - F Fuentes
- Escuela de Geología, Facultad de Ciencias, Universidad Mayor, Av. Manuel Montt 367, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile.
| |
Collapse
|
6
|
Priemel T, Palia G, Förste F, Jehle F, Sviben S, Mantouvalou I, Zaslansky P, Bertinetti L, Harrington MJ. Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels. Science 2021; 374:206-211. [PMID: 34618575 DOI: 10.1126/science.abi9702] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gurveer Palia
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Frank Förste
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sanja Sviben
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ioanna Mantouvalou
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, 14197 Berlin, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
7
|
Song H, Zheng G, Shen XF, Zhao ZH, Liu Y, Liu Y, Liu YY, Kang JJ, Chen JY, Luo WJ. An efficient autometallography approach to localize lead at ultra-structural levels of cultured cells. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractUnderstanding the precise intracellular localization of lead (Pb) is a key in deciphering processes in Pb-induced toxicology. However, it is a great challenge to trace Pbin vitro, especially in cultured cells. We aimed to find an innovative and efficient approach to investigate distribution of Pb in cells and to validate it through determining the subcellular Pb content. We identified its ultra-structural distribution with autometallography under electron microscopy in a choroidal epithelial Z310 cell line. Electron microscopy in combination with energy-dispersive X-ray spectroscope (EDS) was employed to provide further evidence of Pb location. In addition, Pb content was determined in the cytosol, membrane/organelle, nucleus and cytoskeleton fractions with atomic absorption spectroscopy. Pb was found predominantly inside the nuclear membranes and some was distributed in the cytoplasm under low-concentration exposure. Nuclear existence of Pb was verified by EDS under electron microscopy. Once standardized for protein content, Pb percentage in the nucleus fraction reached the highest level (76%). Our results indicate that Pb is accumulated mainly in the nucleus of choroid plexus. This method is sensitive and precise in providing optimal means to study the ultra-structural localization of Pb forin vitromodels. In addition, it offers the possibility of localization of other metals in cultured cells. Some procedures may also be adopted to detect target proteins via immunoreactions.
Collapse
|
8
|
Cid-Barrio L, Ruiz Encinar J, Costa-Fernández JM. Catalytic Gold Deposition for Ultrasensitive Optical Immunosensing of Prostate Specific Antigen. SENSORS 2020; 20:s20185287. [PMID: 32947809 PMCID: PMC7571086 DOI: 10.3390/s20185287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
A major challenge in the development of bioanalytical methods is to achieve a rapid and robust quantification of disease biomarkers present at very low concentration levels in complex biological samples. An immunoassay platform is presented herein for ultrasensitive and fast detection of the prostate-specific antigen (PSA), a well-recognized cancer biomarker. A sandwich type immunosensor has been developed employing a detection antibody labeled with inorganic nanoparticles acting as tags for further indirect quantification of the analyte. The required high sensitivity is then achieved through a controlled gold deposition on the nanoparticle surface, carried out after completing the recognition step of the immunoassay, thus effectively amplifying the size of the nanoparticles from nm to µm range. Due to such an amplification procedure, quantification of the biomolecule could be carried out directly on the immunoassay plates using confocal microscopy for measurement of the reflected light produced by gold-enlarged nanostructures. The high specificity of the immunoassay was demonstrated with the addition of a major abundant protein in serum (albumin) at much higher concentrations. An extremely low detection limit for PSA quantification (LOD of 1.1 fg·mL−1 PSA) has been achieved. Such excellent LOD is 2–3 orders of magnitude lower than the clinically relevant PSA levels present in biological samples (4–10 ng·mL−1) and even to monitor eventual recurrence after clinical treatment of a prostate tumor (0.1 ng·mL−1). In fact, the broad dynamic range obtained (4 orders of magnitude) would allow the PSA quantification of diverse samples at very different relevant levels.
Collapse
|
9
|
Kreyling WG, Holzwarth U, Hirn S, Schleh C, Wenk A, Schäffler M, Haberl N, Gibson N. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure. Part Fibre Toxicol 2020; 17:21. [PMID: 32503677 PMCID: PMC7275317 DOI: 10.1186/s12989-020-00347-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 01/13/2023] Open
Abstract
Background There is a steadily increasing quantity of silver nanoparticles (AgNP) produced for numerous industrial, medicinal and private purposes, leading to an increased risk of inhalation exposure for both professionals and consumers. Particle inhalation can result in inflammatory and allergic responses, and there are concerns about other negative health effects from either acute or chronic low-dose exposure. Results To study the fate of inhaled AgNP, healthy adult rats were exposed to 1½-hour intra-tracheal inhalations of pristine 105Ag-radiolabeled, 20 nm AgNP aerosols (with mean doses across all rats of each exposure group of deposited NP-mass and NP-number being 13.5 ± 3.6 μg, 7.9 ± 3.2•1011, respectively). At five time-points (0.75 h, 4 h, 24 h, 7d, 28d) post-exposure (p.e.), a complete balance of the [105Ag]AgNP fate and its degradation products were quantified in organs, tissues, carcass, lavage and body fluids, including excretions. Rapid dissolution of [105Ag]Ag-ions from the [105Ag]AgNP surface was apparent together with both fast particulate airway clearance and long-term particulate clearance from the alveolar region to the larynx. The results are compatible with evidence from the literature that the released [105Ag]Ag-ions precipitate rapidly to low-solubility [105Ag]Ag-salts in the ion-rich epithelial lining lung fluid (ELF) and blood. Based on the existing literature, the degradation products rapidly translocate across the air-blood-barrier (ABB) into the blood and are eliminated via the liver and gall-bladder into the small intestine for fecal excretion. The pathway of [105Ag]Ag-salt precipitates was compatible with auxiliary biokinetics studies at 24 h and 7 days after either intravenous injection or intratracheal or oral instillation of [110mAg]AgNO3 solutions in sentinel groups of rats. However, dissolution of [105Ag]Ag-ions appeared not to be complete after a few hours or days but continued over two weeks p.e. This was due to the additional formation of salt layers on the [105Ag]AgNP surface that mediate and prolonge the dissolution process. The concurrent clearance of persistent cores of [105Ag]AgNP and [105Ag]Ag-salt precipitates results in the elimination of a fraction > 0.8 (per ILD) after one week, each particulate Ag-species accounting for about half of this. After 28 days p.e. the cleared fraction rises marginally to 0.94 while 2/3 of the remaining [105Ag]AgNP are retained in the lungs and 1/3 in secondary organs and tissues with an unknown partition of the Ag species involved. However, making use of our previous biokinetics studies of poorly soluble [195Au]AuNP of the same size and under identical experimental and exposure conditions (Kreyling et al., ACS Nano 2018), the kinetics of the ABB-translocation of [105Ag]Ag-salt precipitates was estimated to reach a fractional maximum of 0.12 at day 3 p.e. and became undetectable 16 days p.e. Hence, persistent cores of [105Ag]AgNP were cleared throughout the study period. Urinary [105Ag]Ag excretion is minimal, finally accumulating to 0.016. Conclusion The biokinetics of inhaled [105Ag]AgNP is relatively complex since the dissolving [105Ag]Ag-ions (a) form salt layers on the [105Ag]AgNP surface which retard dissolution and (b) the [105Ag]Ag-ions released from the [105Ag]AgNP surface form poorly-soluble precipitates of [105Ag]Ag-salts in ELF. Therefore, hardly any [105Ag]Ag-ion clearance occurs from the lungs but instead [105Ag]AgNP and nano-sized precipitated [105Ag]Ag-salt are cleared via the larynx into GIT and, in addition, via blood, liver, gall bladder into GIT with one common excretional pathway via feces out of the body.
Collapse
Affiliation(s)
- Wolfgang G Kreyling
- Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany. .,Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany.
| | - Uwe Holzwarth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Stephanie Hirn
- Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany
| | - Carsten Schleh
- Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany.,Present address: Abteilung Gesundheit, Berufsgenossenschaft Holz und Metall, Am Knie 8, 81241, Munich, Germany
| | - Alexander Wenk
- Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany.,Present address: Department Infrastructure, Safety, Occupational Protection, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany
| | - Martin Schäffler
- Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany
| | - Nadine Haberl
- Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany
| | - Neil Gibson
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
10
|
Pamphlett R, Kum Jew S. Mercury Is Taken Up Selectively by Cells Involved in Joint, Bone, and Connective Tissue Disorders. Front Med (Lausanne) 2019; 6:168. [PMID: 31380381 PMCID: PMC6659129 DOI: 10.3389/fmed.2019.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The causes of most arthropathies, osteoarthritis, and connective tissue disorders remain unknown, but exposure to toxic metals could play a part in their pathogenesis. Human exposure to mercury is common, so to determine whether mercury could be affecting joints, bones, and connective tissues we used a histochemical method to determine the cellular uptake of mercury in mice. Whole neonatal mice were examined since this allowed histological assessment of mercury in joint, bone, and connective tissue cells. Materials and Methods: Pregnant mice were exposed to a non-toxic dose of 0.5 mg/m3 of mercury vapor for 4 h a day on gestational days 14-18. Neonates were sacrificed at postnatal day 1, fixed in formalin, and transverse blocks of the body were processed for paraffin embedding. Seven micrometer sections were stained for inorganic mercury using silver nitrate autometallography, either alone or combined with CD44 immunostaining to detect progenitor cells. Control neonates were not exposed to mercury during gestation. Results: Uptake of mercury was marked in synovial cells, articular chondrocytes, and periosteal and tracheal cartilage cells. Mercury was seen in fibroblasts in the dermis, aorta, esophagus and striated muscle, some of which were CD44-positive progenitor cells, and in the endothelial cells of small blood vessels. Mercury was also present in renal tubules and liver periportal cells. Conclusions: Mercury is taken up selectively by cells that are predominantly affected in rheumatoid arthritis and osteoarthritis. In addition, fibroblasts in several organs often involved in multisystem connective tissue disorders take up mercury. Mercury provokes the autoimmune, inflammatory, genetic, and epigenetic changes that have been described in a range of arthropathies and bone and connective tissue disorders. These findings support the hypothesis that mercury exposure could trigger some of these disorders, particularly in people with a genetic susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen Kum Jew
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Jimeno-Romero A, Bilbao E, Valsami-Jones E, Cajaraville MP, Soto M, Marigómez I. Bioaccumulation, tissue and cell distribution, biomarkers and toxicopathic effects of CdS quantum dots in mussels, Mytilus galloprovincialis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:288-300. [PMID: 30343143 DOI: 10.1016/j.ecoenv.2018.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The bioaccumulation, cell, tissue distribution, and biological effects of 5 nm glutathione-capped CdS quantum dots (CdS QDs) in mussels was compared to bulk and aqueous Cd forms through a two-tier experimental approach. In the 1st tier, mussels were exposed for 3 d to 0.05, 0.5 and 5 mg Cd/l (QDs, bulk, aqueous), bioaccumulation, distribution and lysosomal responses were investigated. In the 2nd tier, mussels were exposed for 21 d to the same forms at the lowest effective concentration selected after Tier 1 (0.05 mg Cd/l), biomarkers and toxicopathic effects were investigated. Accumulation was comparable in QDs and aqueous Cd exposed mussels after 3 d. After 21 d, QDs exposed mussels accumulated less than mussels exposed to aqueous Cd and localised in the endo-lysosomal system and released to the alveoli lumen (21 d) after exposure to QDs and aqueous Cd. Intracellular levels of Cd increased on exposure to QDs and aqueous Cd, and to a lesser extent to bulk, and accompanied by the up-regulation of metallothionein 10 (1 d) and 20 (1, 21 d). Lysosomal membrane destabilisation depended on Cd2+ released by all forms but was marked after exposure to aqueous Cd (1 d). Toxicopathic effects (vacuolisation, loss of digestive cells and haemocytic infiltration) were evident after exposure to QDs (1 d) and aqueous Cd (21 d). Toxicity most likely depended on the ionic load resulting from Cd2+ release from the different forms of Cd; yet nanoparticle-specific effects of QDs cannot be disregarded.
Collapse
Affiliation(s)
- Alba Jimeno-Romero
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - Eva Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - Manu Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - Ionan Marigómez
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain.
| |
Collapse
|
12
|
Pamphlett R, Kum Jew S. Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals 2018; 31:807-819. [PMID: 29959651 PMCID: PMC6133182 DOI: 10.1007/s10534-018-0124-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Neurotoxic metals have been implicated in the pathogenesis of multiple sclerosis, neurodegenerative disorders and brain tumours but studies of the location of heavy metals in human brains are rare. In a man who injected himself with metallic mercury the cellular location of mercury in his brain was studied after 5 months of continuous exposure to inorganic mercury arising from metallic mercury deposits in his organs. Paraffin sections from the primary motor and sensory cortices and the locus ceruleus in the pons were stained with autometallography to detect inorganic mercury and combined with glial fibrillary acidic protein immunohistochemistry to identify astrocytes. Inorganic mercury was found in grey matter subpial, interlaminar, protoplasmic and varicose astrocytes, white matter fibrous astrocytes, grey but not white matter oligodendrocytes, corticomotoneurons and some locus ceruleus neurons. In summary, inorganic mercury is taken up by five types of human brain astrocytes, as well as by cortical oligodendrocytes, corticomotoneurons and locus ceruleus neurons. Mercury can induce oxidative stress, stimulate autoimmunity and damage DNA, mitochondria and lipid membranes, so its location in these CNS cells suggests it could play a role in the pathogenesis of multiple sclerosis, neurodegenerative conditions such as Alzheimer's disease and amyotrophic lateral sclerosis, and glial tumours.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, The University of Sydney, Camperdown, Australia. .,Discipline of Pathology, Brain and Mind Centre, The University of Sydney and Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallett St, Camperdown, NSW, 2050, Australia.
| | - Stephen Kum Jew
- Discipline of Pathology, The University of Sydney, Camperdown, Australia
| |
Collapse
|
13
|
Juling S, Böhmert L, Lichtenstein D, Oberemm A, Creutzenberg O, Thünemann AF, Braeuning A, Lampen A. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food Chem Toxicol 2018; 113:255-266. [PMID: 29408364 DOI: 10.1016/j.fct.2018.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from non-particle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future.
Collapse
Affiliation(s)
- Sabine Juling
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Otto Creutzenberg
- ITEM, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Str. 1, 30623 Hannover, Germany
| | - Andreas F Thünemann
- BAM, German Federal Institute for Materials Research and Testing, Unter Den Eichen 87, 12205 Berlin, Germany
| | - Albert Braeuning
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Alfonso Lampen
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
14
|
Gardner B, Dieriks BV, Cameron S, Mendis LHS, Turner C, Faull RLM, Curtis MA. Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease. Sci Rep 2017; 7:10454. [PMID: 28874699 PMCID: PMC5585381 DOI: 10.1038/s41598-017-10659-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
In Parkinson's disease (PD), the olfactory bulb is typically the first region in the body to accumulate alpha-synuclein aggregates. This pathology is linked to decreased olfactory ability, which becomes apparent before any motor symptoms occur, and may be due to a local metal imbalance. Metal concentrations were investigated in post-mortem olfactory bulbs and tracts from 17 human subjects. Iron (p < 0.05) and sodium (p < 0.01) concentrations were elevated in the PD olfactory bulb. Combining laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry, iron and copper were evident at very low levels in regions of alpha-synuclein aggregation. Zinc was high in these regions, and free zinc was detected in Lewy bodies, mitochondria, and lipofuscin of cells in the anterior olfactory nucleus. Increased iron and sodium in the human PD olfactory bulb may relate to the loss of olfactory function. In contrast, colocalization of free zinc and alpha-synuclein in the anterior olfactory nucleus implicate zinc in PD pathogenesis.
Collapse
Affiliation(s)
- Bronwen Gardner
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Steve Cameron
- Waikato Mass Spectrometry Facility, University of Waikato, Hamilton, New Zealand
| | - Lakshini H S Mendis
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Kuldeep A, Nair N, Bedwal RS. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats. Biol Trace Elem Res 2017; 177:316-322. [PMID: 27822880 DOI: 10.1007/s12011-016-0881-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.
Collapse
Affiliation(s)
- Anjana Kuldeep
- Cell Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302055, India.
| | - Neena Nair
- Cell Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302055, India
| | - Ranveer Singh Bedwal
- Cell Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302055, India
| |
Collapse
|
16
|
Hosu O, Ravalli A, Lo Piccolo GM, Cristea C, Sandulescu R, Marrazza G. Smartphone-based immunosensor for CA125 detection. Talanta 2017; 166:234-240. [DOI: 10.1016/j.talanta.2017.01.073] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
17
|
Maxel T, Svendsen PF, Smidt K, Lauridsen JK, Brock B, Pedersen SB, Rungby J, Larsen A. Expression Patterns and Correlations with Metabolic Markers of Zinc Transporters ZIP14 and ZNT1 in Obesity and Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2017; 8:38. [PMID: 28303117 PMCID: PMC5332389 DOI: 10.3389/fendo.2017.00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/14/2017] [Indexed: 12/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with infertility, increased androgen levels, and insulin resistance. In adipose tissue, zinc facilitates insulin signaling. Circulating zinc levels are altered in obesity, diabetes, and PCOS; and zinc supplementation can ameliorate metabolic disturbances in PCOS. In adipose tissue, expression of zinc influx transporter ZIP14 varies with body mass index (BMI), clinical markers of metabolic syndrome, and peroxisome proliferator-activated receptor gamma (PPARG). In this study, we investigated expression levels of ZIP14 and PPARG in subcutaneous adipose tissue of 36 PCOS women (17 lean and 19 obese women) compared with 23 healthy controls (7 lean and 16 obese women). Further, expression levels of zinc transporter ZIP9, a recently identified androgen receptor, and zinc efflux transporter ZNT1 were investigated, alongside lipid profile and markers of glucose metabolism [insulin degrading enzyme, retinol-binding protein 4 (RBP4), and glucose transporter 4 (GLUT4)]. We find that ZIP14 expression is reduced in obesity and positively correlates with PPARG expression, which is downregulated with increasing BMI. ZNT1 is upregulated in obesity, and both ZIP14 and ZNT1 expression significantly correlates with clinical markers of altered glucose metabolism. In addition, RBP4 and GLUT4 associate with obesity, but an association with PCOS as such was present only for PPARG and RBP4. ZIP14 and ZNT1 does not relate to clinical androgen status and ZIP9 is unaffected by all parameters investigated. In conclusion, our findings support the existence of a zinc dyshomeostasis in adipose tissue in metabolic disturbances including PCOS-related obesity.
Collapse
Affiliation(s)
- Trine Maxel
- Faculty of Health, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Pernille Fog Svendsen
- Department of Obstetrics and Gynecology, Herlev University Hospital, Herlev, Denmark
| | - Kamille Smidt
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Birgitte Brock
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Bønlykke Pedersen
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Rungby
- Center for Diabetes Research, Department of Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Agnete Larsen
- Faculty of Health, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
In vivo distribution of nanosilver in the rat: The role of ions and de novo-formed secondary particles. Food Chem Toxicol 2016; 97:327-335. [DOI: 10.1016/j.fct.2016.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
|
19
|
Qiao J, Zhao H, Zhang Y, Peng H, Chen Q, Zhang H, Zheng X, Jin Y, Ni H, Duan E, Guo Y. GPR39 is region-specifically expressed in mouse oviduct correlating with the Zn 2+ distribution. Theriogenology 2016; 88:98-105. [PMID: 27865419 DOI: 10.1016/j.theriogenology.2016.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
G-protein-coupled receptor 39 (GPR39) plays a role in cellular and physiological processes, including insulin secretion, cell death inhibition, wound healing, and obesity. Increasing evidence suggests that GPR39 is potently stimulated by zinc ions (Zn2+) and is therefore considered a putative Zn2+ receptor. Given the importance of Zn2+ in the reproductive system, we proposed that GPR39 might have a functional role in the reproductive system. However, the localization of GPR39 in the reproductive system remains unknown. Here, we used mice expressing a Gpr39 promoter-driven LacZ reporter system to detect Gpr39 expression in the reproductive system at different phases of the estrous cycle and found an interesting region-specific distribution of Gpr39 in the mouse oviduct epithelium, with strong expression at the ampulla and weak expression at the isthmus, which was consistent with the results using reverse transcription polymerase chain reaction and immunofluorescence. Moreover, using ZnSeAMG staining, we found that Zn2+, the putative ligand of GPR39, also found a distribution similar to GPR39 expression, suggesting that their potential interaction mediates fertilization and embryo transportation.
Collapse
Affiliation(s)
- Jingqiao Qiao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huashan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueying Zheng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hemin Ni
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
20
|
Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation. Toxicol Appl Pharmacol 2016; 297:1-11. [DOI: 10.1016/j.taap.2016.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/23/2022]
|
21
|
Naumann RK, Ray S, Prokop S, Las L, Heppner FL, Brecht M. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex. J Comp Neurol 2016; 524:783-806. [PMID: 26223342 PMCID: PMC5014138 DOI: 10.1002/cne.23865] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/29/2022]
Abstract
To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex.
Collapse
Affiliation(s)
- Robert K. Naumann
- Bernstein Center for Computational NeuroscienceHumboldt University of Berlin10115BerlinGermany
- Max‐Planck‐Institute for Brain ResearchMax‐von‐Laue‐Str. 460438Frankfurt am MainGermany
| | - Saikat Ray
- Bernstein Center for Computational NeuroscienceHumboldt University of Berlin10115BerlinGermany
| | - Stefan Prokop
- Neuropathology Institute, Charité Medical School10117BerlinGermany
| | - Liora Las
- Department of NeurobiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Frank L. Heppner
- Neuropathology Institute, Charité Medical School10117BerlinGermany
| | - Michael Brecht
- Bernstein Center for Computational NeuroscienceHumboldt University of Berlin10115BerlinGermany
| |
Collapse
|
22
|
Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D'Amato M, Raggi A, Lenardi C, Milani P, Scanziani E. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 2016; 13:12. [PMID: 26926244 PMCID: PMC4772516 DOI: 10.1186/s12989-016-0124-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. METHODS Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. RESULTS For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). CONCLUSIONS Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.
Collapse
Affiliation(s)
| | - Marcella De Maglie
- Fondazione Filarete, 20139, Milan, Italy.
- Dipartimento di Scienze Veterinarie e Sanità Pubblica (DIVET), Università degli Studi di Milano, 20133, Milan, Italy.
| | | | | | - Claudia Cella
- Fondazione Filarete, 20139, Milan, Italy.
- Dipartimento di Fisica, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Silvana Mattiello
- Dipartimento di Scienze Veterinarie e Sanità Pubblica (DIVET), Università degli Studi di Milano, 20133, Milan, Italy.
| | - Francesco Cubadda
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità - National Health Institute, 00161, Rome, Italy.
| | - Federica Aureli
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità - National Health Institute, 00161, Rome, Italy.
| | - Marilena D'Amato
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità - National Health Institute, 00161, Rome, Italy.
| | - Andrea Raggi
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità - National Health Institute, 00161, Rome, Italy.
| | - Cristina Lenardi
- Fondazione Filarete, 20139, Milan, Italy.
- Dipartimento di Fisica, Università degli Studi di Milano, 20133, Milan, Italy.
- Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (CIMAINA), Università degli Studi di Milano, 20133, Milan, Italy.
| | - Paolo Milani
- Fondazione Filarete, 20139, Milan, Italy.
- Dipartimento di Fisica, Università degli Studi di Milano, 20133, Milan, Italy.
- Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (CIMAINA), Università degli Studi di Milano, 20133, Milan, Italy.
| | - Eugenio Scanziani
- Fondazione Filarete, 20139, Milan, Italy.
- Dipartimento di Scienze Veterinarie e Sanità Pubblica (DIVET), Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
23
|
Miller DL, Yu IJ, Genter MB. Use of Autometallography in Studies of Nanosilver Distribution and Toxicity. Int J Toxicol 2015; 35:47-51. [PMID: 26634628 DOI: 10.1177/1091581815616602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the increasing use of and interest in nanoparticles in medicine and technology, the tissue and cell-specific localization of the particles are important considerations when the nanomaterials find their way into biological systems. This brief communication shows the utility of autometallography in determining the location of metal deposition at the light microscopic level. Although primarily focusing on studies of the toxicity and deposition of silver nanoparticles, use of autometallography to localize zinc and other metals at the tissue and subcellular localization is also recognized.
Collapse
Affiliation(s)
- David L Miller
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Il Je Yu
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
24
|
Holland NA, Becak DP, Shannahan JH, Brown JM, Carratt SA, Winkle L, Pinkerton KE, Wang CM, Munusamy P, Baer DR, Sumner SJ, Fennell TR, Lust RM, Wingard CJ. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver. ACTA ACUST UNITED AC 2015; 6. [PMID: 26966636 DOI: 10.4172/2157-7439.s6-006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano-scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been reported to date. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of carbon-based nanomaterials. We hypothesized pulmonary exposure to Ag core AgNP induces a measureable increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and is associated with depressed coronary constrictor and relaxation responses. Secondarily, we addressed the potential contribution of silver ion release on AgNP toxicity. METHODS Male Sprague-Dawley rats were exposed to 200 μl of 1 mg/ml of 20 nm citrate-capped Ag core AgNP, 0.01, 0.1, 1 mg/ml Silver Acetate (AgAc), or a citrate vehicle by intratracheal (IT) instillation. One and 7 days following IT instillation the lungs were evaluated for inflammation and the presence of silver; serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and coronary artery reactivity were assessed. RESULTS AgNP instillation resulted in modest pulmonary inflammation with detection of silver in lung tissue and alveolar macrophages, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17α, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Silver within lung tissue was persistent at 7 days post IT instillation and was associated with an elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. AgAc resulted in a concentration dependent infarct expansion and depressed vascular reactivity without marked pulmonary inflammation or serum cytokine response. CONCLUSIONS Based on these data, IT instillation of AgNP increases circulating levels of several key cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.
Collapse
Affiliation(s)
- N A Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - D P Becak
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Jonathan H Shannahan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, USA
| | - J M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, USA
| | - S A Carratt
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Lsv Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - K E Pinkerton
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - C M Wang
- Pacific Northwest National Laboratory, EMSL, Richland, USA
| | - P Munusamy
- Pacific Northwest National Laboratory, EMSL, Richland, USA
| | - Don R Baer
- Pacific Northwest National Laboratory, EMSL, Richland, USA
| | - S J Sumner
- RTI International, Discovery Sciences, Research Triangle Park, USA
| | - T R Fennell
- RTI International, Discovery Sciences, Research Triangle Park, USA
| | - R M Lust
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - C J Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
25
|
Davenport LL, Hsieh H, Eppert BL, Carreira VS, Krishan M, Ingle T, Howard PC, Williams MT, Vorhees CV, Genter MB. Systemic and behavioral effects of intranasal administration of silver nanoparticles. Neurotoxicol Teratol 2015; 51:68-76. [PMID: 26340819 PMCID: PMC4692053 DOI: 10.1016/j.ntt.2015.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 07/17/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs.
Collapse
Affiliation(s)
- Laurie L Davenport
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Heidi Hsieh
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Bryan L Eppert
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Vinicius S Carreira
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Mansi Krishan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Taylor Ingle
- NCTR/ORA Nanotechnology Core Facility, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Paul C Howard
- NCTR/ORA Nanotechnology Core Facility, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Michael T Williams
- Division of Child Neurology (MLC 7044), Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Charles V Vorhees
- Division of Child Neurology (MLC 7044), Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA.
| |
Collapse
|
26
|
Anderson DS, Patchin ES, Silva RM, Uyeminami DL, Sharmah A, Guo T, Das GK, Brown JM, Shannahan J, Gordon T, Chen LC, Pinkerton KE, Van Winkle LS. Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol Sci 2015; 144:366-81. [PMID: 25577195 DOI: 10.1093/toxsci/kfv005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The growing use of silver nanoparticles (AgNPs) in consumer products raises concerns about potential health effects. This study investigated the persistence and clearance of 2 different size AgNPs (20 and 110 nm) delivered to rats by single nose-only aerosol exposures (6 h) of 7.2 and 5.4 mg/m(3), respectively. Rat lung tissue was assessed for silver accumulations using inductively-coupled plasma mass spectrometry (ICP-MS), autometallography, and enhanced dark field microscopy. Involvement of tissue macrophages was assessed by scoring of silver staining in bronchoalveolar lavage fluid (BALF). Silver was abundant in most macrophages at 1 day post-exposure. The group exposed to 20 nm AgNP had the greatest number of silver positive BALF macrophages at 56 days post-exposure. While there was a significant decrease in the amount of silver in lung tissue at 56 days post-exposure compared with 1 day following exposure, at least 33% of the initial delivered dose was still present for both AgNPs. Regardless of particle size, silver was predominantly localized within the terminal bronchial/alveolar duct junction region of the lung associated with extracellular matrix and within epithelial cells. Inhalation of both 20 and 110 nm AgNPs resulted in a persistence of silver in the lung at 56 days post-exposure and local deposition as well as accumulation of silver at the terminal bronchiole alveolar duct junction. Further the smaller particles, 20 nm AgNP, produced a greater silver burden in BALF macrophages as well as greater persistence of silver positive macrophages at later timepoints (21 and 56 days).
Collapse
Affiliation(s)
- Donald S Anderson
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Esther S Patchin
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Rona M Silva
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Dale L Uyeminami
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Arjun Sharmah
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Ting Guo
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Gautom K Das
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Jared M Brown
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Jonathan Shannahan
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Terry Gordon
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Lung Chi Chen
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Kent E Pinkerton
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817 *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817 *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| | - Laura S Van Winkle
- *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817 *Center for Health and the Environment, Department of Chemistry, Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, California 95616, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, Department of Environmental Medicine, Langone Medical Center, New York University, Tuxedo, New York 10987, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616 and Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, California 95817
| |
Collapse
|
27
|
Horai S, Yanagi K, Kaname T, Yamamoto M, Watanabe I, Ogura G, Abe S, Tanabe S, Furukawa T. Establishment of a primary hepatocyte culture from the small Indian mongoose (Herpestes auropunctatus) and distribution of mercury in liver tissue. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1681-1689. [PMID: 25142347 DOI: 10.1007/s10646-014-1307-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
The present study established a primary hepatocyte culture for the small Indian mongoose (Herpestes auropunctatus). To determine the suitable medium for growing the primary hepatic cells of this species, we compared the condition of cells cultured in three media that are frequently used for mammalian cell culture: Dulbecco's Modified Eagle's Medium, RPMI-1640, and William's E. Of these, William's E medium was best suited for culturing the hepatic cells of this species. Using periodic acid-Schiff staining and ultrastructural observations, we demonstrated the cells collected from mongoose livers were hepatocytes. To evaluate the distribution of mercury (Hg) in the liver tissue, we carried out autometallography staining. Most of the Hg compounds were found in the central region of hepatic lobules. Smooth endoplasmic reticulum, which plays a role inxenobiotic metabolism, lipid/cholesterol metabolism, and the digestion and detoxification of lipophilic substances is grown in this area. This suggested that Hg colocalized with smooth endoplasmic reticulum. The results of the present study could be useful to identify the detoxification systems of wildlife with high Hg content in the body, and to evaluate the susceptibility of wildlife to Hg toxicity.
Collapse
Affiliation(s)
- Sawako Horai
- Department of Regional Environment, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8551, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Anderson DS, Silva RM, Lee D, Edwards PC, Sharmah A, Guo T, Pinkerton KE, Van Winkle LS. Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 2014; 9:591-602. [PMID: 25231189 DOI: 10.3109/17435390.2014.958116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing silver nanoparticle (AgNP) use in sprays, consumer products, and medical devices has raised concerns about potential health effects. While previous studies have investigated AgNPs, most were limited to a single particle size or surface coating. In this study, we investigated the effect of size, surface coating, and dose on the persistence of silver in the lung following exposure to AgNP. Adult male rats were intratracheally instilled with four different AgNPs: 20 or 110 nm in size and coated with either citrate or polyvinylpyrrolidone (PVP) at 0.5 or 1.0 mg/kg doses. Silver retention was assessed in the lung at 1, 7, and 21 d post exposure. ICP-MS quantification demonstrated that citrate-coated AgNPs persisted in the lung to 21 d with retention greater than 90%, while PVP-coated AgNP had less than 30% retention. Localization of silver in lung tissue at 1 d post exposure demonstrated decreased silver in proximal airways exposed to 110 nm particles compared with 20 nm AgNPs. In terminal bronchioles 1 d post exposure, silver was localized to surface epithelium but was more prominent in the basement membrane at 7 d. Silver positive macrophages in bronchoalveolar lavage fluid decreased more quickly after exposure to particles coated with PVP. We conclude that PVP-coated AgNPs had less retention in the lung tissue over time and larger particles were more rapidly cleared from large airways than smaller particles. The 20 nm citrate particles showed the greatest effect, increasing lung macrophages even 21 d after exposure, and resulted in the greatest silver retention in lung tissue.
Collapse
Affiliation(s)
- Donald S Anderson
- Center for Health and the Environment,University of California Davis , Davis, CA , USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1545] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
30
|
van der Ploeg MJC, Handy RD, Waalewijn-Kool PL, van den Berg JHJ, Herrera Rivera ZE, Bovenschen J, Molleman B, Baveco JM, Tromp P, Peters RJB, Koopmans GF, Rietjens IMCM, van den Brink NW. Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:743-752. [PMID: 24318461 DOI: 10.1002/etc.2487] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
The impact of silver nanoparticles (AgNP; at 0 mg Ag/kg, 1.5 mg Ag/kg, 15.4 mg Ag/kg, and 154 mg Ag/kg soil) and silver nitrate (AgNO3 ; 15.4 mg Ag/kg soil) on earthworms, Lumbricus rubellus, was assessed. A 4-wk exposure to the highest AgNP treatment reduced growth and reproduction compared with the control. Silver nitrate (AgNO3 ) exposure also impaired reproduction, but not as much as the highest AgNP treatment. Long-term exposure to the highest AgNP treatment caused complete juvenile mortality. All AgNP treatments induced tissue pathology. Population modeling demonstrated reduced population growth rates for the AgNP and AgNO3 treatments, and no population growth at the highest AgNP treatment because of juvenile mortality. Analysis of AgNP treated soil samples revealed that single AgNP and AgNP clusters were present in the soil, and that the total Ag in soil porewater remained high throughout the long-term experiment. In addition, immune cells (coelomocytes) of earthworms showed sensitivity to both AgNP and AgNO3 in vitro. Overall, the present study indicates that AgNP exposure may affect earthworm populations and that the exposure may be prolonged because of the release of a dissolved Ag fraction to soil porewater.
Collapse
Affiliation(s)
- Merel J C van der Ploeg
- Alterra, Wageningen UR, Wageningen, The Netherlands; Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B, Van Winkle L, Pinkerton KE, Zink JI, Xia T, Nel AE. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:385-98. [PMID: 24039004 PMCID: PMC4001734 DOI: 10.1002/smll.201301597] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/11/2013] [Indexed: 05/22/2023]
Abstract
Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - André E. Nel
- Prof. André E. Nel. Corresponding Author, Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA,
| |
Collapse
|
32
|
Phenolics impart Au(3+)-stress tolerance to cowpea by generating nanoparticles. PLoS One 2014; 9:e85242. [PMID: 24416368 PMCID: PMC3887029 DOI: 10.1371/journal.pone.0085242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022] Open
Abstract
While evaluating impact of Au nanoparticles on seed germination and early seedling growth of cowpea, HAuCl4 was used as control. Seedlings of cowpea raised in HAuCl4, even at concentration as high as 1 mM, did not show any suppression in growth. Accordingly, Au3+, despite being a heavy metal, did not alter levels of stress markers (viz. proline and malondialdehyde) in cowpea. Interestingly, cowpea turned clear pale yellow HAuCl4 solutions colloidal purple during the course of seed germination and seedling growth. These purple colloidal suspensions showed Au-nanoparticle specific surface plasmon resonance band in absorption spectra. Transmission electron microscopic and powder X-ray diffraction investigations confirmed presence of crystalline Au-nanoparticles in these purple suspensions. Each germinating seed of cowpea released ∼35 nmoles of GAE of phenolics and since phenolics promote generation of Au-nanoparticles, which are less/non toxic compared to Au3+, it was contemplated that potential of cowpea to withstand Au3+ is linked to phenolics. Of the different components of germinating seed of cowpea tested, seed coat possessed immense power to generate Au-nanoparticles, as it was the key source of phenolics. To establish role of phenolics in generation of Au-nanoparticles (i) seed coat and (ii) the incubation medium in which phenolics were released by germinating seeds, were tested for their efficacy to generate Au-nanoparticles. Interestingly, incubation of either of these components with Au3+ triggered increase in generation of Au-nanoparticles with concomitant decrease in phenolics. Accordingly, with increase in concentration of Au3+, a proportionate increase in generation of Au-nanoparticles and decrease in phenolics was recorded. In summary, our findings clearly established that cowpea possessed potential to withstand Au3+-stress as the phenolics released by seed coat of germinating seeds possess potential to reduce toxic Au3+ to form non/less toxic Au-nanoparticles. Our investigations also pave a novel, simple, green and economically viable protocol for generation of Au-nanoparticles.
Collapse
|
33
|
López-Lorente ÁI, Valcárcel M. Determination of Gold Nanoparticles in Biological, Environmental, and Agrifood Samples. GOLD NANOPARTICLES IN ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63285-2.00010-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Wang Y, Su R, Lv G, Cao Y, Fan Z, Wang Y, Zhang L, Yu D, Mei X. Supplement zinc as an effective treatment for spinal cord ischemia/reperfusion injury in rats. Brain Res 2013; 1545:45-53. [PMID: 24361987 DOI: 10.1016/j.brainres.2013.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/20/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology process and therapy of spinal cord injury (SCI). Accordingly, zinc regulates the expression of BDNF and its receptor in the central nervous system, the mechanism of which is still unknown. The present study investigates whether supplement zinc could reduce neurological damage in a rat model, with spinal cord ischemia-reperfusion (I/R) injury and how the effect of zinc transporter 1(ZnT-1) was involved. METHODS 100 Sprague-Dawley male rats were randomly and evenly divided into four groups. They were subjected to spinal cord ischemia by clamping the abdominal aorta for 45 min. Rats in the zinc-deficient dietary model group (ZD), zinc-adequate dietary model group (ZA), and zinc-high dietary model group (ZH) were given free access to purified diet, containing 5, 30, or 180 mg Zn/kg. Sham operation rats were subjected to laparotomy without clamping of the aorta and were fed by ZA diet (30 mg Zn/kg). Neurological function was scored by Tarlov's score. The spinal cord segments (L5) were harvested for histological examination, auto-metallographic (AMG) analysis, myeloperoxidase (MPO) activity analysis, expression of ZnT-1 and BDNF. RESULTS The rats in the ZH group have shown the higher neurological scores, slighter histological changes and the attenuated MPO activity, compared with those in the ZD and ZA groups at the four observation time points (p<0.05). The AMG staining density in the ZH group was significantly higher than that of ZD group in 14 days later after the operation. Compared with other groups, ZH group's expression of Zn-T1 and BDNF were significantly increased, and was positively correlated with the same time points after surgery (Spearman rho=0.403, p=0.0152.) CONCLUSION These findings suggest that zinc supplement can significantly reduce the spinal cord I/R injury in rats. The mechanism may be related with restraining the MPO activity and increasing of ZnT-1, which promoted the synthesis and release of BDNF.
Collapse
Affiliation(s)
- Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Ribao Su
- Department of Orthopedics, Zhoupu Hospital of Pudong New Area, Shanghai City, PR China
| | - Gang Lv
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Yang Cao
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Zhongkai Fan
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Yanfeng Wang
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang City, PR China
| | - Li Zhang
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou City, PR China
| | - Deshui Yu
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China.
| |
Collapse
|
35
|
Lison H, Happel MFK, Schneider F, Baldauf K, Kerbstat S, Seelbinder B, Schneeberg J, Zappe M, Goldschmidt J, Budinger E, Schröder UH, Ohl FW, Schilling S, Demuth HU, Scheich H, Reymann KG, Rönicke R. Disrupted cross-laminar cortical processing in β amyloid pathology precedes cell death. Neurobiol Dis 2013; 63:62-73. [PMID: 24291517 DOI: 10.1016/j.nbd.2013.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/04/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Disruption of neuronal networks in the Alzheimer-afflicted brain is increasingly recognized as a key correlate of cognitive and memory decline in Alzheimer patients. We hypothesized that functional synaptic disconnections within cortical columnar microcircuits by pathological β-amyloid accumulation, rather than cell death, initially causes the cognitive impairments. During development of cortical β-amyloidosis with still few plaques in the transgenic 5xFAD mouse model single cell resolution mapping of neuronal thallium uptake revealed that electrical activity of pyramidal cells breaks down throughout infragranular cortical layer V long before cell death occurs. Treatment of 5xFAD mice with the glutaminyl cyclase inhibitor, PQ 529, partially prevented the decline of pyramidal cell activity, indicating pyroglutamate-modified forms, potentially mixed oligomers of Aβ are contributing to neuronal impairment. Laminar investigation of cortical circuit dysfunction with current source density analysis identified an early loss of excitatory synaptic input in infragranular layers, linked to pathological recurrent activations in supragranular layers. This specific disruption of normal cross-laminar cortical processing coincided with a decline of contextual fear learning.
Collapse
Affiliation(s)
- H Lison
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - M F K Happel
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - F Schneider
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany
| | - K Baldauf
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany
| | - S Kerbstat
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany
| | - B Seelbinder
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - J Schneeberg
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany
| | - M Zappe
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany
| | - J Goldschmidt
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - E Budinger
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - U H Schröder
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - F W Ohl
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - S Schilling
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - H-U Demuth
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - H Scheich
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - K G Reymann
- Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany
| | - R Rönicke
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), c/o Universitätsklinikum Magdeburg, Leipziger Strasse 44/Haus 64, 39120 Magdeburg, Germany; Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
36
|
Rattanapinyopituk K, Shimada A, Morita T, Sakurai M, Asano A, Hasegawa T, Inoue K, Takano H. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J Vet Med Sci 2013; 76:377-87. [PMID: 24257253 PMCID: PMC4013364 DOI: 10.1292/jvms.13-0512] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to nanoparticles during pregnancy is a public concern, because
nanoparticles may pass from the mother to the fetus across the placenta. The purpose of
this study was to determine the possible translocation pathway of gold nanoparticles
across the maternal–fetal barrier as well as the toxicity of intravenously administered
gold nanoparticles to the placenta and fetus. Pregnant ICR mice were intravenously
injected with 0.01% of 20- and 50-nm gold nanoparticle solutions on the 16th and 17th days
of gestation. There was no sign of toxic damage to the placentas as well as maternal and
fetal organs of the mice treated with 20- and 50-nm gold nanoparticles. ICP-MS analysis
demonstrated significant amounts of gold deposited in the maternal livers and placentas,
but no detectable level of gold in the fetal organs. However, electron microscopy
demonstrated an increase of endocytic vesicles in the cytoplasm of syncytiotrophoblasts
and fetal endothelial cells in the maternal–fetal barrier of mice treated with gold
nanoparticles. Clathrin immunohistochemistry and immunoblotting showed increased
immunoreactivity of clathrin protein in the placental tissues of mice treated with 20- and
50-nm gold nanoparticles; clathrin immunopositivity was observed in syncytiotrophoblasts
and fetal endothelial cells. In contrast, caveolin-1 immunopositivity was observed
exclusively in the fetal endothelium. These findings suggested that intravenous
administration of gold nanoparticles may upregulate clathrin- and caveolin-mediated
endocytosis at the maternal–fetal barrier in mouse placenta.
Collapse
Affiliation(s)
- Kasem Rattanapinyopituk
- Department of Veterinary Pathology, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rattanapinyopituk K, Shimada A, Morita T, Togawa M, Hasegawa T, Seko Y, Inoue K, Takano H. Ultrastructural changes in the air–blood barrier in mice after intratracheal instillations of Asian sand dust and gold nanoparticles. ACTA ACUST UNITED AC 2013; 65:1043-51. [DOI: 10.1016/j.etp.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/08/2013] [Accepted: 03/30/2013] [Indexed: 01/10/2023]
|
38
|
Szymanski CJ, Yi H, Liu JL, Wright ER, Payne CK. Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy. Methods Mol Biol 2013; 1026:21-33. [PMID: 23749566 DOI: 10.1007/978-1-62703-468-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantum dots (QDs) and other nanoparticles require delivery and targeting for most intracellular applications. Despite many advances, intracellular delivery and targeting remains inefficient with many QDs remaining bound to the plasma membrane rather than internalized into the cell. The fluorescence resulting from these extracellular QDs results in a background signal that competes with intracellular QDs of interest. We present two methods for the reduction and discrimination of signal resulting from plasma membrane-bound QDs. The first method, a photophysical approach, uses an extracellular quencher to greatly reduce the fluorescence signal from extracellular QDs. This method is compatible with fast, widefield, fluorescence imaging in live cells. Results are presented for two extracellular quenchers, QSY-21 and trypan blue, used in combination with 655 nm emitting QDs. The use of an extracellular quencher can be extended to a wide variety of fluorophores. The second method uses transmission electron microscopy (TEM) to image thin (60-70 nm) slices of resin-embedded cells. The use of sectioned cells and high-resolution TEM makes it possible to discriminate between plasma membrane-bound and intracellular QDs. To overcome the difficulties associated with using TEM to image individual QDs in cells, we have utilized a silver enhancement method that significantly improves the contrast of QDs in TEM images.
Collapse
|
39
|
Seifert O, Matussek A, Sjögren F, Geffers R, Anderson CD. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions. JOURNAL OF INFLAMMATION-LONDON 2012; 9:43. [PMID: 23140489 PMCID: PMC3526405 DOI: 10.1186/1476-9255-9-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1) were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or other inflammatory conditions.
Collapse
Affiliation(s)
- Oliver Seifert
- Division of Dermatology, Ryhov Hospital, S-55185, Jönköping, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Su R, Mei X, Wang Y, Zhang L. Regulation of zinc transporter 1 expression in dorsal horn of spinal cord after acute spinal cord injury of rats by dietary zinc. Biol Trace Elem Res 2012; 149:219-26. [PMID: 22565470 DOI: 10.1007/s12011-012-9414-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/02/2012] [Indexed: 12/27/2022]
Abstract
Zinc concentrations in the dorsal horn of spinal cord are important for wound healing, neurological function, and reproduction. However, the response of the spinal cord to alterations in dietary zinc is unknown in rats after spinal cord injury (SCI). The current study explored cellular zinc levels and zinc transporter 1 (ZnT1) expression in the dorsal horn of spinal cord with different dietary zinc after SCI. A hundred and forty-four male Wistar rats were randomly divided into four groups: sham-operated group (30 mg Zn/kg), zinc-high dietary SCI model group (ZH, 180 mg Zn/kg), zinc-adequate dietary SCI model group (30 mg Zn/kg), and marginal zinc-deficient dietary SCI model group (MZD, 5 mg Zn/kg). To test the hypothesis that dietary zinc may regulate role of ZnT1 expression in dorsal horn after acute SCI, we traced ZnT1 proteins and zinc ions with immunohistochemistry, western blot, and autometallography. Zinc and ZnT1 levels of the dorsal horn in ZH significantly increased after surgery (P < 0.05), reached peak level (P < 0.05) on the seventh day, and subsequently levels of their expression began to decrease. But zinc levels and ZnT1 expression of spinal cord in MZD dietary groups decreased (P < 0.05) in SCI. There was a positive correlation between ZnT1 protein and zinc content in spinal cord (R = 0.49880, P = 0.0492). We found that both zinc and ZnT1 expressions in spinal cord are regulated by dietary zinc. These results indicate that dietary zinc may regulate the expression of ZnT1 in the dorsal horn of spinal cord after SCI. ZnT1 may, at the same time, play a significant role in the maintenance of zinc homeostasis in SCI.
Collapse
Affiliation(s)
- Ribao Su
- Department of Orthopaedic Surgery, Affiliated Hospital of Liaoning Medical University, No. 3-40 Songpo Road, Guta District, Jinzhou City, Liaoning Province, 121001, China
| | | | | | | |
Collapse
|
41
|
Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B. Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol 2012; 40:1004-13. [PMID: 22549977 DOI: 10.1177/0192623312444470] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous work indicates that silver nanoparticles (AgNPs) given IP to mice alter the regulation of inflammation- and oxidative stress-related genes in brain. Here we assessed the distribution and toxic potential of AgNP following intranasal (IN) exposure. Adult male C57BL/6J mice received 25-nm AgNP (100 or 500 mg/kg) once IN. After 1 or 7 days, histopathology of selected organs was performed, and tissue reduced glutathione (GSH) levels were measured as an indicator of oxidative stress. Aggregated AgNP were found in spleen, lung, kidney, and nasal airway by routine light microscopy. Splenic AgNP accumulation was greatest in red pulp and occurred with modestly reduced cellularity and elevated hemosiderin deposition. Aggregated AgNP were not associated with microscopic changes in other tissues except for nasal mucosal erosions. Autometallography revealed AgNP in olfactory bulb and the lateral brain ventricles. Neither inflammatory cell infiltrates nor activated microglia were detected in brains of AgNP-treated mice. Elevated tissue GSH levels was observed in nasal epithelia (both doses at 1 day, 500 mg/kg at 7 days) and blood (500 mg/kg at 7 days). Therefore, IN administration of AgNP permits systemic distribution, produces reversible oxidative stress in the nose and in blood, and mildly enhances macrophage-mediated erythrocyte destruction in the spleen.
Collapse
Affiliation(s)
- Mary Beth Genter
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | |
Collapse
|
42
|
Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera ZE, Rietjens IMCM, Hendriksen PJM, Bouwmeester H. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 2012; 7:1198-210. [PMID: 22931191 DOI: 10.3109/17435390.2012.726382] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral ingestion is an important exposure route for silver nanoparticles (AgNPs), but their fate during gastrointestinal digestion is unknown. This was studied for 60 nm AgNPs and silver ions (AgNO₃) using in vitro human digestion model. Samples after saliva, gastric and intestinal digestion were analysed with SP-ICPMS, DLS and SEM-EDX. In presence of proteins, after gastric digestion the number of particles dropped significantly, to rise back to original values after the intestinal digestion. SEM-EDX revealed that reduction in number of particles was caused by their clustering. These clusters were composed of AgNPs and chlorine. During intestinal digestion, these clusters disintegrated back into single 60 nm AgNPs. The authors conclude that these AgNPs under physiological conditions can reach the intestinal wall in their initial size and composition. Importantly, intestinal digestion of AgNO₃ in presence of proteins resulted in particle formation. These nanoparticles (of 20-30 nm) were composed of silver, sulphur and chlorine.
Collapse
Affiliation(s)
- Agata P Walczak
- RIKILT - Institute of Food Safety, Wageningen UR , Wageningen , The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Naota M, Shimada A, Morita T, Yamamoto Y, Inoue K, Takano H. Caveolae-mediated endocytosis of intratracheally instilled gold colloid nanoparticles at the air-blood barrier in mice. Toxicol Pathol 2012; 41:487-96. [PMID: 22918937 DOI: 10.1177/0192623312457271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endocytosis is the primary mechanism by which nanoparticles are translocated over the alveolar epithelium. The purpose of this study was to elucidate the association between endocytosis and the translocation of nanoparticles at the air-blood barrier (ABB). Gold colloid particles (diameter, 20 nm) were intratracheally instilled into male ICR mice. Fifteen minutes after instillation, localized accumulation of agglomerated gold particles was observed in the cytoplasm of macrophages, on the surface of alveolar epithelial cells (AECs), and in alveoli. Electron microscopy revealed particles in the vesicles of macrophages, on the surface of AECs, and in caveolae-like vesicles in type 1 AECs. Immunohistochemistry demonstrated positive immunolabeling for caveolin-1 in the ABB of untreated lungs as well as lungs treated with gold particles. Double immunofluorescence and immunoelectron microscopy revealed the presence of caveolin-1 in AECs in the untreated lungs. These results suggest that instilled gold colloid particles are internalized into the alveolar epithelium at the ABB by caveolae-mediated endocytosis, which is regarded as a physiological function of AECs.
Collapse
Affiliation(s)
- Misaki Naota
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kaewamatawong T, Rattanapinyopituk K, Ponpornpisit A, Pirarat N, Ruangwises S, Rungsipipat A. Short-term exposure of Nile Tilapia (Oreochromis niloticus) to mercury: histopathological changes, mercury bioaccumulation, and protective role of metallothioneins in different exposure routes. Toxicol Pathol 2012; 41:470-9. [PMID: 22910676 DOI: 10.1177/0192623312457269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate effects of short-term mercury (Hg) exposure in tilapia (Oreochromis niloticus) including histopathological changes, Hg bioaccumulation, and protective role of metallothionein (MT) in different exposure routes, adult tilapias were intraperitoneally injected, orally intubated, or semistatically exposed to 0.5, 1, 2, 5 µg/g mercuric chloride. Histopathology, autometallography (AMG), inductive coupled plasma-atomic emission spectrometry (ICP-AES), and MT immunohistochemistry were determined at 0, 3, 6, 9, 12, and 15 days postexposure. Microscopic lesions were observed in the kidney, hepatopancreas, spleen, and intestine. AMG positive grains were found in renal tubule epithelium, melanomacrophage centers (MMCs), and intestinal epithelium of treated tilapias. Hg concentrations measured by ICP-AES in abdominal visceral organs were significantly higher than in other organs. All exposure routes caused lesions of increasing severity and Hg accumulations in a dose-dependent manner. Semistatic groups produced the highest intensity of lesions, AMG positive staining, as well as total Hg concentrations. Positive MT expression in renal tubule epithelium, pancreatic acini, and splenic MMCs was observed only in semistatic groups. The semistatic exposure route demonstrated the most significant microscopic lesions, Hg bioaccumulation, and MT expression.
Collapse
|
45
|
Pedersen DS, Fredericia PM, Pedersen MO, Stoltenberg M, Penkowa M, Danscher G, Rungby J, Larsen A. Metallic gold slows disease progression, reduces cell death and induces astrogliosis while simultaneously increasing stem cell responses in an EAE rat model of multiple sclerosis. Histochem Cell Biol 2012; 138:787-802. [PMID: 22820857 DOI: 10.1007/s00418-012-0996-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is the most common neurodegenerative disease in the Western world affecting younger, otherwise healthy individuals. Today no curative treatment exists. Patients suffer from recurring attacks caused by demyelination and underlying neuroinflammation, ultimately leading to loss of neurons. Recent research shows that bio-liberation of gold ions from metallic gold implants can ameliorate inflammation, reduce apoptosis and promote proliferation of neuronal stem cells (NSCs) in a mouse model of focal brain injury. Based on these findings, the present study investigates whether metallic gold implants affect the clinical signs of disease progression and the pathological findings in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Gold particles 20-45 μm suspended in hyaluronic acid were bilaterally injected into the lateral ventricles (LV) of young Lewis rats prior to EAE induction. Comparing gold-treated animals to untreated and vehicle-treated ones, a statistically significant slowing of disease progression in terms of reduced weight loss was seen. Despite massive inflammatory infiltration, terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed reduced apoptotic cell death in disease foci in the brain stem of gold-treated animals, alongside an up-regulation of glial fibrillary acidic protein-positive reactive astrocytes near the LV and in the brain stem. Cell counting of frizzled-9 and nestin-stained cells showed statistically significant up-regulation of NSCs migrating from the subventricular zone. Additionally, the neuroprotective proteins Metallothionein-1 and -2 were up-regulated in the corpus callosum. In conclusion, this study is the first to show that the presence of small gold implants affect disease progression in a rat model of MS, increasing the neurogenic response and reducing the loss of cells in disease foci. Gold implants might thus improve clinical outcome for MS patients and further research into the long-term effects of such localized gold treatment is warranted.
Collapse
Affiliation(s)
- Dan Sonne Pedersen
- Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, Building 1240, 3rd Floor, 8000, Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhong ML, Chi ZH, Shan ZY, Teng WP, Wang ZY. Widespread expression of zinc transporter ZnT (SLC30) family members in mouse endocrine cells. Histochem Cell Biol 2012; 138:605-16. [DOI: 10.1007/s00418-012-0979-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 01/26/2023]
|
47
|
Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species. Anal Bioanal Chem 2012; 403:2237-53. [DOI: 10.1007/s00216-012-5776-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 01/26/2023]
|
48
|
Immersion autometallographic demonstration of pathological zinc accumulation in human acute neural diseases. Neurol Sci 2011; 33:855-61. [DOI: 10.1007/s10072-011-0847-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/28/2011] [Indexed: 11/29/2022]
|
49
|
Sindreu C, Storm DR. Modulation of neuronal signal transduction and memory formation by synaptic zinc. Front Behav Neurosci 2011; 5:68. [PMID: 22084630 PMCID: PMC3211062 DOI: 10.3389/fnbeh.2011.00068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/03/2011] [Indexed: 12/31/2022] Open
Abstract
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.
Collapse
Affiliation(s)
- Carlos Sindreu
- Department of Pharmacology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
50
|
Murgia C, Grosser D, Truong-Tran AQ, Roscioli E, Michalczyk A, Ackland ML, Stoltenberg M, Danscher G, Lang C, Knight D, Perozzi G, Ruffin RE, Zalewski P. Apical localization of zinc transporter ZnT4 in human airway epithelial cells and its loss in a murine model of allergic airway inflammation. Nutrients 2011; 3:910-28. [PMID: 22254085 PMCID: PMC3257720 DOI: 10.3390/nu3110910] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/09/2011] [Accepted: 10/13/2011] [Indexed: 01/05/2023] Open
Abstract
The apical cytoplasm of airway epithelium (AE) contains abundant labile zinc (Zn) ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG)-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.
Collapse
Affiliation(s)
- Chiara Murgia
- INRAN-National Research Institute on Food & Nutrition, Roma 00178, Italy; (C.M.); (G.P.)
| | - Dion Grosser
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Ai Q. Truong-Tran
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Eugene Roscioli
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Agnes Michalczyk
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria 3125, Australia; (A.M.); (M.L.A.)
| | - Margaret Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria 3125, Australia; (A.M.); (M.L.A.)
| | - Meredin Stoltenberg
- Institute of Biomedicine, Neurobiology, Aarhus University, DK-8000 Aarhus C, Denmark; (M.S.); (G.D.)
| | - Gorm Danscher
- Institute of Biomedicine, Neurobiology, Aarhus University, DK-8000 Aarhus C, Denmark; (M.S.); (G.D.)
| | - Carol Lang
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Darryl Knight
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St Paul’s Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada;
| | - Giuditta Perozzi
- INRAN-National Research Institute on Food & Nutrition, Roma 00178, Italy; (C.M.); (G.P.)
| | - Richard E. Ruffin
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
| | - Peter Zalewski
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia; (D.G.); (A.Q.T.-T.); (E.R.); (C.L.); (R.E.R.)
- Author to whom correspondence should be addressed; ; Tel.: +61-8-8222-7344; Fax: +61-8-8222-6042
| |
Collapse
|