1
|
Ali SA, Sadiq I, Ahmad T. Superlative Porous Organic Polymers for Photochemical and Electrochemical CO 2 Reduction Applications: From Synthesis to Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10414-10432. [PMID: 38728278 DOI: 10.1021/acs.langmuir.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
To mimic the carbon cycle at a kinetically rapid pace, the sustainable conversion of omnipresent CO2 to value-added chemical feedstock and hydrocarbon fuels implies a remarkable prototype for utilizing released CO2. Porous organic polymers (POPs) have been recognized as remarkable catalytic systems for achieving large-scale applicability in energy-driven processes. POPs offer mesoporous characteristics, higher surface area, and superior optoelectronic properties that lead to their relatively advanced activity and selectivity for CO2 conversion. In comparison to the metal organic frameworks, POPs exhibit an enhanced tendency toward membrane formation, which governs their excellent stability with regard to remarkable ultrathinness and tailored pore channels. The structural ascendancy of POPs can be effectively utilized to develop cost-effective catalytic supports for energy conversion processes to leapfrog over conventional noble metal catalysts that have nonlinear techno-economic equilibrium. Herein, we precisely surveyed the functionality of POPs from scratch, classified it, and provided a critical commentary of its current methodological advancements and photo/electrochemical achievements in the CO2 reduction reaction.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi110025, India
| | - Iqra Sadiq
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi110025, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
2
|
Schröter C, Bangert LD, Börner HG. Enhancing Adhesion Properties of Commodity Polymers through Thiol-Catechol Connectivities: A Case Study on Polymerizing Polystyrene-Telechelics via Thiol-Quinone Michael-Polyaddition. ACS Macro Lett 2024; 13:440-445. [PMID: 38547376 PMCID: PMC11025132 DOI: 10.1021/acsmacrolett.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Segmented block copolymers with adhesive functionality bridges in between are synthesized through the combination of controlled radical polymerization (CRP) and thiol-quinone Michael-polyaddition. CRP provides a set of α,ω-dithiol polystyrenes (PS), which react as telechelics with a low molecular weight bisquinone, resulting in thiol-catechol connectivities (TCCs). By introducing as little as 3 mol % of TCC functionalities, the bonding of the polymer on dry and wet aluminum surfaces is significantly improved while keeping the integrity of the PS segments undisturbed to constitute favorable bulk properties. This improvement is evidenced by reaching up to 3.8 MPa adhesive strength, representing a 600% increase compared to nonfunctional PS.
Collapse
Affiliation(s)
- Carolin
M. Schröter
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Lukas D. Bangert
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Hans G. Börner
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
3
|
Patel RA, Webb MA. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning. ACS APPLIED BIO MATERIALS 2024; 7:510-527. [PMID: 36701125 DOI: 10.1021/acsabm.2c00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymers, with the capacity to tunably alter properties and response based on manipulation of their chemical characteristics, are attractive components in biomaterials. Nevertheless, their potential as functional materials is also inhibited by their complexity, which complicates rational or brute-force design and realization. In recent years, machine learning has emerged as a useful tool for facilitating materials design via efficient modeling of structure-property relationships in the chemical domain of interest. In this Spotlight, we discuss the emergence of data-driven design of polymers that can be deployed in biomaterials with particular emphasis on complex copolymer systems. We outline recent developments, as well as our own contributions and takeaways, related to high-throughput data generation for polymer systems, methods for surrogate modeling by machine learning, and paradigms for property optimization and design. Throughout this discussion, we highlight key aspects of successful strategies and other considerations that will be relevant to the future design of polymer-based biomaterials with target properties.
Collapse
Affiliation(s)
- Roshan A Patel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
4
|
Wylie L, Barham JP, Kirchner B. Solvent Dependency of Catalyst-Substrate Aggregation Through π-π Stacking in Photoredox Catalysis. Chemphyschem 2023; 24:e202300470. [PMID: 37477880 DOI: 10.1002/cphc.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
Assemblies of photoredox catalysts and their target substrates prior to photoexcitation is a phenomenon naïvely overlooked by the majority of synthetic chemists, but can have profound influences on reactivity and selectivity in photocatalytic reactions. In this study, we determine the aggregation states of triarylamine radical cationic photocatalysts with various target arene substrates in different solvents by specifically parameterized polarizable molecular dynamics simulations. A π-stacking interaction previously implicated by more expensive, less-representative quantum calculations is confirmed. Critically, this study presents new insights on: i) the ability of solvents (MeCN vs DMF) to make or break a photocatalytic reaction by promoting (MeCN) or demoting (DMF) its catalyst-substrate assemblies, which is a determining factor for reactivity, ii) the average "lifetimes" of assemblies in solution from a dynamic simulation. We find that both in the ground state and the photoexcited state, the cationic radical assemblies remain intact for periods often higher than 60 ps, rendering them ideally suitable to undergo intra-assembly electron transfer reactions upon photoexcitation. Such aspects have not addressed by previous studies on synthetic photocatalytic reactions involving non-covalent assemblies.
Collapse
Affiliation(s)
- Luke Wylie
- University of Bonn, Clausius Institute of Physical and Theoretical Chemistry, Mulliken Center for Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | - Joshua P Barham
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D93053, Regensburg, Germany
| | - Barbara Kirchner
- University of Bonn, Clausius Institute of Physical and Theoretical Chemistry, Mulliken Center for Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| |
Collapse
|
5
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Kamble YL, Walsh DJ, Guironnet D. Precision of Architecture-Controlled Bottlebrush Polymer Synthesis: A Monte Carlo Analysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
7
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
8
|
Strasser P, Plavcan O, Ajvazi E, Henke H, Brüggemann O, Teasdale I. Hetero and homo α,ω-chain-end functionalized polyphosphazenes. JOURNAL OF POLYMER SCIENCE 2022; 60:2000-2007. [PMID: 35915665 PMCID: PMC9325445 DOI: 10.1002/pol.20220066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/03/2022]
Abstract
The control of chain-ends is fundamental in modern macromolecular chemistry for directed one-to-one bioconjugation and the synthesis of advanced architectures such as block copolymers or bottlebrush polymers and the preparation of advanced soft materials. Polyphosphazenes are of growing importance as elastomers, biodegradable materials and in biomedical drug delivery due to their synthetic versatility. While controlled polymerization methods have been known for some time, controlling both chain-ends with high fidelity has proven difficult. We demonstrate a robust synthetic route to hetero and homo α,ω-chain-end functionalized polyphosphazenes via end-capping with easily accessible, functionalized triphenylphosphine-based phosphoranimines. A versatile thiol-ene "click"-reaction approach then allows for subsequent conversion of the end-capped polymers with various functional groups. Finally, we demonstrate the utility of this system to prepare gels based on homo α,ω-chain-end functionalized polyphosphazenes. This development will enhance their progress in various applications, particularly in soft materials and as degradable polymers.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Oliver Plavcan
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Edip Ajvazi
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Helena Henke
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
- Centre for Additive ManufacturingUniversity of Nottingham, Jubilee Campus, Wollaton RoadNottingham, NG8 1BBUK
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinzAustria
| |
Collapse
|
9
|
Song Y, Sun C, Tian C, Ming H, Wang Y, Liu W, He N, He X, Ding M, Li J, Luo F, Tan H, Fu Q. Precisely synthesized segmented polyurethanes toward block sequence-controlled drug delivery. Chem Sci 2022; 13:5353-5362. [PMID: 35655572 PMCID: PMC9093123 DOI: 10.1039/d1sc06457f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
The construction of polyurethanes (PUs) with sequence-controlled block structures remains a serious challenge. Here, we report the precise synthesis of PUs with desirable molecular weight, narrow molecular weight distribution, and controlled block sequences from commercially available monomers. The synthetic procedure is derived from a liquid-phase synthetic methodology, which involves diisocyanate-based iterative protocols in combination with a convergent strategy. Furthermore, a pair of multifunctional PUs with different sequence orders of cationic and anion segments were prepared. We show that the sequence order of functional segments presents an impact on the self-assembly behavior and results in unexpected surface charges of assembled micelles, thereby affecting the protein absorption, cell internalization, biodistribution and antitumor effect of the nanocarriers in vitro and in vivo. This work provides a versatile platform for the development of precise multiblock PUs with structural complexity and functional diversity, and will greatly facilitate the clinical translation of PUs in biomedicine.
Collapse
Affiliation(s)
- Yuanqing Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Chuandong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Chenxu Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Hao Ming
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Yanjun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Wenkai Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
10
|
Maruyama K, Kanazawa A, Aoshima S. Alternating Cationic Copolymerization of Vinyl Ethers and Aryl-Substituted Cyclic Acetals: Structural Investigation of Effects of Cyclic Acetals on Copolymerizability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liarou E, Houck HA, Du Prez FE. Reversible Transformations of Polymer Topologies through Visible Light and Darkness. J Am Chem Soc 2022; 144:6954-6963. [DOI: 10.1021/jacs.2c01622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Evelina Liarou
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Hannes A. Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| |
Collapse
|
13
|
Gosecki M, Gosecka M. Boronic Acid Esters and Anhydrates as Dynamic Cross-Links in Vitrimers. Polymers (Basel) 2022; 14:842. [PMID: 35215755 PMCID: PMC8962972 DOI: 10.3390/polym14040842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Growing environmental awareness imposes on polymer scientists the development of novel materials that show a longer lifetime and that can be easily recycled. These challenges were largely met by vitrimers, a new class of polymers that merges properties of thermoplastics and thermosets. This is achieved by the incorporation of dynamic covalent bonds into the polymer structure, which provides high stability at the service temperature, but enables the processing at elevated temperatures. Numerous types of dynamic covalent bonds have been utilized for the synthesis of vitrimers. Amongst them, boronic acid-based linkages, namely boronic acid esters and boroxines, are distinguished by their quick exchange kinetics and the possibility of easy application in various polymer systems, from commercial thermoplastics to low molecular weight thermosetting resins. This review covers the development of dynamic cross-links. This review is aimed at providing the state of the art in the utilization of boronic species for the synthesis of covalent adaptable networks. We mainly focus on the synthetic aspects of boronic linkages-based vitrimers construction. Finally, the challenges and future perspectives are provided.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | |
Collapse
|
14
|
De Franceschi I, Mertens C, Badi N, Du Prez F. Uniform soluble support for the large-scale synthesis of sequence-defined macromolecules. Polym Chem 2022. [DOI: 10.1039/d2py00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monodisperse soluble support is used as an effective tool for the large-scale, liquid-phase synthesis of sequence-defined macromolecules. This uniform support allows for direct characterisation and leads to a single peak in mass spectrometry.
Collapse
Affiliation(s)
- Irene De Franceschi
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Chiel Mertens
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, Salami-Kalajahi M. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Adv Colloid Interface Sci 2021; 294:102471. [PMID: 34214841 DOI: 10.1016/j.cis.2021.102471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Functionalization of carbon nanotube (CNT) with polymers has drawn much attention due to its wide range of applications. Polymer-functionalized CNT could exhibit variety of properties, such as responsivity to environmental stimuli, ability of complexation with metal ions, increased dispersibility in different solvents, higher compatibility with polymer matrix, etc. Chemical and physical methods have been developed for the preparation of polymer-functionalized CNT. Polymer chains are chemically bonded to the CNT edge or surface in the chemical methods, which results in highly stable CNT/polymer composites. "Grafting to", "grafting from", and "grafting through" methods are the most common chemical methods for polymer-functionalization of CNT. In "grafting to" method, pre-fabricated polymer chains are coupled with the either functionalized or non-functionalized CNT. In "grafting from" and "grafting through" methods, CNT is functionalized by polymers simultaneously synthesized by in situ polymerization methods. Conventional free radical polymerization (FRP) and also controlled radical polymerization (CRP) are the most promising methods for in situ tethering of polymer brushes onto the surface of CNT due to their control over the grafting density, thickness, and functionality of the polymer brushes. The main focus of this review is on the synthesis of polymer-functionalized CNT via both the "grafting from" and "grafting through" methods on the basis of FRP and CRP routs, which is commonly known as in situ polymerizations. Finally, the most important challenges and applications of the in situ polymer grafting methods are discussed, which could be interesting for the future works.
Collapse
|
16
|
Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2597-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Wang J, Zhang D, Chu F. Wood-Derived Functional Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001135. [PMID: 32578276 DOI: 10.1002/adma.202001135] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/12/2023]
Abstract
In recent years, tremendous efforts have been dedicated to developing wood-derived functional polymeric materials due to their distinctive properties, including environmental friendliness, renewability, and biodegradability. Thus, the uniqueness of the main components in wood (cellulose and lignin) has attracted enormous interest for both fundamental research and practical applications. Herein, the emerging field of wood-derived functional polymeric materials fabricated by means of macromolecular engineering is reviewed, covering the basic structures and properties of the main components, the design principle to utilize these main components, and the resulting wood-derived functional polymeric materials in terms of elastomers, hydrogels, aerogels, and nanoparticles. In detail, the natural features of wood components and their significant roles in the fabrication of materials are emphasized. Furthermore, the utilization of controlled/living polymerization, click chemistry, dynamic bonds chemistry, etc., for the modification is specifically discussed from the perspective of molecular design, together with their sequential assembly into different morphologies. The functionalities of wood-derived polymeric materials are mainly focused on self-healing and shape-memory abilities, adsorption, conduction, etc. Finally, the main challenges of wood-derived functional polymeric materials fabricated by macromolecular engineering are presented, as well as the potential solutions or directions to develop green and scalable wood-derived functional polymeric materials.
Collapse
Affiliation(s)
- Jifu Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
18
|
Abedini H, Rostami MR, Shahsavar S. Numerical simulation of atom transfer radical polymerization of styrene by moment and population balance models. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Silverstein MS. From “Makromolekel” to POLYMER: A Centennial Celebration of Staudinger's “On Polymerization”. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yuan H, Kida T, Tanaka R, Cai Z, Nakayama Y, Shiono T. Synthesis and properties of block copolymers composed of norbornene/higher α-olefin gradient segments using ansa-fluorenylamidodimethyltitanium-[Ph 3C][B(C 6F 5) 4] catalyst system. Polym Chem 2021. [DOI: 10.1039/d0py01370f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of di- and triblock copolymers composed of gradient norbornene (NB)/α-olefin segments were synthesized by a (t-BuNSiMe2Flu)TiMe2-based catalyst and their physical and mechanical properties were investigated.
Collapse
Affiliation(s)
- Haobo Yuan
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takumitsu Kida
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Ryo Tanaka
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P.R. China
| | - Yuushou Nakayama
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takeshi Shiono
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
21
|
Kuznetsov AA, Soldatova AE, Tsegel’skaya AY, Semenova GK. Synthesis of Branched Polyimides of Different Topological Structure. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s1811238220020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Wang Y, Nguyen M, Gildersleeve AJ. Macromolecular Engineering by Applying Concurrent Reactions with ATRP. Polymers (Basel) 2020; 12:E1706. [PMID: 32751403 PMCID: PMC7463969 DOI: 10.3390/polym12081706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Modern polymeric material design often involves precise tailoring of molecular/supramolecular structures which is also called macromolecular engineering. The available tools for molecular structure tailoring are controlled/living polymerization methods, click chemistry, supramolecular polymerization, self-assembly, among others. When polymeric materials with complex molecular architectures are targeted, it usually takes several steps of reactions to obtain the aimed product. Concurrent polymerization methods, i.e., two or more reaction mechanisms, steps, or procedures take place simultaneously instead of sequentially, can significantly reduce the complexity of the reaction procedure or provide special molecular architectures that would be otherwise very difficult to synthesize. Atom transfer radical polymerization, ATRP, has been widely applied in concurrent polymerization reactions and resulted in improved efficiency in macromolecular engineering. This perspective summarizes reported studies employing concurrent polymerization methods with ATRP as one of the reaction components and highlights future research directions in this area.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
- Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Mary Nguyen
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| | - Amanda J. Gildersleeve
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| |
Collapse
|
23
|
|
24
|
Işık D, Quaas E, Klinger D. Thermo- and oxidation-sensitive poly(meth)acrylates based on alkyl sulfoxides: dual-responsive homopolymers from one functional group. Polym Chem 2020. [DOI: 10.1039/d0py01321h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alkyl sulfoxide side groups introduce thermo- and oxidation-sensitivity into poly(meth)acrylates, thus realizing new dual-responsive homopolymers based on one functional group.
Collapse
Affiliation(s)
- Doğuş Işık
- Institute of Pharmacy
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Elisa Quaas
- Institute of Chemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Daniel Klinger
- Institute of Pharmacy
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
25
|
Maes L, Massana Roqeuro D, Pitet LM, Adriaensens P, Junkers T. Sequence-defined nucleobase containing oligomers via reversible addition–fragmentation chain transfer single monomer addition. Polym Chem 2020. [DOI: 10.1039/c9py01853k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase acrylate monomers have been synthesized and monodisperse tetramers with any order of bases are created via single monomer insertion reactions in a RAFT process.
Collapse
Affiliation(s)
- Lowie Maes
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Daniel Massana Roqeuro
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Louis M. Pitet
- Advanced Polymer Functionalization group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Peter Adriaensens
- Nuclear Magnetic Resonance Spectroscopy Group
- Institute for Materials Research (IMO-IMOMEC)
- B-3590 Diepenbeek
- Belgium
- IMEC vzw–Division IMOMEC
| | - Tanja Junkers
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
- School of Chemistry
| |
Collapse
|
26
|
Chen ZH, Wang XY, Sun XL, Li JF, Zhu BH, Tang Y. Highly Efficient Atom Transfer Radical Polymerization System Based on the SaBOX/Copper Catalyst. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi-Hao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jun-Fang Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ben-Hu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
27
|
Yang R, Wang Y, Luo W, Jin Y, Zhang Z, Wu C, Hadjichristidis N. Carboxylic Acid Initiated Organocatalytic Ring-Opening Polymerization of N-Sulfonyl Aziridines: An Easy Access to Well-Controlled Polyaziridine-Based Architectural and Functionalized Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruhan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wenyi Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yaocheng Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chuande Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
28
|
Michalek L, Mundsinger K, Barner L, Barner-Kowollik C. Quantifying Solvent Effects on Polymer Surface Grafting. ACS Macro Lett 2019; 8:800-805. [PMID: 35619509 DOI: 10.1021/acsmacrolett.9b00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When grafting polymers onto surfaces, the reaction conditions critically influence the resulting interface properties, including the grafting density and molar mass distribution (MMD) on the surface. Herein, we show theoretically and experimentally that the application of poor solvents is beneficial for the "grafting-to" approach. We demonstrate the effect by grafting poly(methyl methacrylate) chains on silica nanoparticles in different solvents and compare the MMD of the polymer in solution before and after grafting via size exclusion chromatography (SEC). The shorter polymer chains are preferentially grafted onto the surface, leading to a distortion effect between the MMD in solution and on surfaces. The molecular weight distortion effect is significantly higher for ethyl acetate (good solvent quality, difference in Mw surface to solution 14%) than for N,N-dimethylacetamide (poor solvent quality, 6%). The difference in MMD on the surface to the solution significantly affects both the surface properties (e.g. the grafting densities) and their determination.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Kai Mundsinger
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
| |
Collapse
|
29
|
Sun H, Yang L, Thompson MP, Schara S, Cao W, Choi W, Hu Z, Zang N, Tan W, Gianneschi NC. Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies. Bioconjug Chem 2019; 30:1889-1904. [PMID: 30969752 DOI: 10.1021/acs.bioconjchem.9b00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, the field of polymer-oligonucleotide nanomaterials has flourished because of the development of synthetic techniques, particularly living polymerization technologies, which provide access to polymers with well-defined architectures, precise molecular weights, and terminal or side-chain functionalities. Various "living" polymerization methods have empowered chemists with the ability to prepare functional polymer-oligonucleotide conjugates yielding a library of architectures, including linear diblock, comb, star, hyperbranched star, and gel morphologies. Since oligonucleotides are hydrophilic and synthetic polymers can be tailored with hydrophobicity, these amphiphilic polymer-oligonucleotide conjugates are capable of self-assembling into nanostructures with different shapes, leading to many high-value-added biomedical applications, such as drug delivery systems, gene regulation, and 3D-bioprinting. This review aims to highlight the main living polymerization approaches to polymer-oligonucleotide conjugates, including ring-opening metathesis polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer polymerization (RAFT), and ring-opening polymerization of cyclic esters and N-carboxyanhydride. The self-assembly properties and resulting applications of polymer-DNA hybrid materials are highlighted as well.
Collapse
Affiliation(s)
- Hao Sun
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Lu Yang
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| | - Matthew P Thompson
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Steve Schara
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Wei Cao
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Wonmin Choi
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Ziying Hu
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Nanzhi Zang
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Weihong Tan
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
30
|
Maruyama K, Kanazawa A, Aoshima S. Controlled cationic copolymerization of vinyl monomers and cyclic acetals via concurrent vinyl-addition and ring-opening mechanisms: the systematic study of structural effects on the copolymerization behavior. Polym Chem 2019. [DOI: 10.1039/c9py01024f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of the structures of cyclic acetals on the copolymerization behavior were systematically investigated in the cationic copolymerization with vinyl ethers.
Collapse
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| |
Collapse
|
31
|
Tu Y, Wu Y, Pei J, Qu W, Lu H, Liu F, Chen XF. Synthesis and supramolecular liquid crystalline structure modulation of side-chain polynorbornenes with asymmetrical substituent mesogenic groups. Polym Chem 2019. [DOI: 10.1039/c9py01197h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substituent position and number have an important effect on the supramolecular liquid crystalline structure evolution in side-chain polymers.
Collapse
Affiliation(s)
- Yuanyang Tu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yijin Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiwei Pei
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wentao Qu
- State Key Laboratory for Mechanical Behavior of Materials
- Shaanxi International Research Center for Soft Matter
- School of Materials Science & Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Huanjun Lu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials
- Shaanxi International Research Center for Soft Matter
- School of Materials Science & Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiao-Fang Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
32
|
Michalek L, Mundsinger K, Barner-Kowollik C, Barner L. The long and the short of polymer grafting. Polym Chem 2019. [DOI: 10.1039/c8py01470a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymer chains are grafted depending on their size onto solid interfaces, leading to a distortion of the surface grafted size distribution. We herein predict and quanitify this distortion effect, which has critical consequences for functional polymer interface design.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| | - Kai Mundsinger
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| | - Leonie Barner
- School of Chemistry
- Physics and Mechanical Engineering
- Institute for Future Environments
- Queensland University of Technology (QUT)
- QLD 4000
| |
Collapse
|
33
|
Ma Q, Zhang X, Ji L, Liao S. BINOLs as visible light photocatalysts for metal-free atom transfer radical polymerization. Polym Chem 2019. [DOI: 10.1039/c9py01370a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,1′-Bisnaphthol (BINOL) has been successfully identified as a new photocatalyst framework for organocatalyzed atom transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Li Ji
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
34
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Mella M, La Rocca MV, Miele Y, Izzo L. On the origin and consequences of high DMAEMA reactivity ratio in ATRP copolymerization with MMA: An experimental and theoretical study#. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia; Università degli Studi dell'Insubria, via Valleggio 9; Como 22100 Italy
| | - Mario Vincenzo La Rocca
- Dipartimento di Scienza ed Alta Tecnologia; Università degli Studi dell'Insubria, via Valleggio 9; Como 22100 Italy
| | - Ylenia Miele
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno, Via Giovanni Paolo II, 132; 84084 Fisciano Italy
| | - Lorella Izzo
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno, Via Giovanni Paolo II, 132; 84084 Fisciano Italy
| |
Collapse
|
36
|
Michalek L, Barner L, Barner-Kowollik C. Polymer on Top: Current Limits and Future Perspectives of Quantitatively Evaluating Surface Grafting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706321. [PMID: 29512237 DOI: 10.1002/adma.201706321] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Indexed: 05/15/2023]
Abstract
Well-defined polymer strands covalently tethered onto solid substrates determine the properties of the resulting functional interface. Herein, the current approaches to determine quantitative grafting densities are assessed. Based on a brief introduction into the key theories describing polymer brush regimes, a user's guide is provided to estimating maximum chain coverage and-importantly-examine the most frequently employed approaches for determining grafting densities, i.e., dry thickness measurements, gravimetric assessment, and swelling experiments. An estimation of the reliability of these determination methods is provided via carefully evaluating their assumptions and assessing the stability of the underpinning equations. A practical access guide for comparatively and quantitatively evaluating the reliability of a given approach is thus provided, enabling the field to critically judge experimentally determined grafting densities and to avoid the reporting of grafting densities that fall outside the physically realistic parameter space. The assessment is concluded with a perspective on the development of advanced approaches for determination of grafting density, in particular, on single-chain methodologies.
Collapse
Affiliation(s)
- Lukas Michalek
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
37
|
Berglund LA, Burgert I. Bioinspired Wood Nanotechnology for Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704285. [PMID: 29468736 DOI: 10.1002/adma.201704285] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Indexed: 05/20/2023]
Abstract
It is a challenging task to realize the vision of hierarchically structured nanomaterials for large-scale applications. Herein, the biomaterial wood as a large-scale biotemplate for functionalization at multiple scales is discussed, to provide an increased property range to this renewable and CO2 -storing bioresource, which is available at low cost and in large quantities. The Progress Report reviews the emerging field of functional wood materials in view of the specific features of the structural template and novel nanotechnological approaches for the development of wood-polymer composites and wood-mineral hybrids for advanced property profiles and new functions.
Collapse
Affiliation(s)
- Lars A Berglund
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ingo Burgert
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, 8093, Zurich, Switzerland
- EMPA-Swiss Federal Laboratories for Material Testing and Research, Applied Wood Research Laboratory, Dübendorf, 8600, Switzerland
| |
Collapse
|
38
|
Xia Y, Zhao J. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Edeleva MV, Marque SR, Bagryanskaya EG. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4765] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Huang M, Lu J, Han B, Zhang X, Yang W. Synthesis of hypergrafted poly[4-(N,N-diphenylamino)methylstyrene] through tandem anionic-radical polymerization of radical-inimer. Des Monomers Polym 2018; 20:476-484. [PMID: 29491819 PMCID: PMC5784871 DOI: 10.1080/15685551.2017.1365577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/29/2017] [Indexed: 11/24/2022] Open
Abstract
In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a ‘hyperlinker’ to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.
Collapse
Affiliation(s)
- Minglu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jianmin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Bingyong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
41
|
Calorimetric studies of PEO-b-PMMA and PEO-b-PiPMA diblock copolymers synthesized via atom transfer radical polymerization. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Fierens SK, Van Steenberge PHM, Vermeire F, Reyniers M, Marin GB, D'hooge DR. An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate. AIChE J 2018. [DOI: 10.1002/aic.16111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stijn K. Fierens
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Paul H. M. Van Steenberge
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Florence Vermeire
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Marie‐Françoise Reyniers
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Guy B. Marin
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Dagmar R. D'hooge
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
- Centre for Textiles Science and EngineeringGhent University, Technologiepark, 907Gent B‐9052 Belgium
| |
Collapse
|
43
|
Huang H, Qiu Z, Han T, Kwok RTK, Lam JWY, Tang BZ. Synthesis of Functional Poly(propargyl imine)s by Multicomponent Polymerizations of Bromoarenes, Isonitriles, and Alkynes. ACS Macro Lett 2017; 6:1352-1356. [PMID: 35650816 DOI: 10.1021/acsmacrolett.7b00872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we reported a versatile and multicomponent polymerization (MCP) approach that enabled the synthesis of functional poly(propargyl imine)s with well-defined structures and high molecular weight (Mw up to 38 200) in excellent yields (up to 93%) from readily accessible monomers of dibromoarenes, isonitriles, and diynes. This MCP had the advantages of simple operation, wide substrate scope, and mild reaction conditions. The resulting polymers possessed good solubility and showed high thermal stability and refractive indices. The tetraphenylethene-containing polymer displayed a phenomenon of aggregation-induced emission and could respond to various acidic vapors.
Collapse
Affiliation(s)
- Hanchu Huang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Provincial Key Laboratory of Brain Science, Diseases and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zijie Qiu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Provincial Key Laboratory of Brain Science, Diseases and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ting Han
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Provincial Key Laboratory of Brain Science, Diseases and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Provincial Key Laboratory of Brain Science, Diseases and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Provincial Key Laboratory of Brain Science, Diseases and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Provincial Key Laboratory of Brain Science, Diseases and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
44
|
|
45
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2017; 9:E551. [PMID: 30965855 PMCID: PMC6418556 DOI: 10.3390/polym9110551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodríguez-Hernández
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
46
|
Saeb MR, Mohammadi Y, Rastin H, Kermaniyan TS, Penlidis A. Visualization of Bivariate Sequence Length-Chain Length Distribution in Free Radical Copolymerization. MACROMOL THEOR SIMUL 2017. [DOI: 10.1002/mats.201700041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad Reza Saeb
- Department of Resin and Additives; Institute for Color Science and Technology; P.O. Box 16765-654 Tehran Iran
| | - Yousef Mohammadi
- Petrochemical Research and Technology Company (NPC-RT); National Petrochemical Company (NPC); P.O. Box 14358-84711 Tehran Iran
| | - Hadi Rastin
- School of Chemical Engineering; College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| | - Tayebeh Sadat Kermaniyan
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; P.O. Box 15875-4413 Tehran Iran
| | - Alexander Penlidis
- Department of Chemical Engineering; Institute for Polymer Research (IPR); University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
47
|
Nishiura C, Williams V, Matyjaszewski K. Iron and copper based catalysts containing anionic phenolate ligands for atom transfer radical polymerization. Macromol Res 2017. [DOI: 10.1007/s13233-017-5118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Shao G, Yao H, Liu A, Zhang Z, Huang J, Yuan S. Polyphenylene sulfide-based adsorption resins: synthesis, characterization and adsorption performance for Hg(II) and As(V). POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gonglei Shao
- School of Chemical Engineering and Energy; Zhengzhou University; Zhengzhou 450001 China
| | - Huajie Yao
- School of Chemical Engineering and Energy; Zhengzhou University; Zhengzhou 450001 China
| | - Ao Liu
- School of Chemical Engineering and Energy; Zhengzhou University; Zhengzhou 450001 China
| | - Zhonglu Zhang
- School of Chemical Engineering and Energy; Zhengzhou University; Zhengzhou 450001 China
| | - Jiajia Huang
- School of Chemical Engineering and Energy; Zhengzhou University; Zhengzhou 450001 China
| | - Siguo Yuan
- School of Chemical Engineering and Energy; Zhengzhou University; Zhengzhou 450001 China
| |
Collapse
|
49
|
Organocatalytic copolymerization of mixed type monomers. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1925-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat Chem 2017; 9:817-823. [DOI: 10.1038/nchem.2730] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
|