1
|
Bouzid O, Martínez-Fernández D, Herranz M, Karayiannis NC. Entropy-Driven Crystallization of Hard Colloidal Mixtures of Polymers and Monomers. Polymers (Basel) 2024; 16:2311. [PMID: 39204531 PMCID: PMC11359749 DOI: 10.3390/polym16162311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The most trivial example of self-assembly is the entropy-driven crystallization of hard spheres. Past works have established the similarities and differences in the phase behavior of monomers and chains made of hard spheres. Inspired by the difference in the melting points of the pure components, we study, through Monte Carlo simulations, the phase behavior of athermal mixtures composed of fully flexible polymers and individual monomers of uniform size. We analyze how the relative number fraction and the packing density affect crystallization and the established ordered morphologies. As a first result, a more precise determination of the melting point for freely jointed chains of tangent hard spheres is extracted. A synergetic effect is observed in the crystallization leading to synchronous crystallization of the two species. Structural analysis of the resulting ordered morphologies shows perfect mixing and thus no phase separation. Due to the constraints imposed by chain connectivity, the local environment of the individual spheres, as quantified by the Voronoi polyhedron, is systematically more spherical and more symmetric compared to that of spheres belonging to chains. In turn, the local environment of the ordered phase is more symmetric and more spherical compared to that of the initial random packing, demonstrating the entropic origins of the phase transition. In general, increasing the polymer content reduces the degree of crystallinity and increases the melting point to higher volume fractions. According to the present findings, relative concentration is another determining factor in controlling the phase behavior of hard colloidal mixtures based on polymers.
Collapse
Affiliation(s)
- Olia Bouzid
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
2
|
Kim J, Lee K, Kim S, Sohn BH. Orientation and stretching of supracolloidal chains of diblock copolymer micelles by spin-coating process. NANOSCALE 2024; 16:10377-10387. [PMID: 38739015 DOI: 10.1039/d4nr00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Supracolloidal chains consisting of nano- or micro-scale particles exhibit anisotropic properties not observed in individual particles. The orientation of the chains is necessary to manifest such characteristics on a macroscopic scale. In this study, we demonstrate the orientation of supracolloidal chains composed of nano-scale micelles of a diblock copolymer through spin-coating. We observed separate chains coated on a substrate with electron microscopy, and analyzed the orientation and stretching of the chains quantitatively with image analysis software. In drop-casting, the chains were coated randomly with no preferred orientation, and the degree of stretching exhibited an intrinsic semi-flexible nature. In contrast, spin-coated chains were aligned in the radial direction, and the apparent persistence length of the chain increased, confirming the stretching of the chain quantitatively. Furthermore, by incorporating fluorophores into supracolloidal chains and confirming the oriented chains with confocal fluorescence microscopy, it is demonstrated that oriented chains can be utilized as a template to align functional materials.
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sangyoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Ning J, Zou J, Long Y, Ren X, Cao Y, Li T, Dong A. Monolayer supertubes of Carbon-Armored platinum nanocrystals enabling robust oxygen reduction electrocatalysis. J Colloid Interface Sci 2023; 648:719-726. [PMID: 37321091 DOI: 10.1016/j.jcis.2023.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Self-assembled superstructures composed of nanocrystals (NCs) have shown immense potential for enhancing the performance in electrocatalytic applications. However, there has been limited research on the self-assembly of platinum (Pt) into low-dimensional superstructures as efficient electrocatalysts for oxygen reduction reaction (ORR). In this study, we designed a unique tubular superstructure composed of monolayer or sub-monolayer carbon-armored platinum nanocrystals (Pt NCs) using a template-assisted epitaxial assembly approach. The organic ligands on the surface of Pt NCs were in situ carbonized, resulting in few-layer graphitic carbon shells that encapsulate Pt NCs. Due to their monolayer assembly and tubular geometry, the Pt utilization of the supertubes was 1.5 times higher than that of conventional carbon-supported Pt NCs. As a result, such Pt supertubes exhibit remarkable electrocatalytic performance for the ORR in acidic media, with a high half-wave potential of 0.918 V and a high mass activity of 181 A g-1Pt at 0.9 V, which are comparable to commercial carbon-supported Pt (Pt/C) catalysts. Furthermore, the Pt supertubes demonstrate robust catalytic stability, as confirmed by long-term accelerated durability tests and identical-location transmission electron microscopy. This study presents a new approach to designing Pt superstructures for highly efficient and stable electrocatalysis.
Collapse
Affiliation(s)
- Jing Ning
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jinxiang Zou
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ying Long
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiaomeng Ren
- PLA Naval Medical Center, 5 Panshan Rd, Shanghai 200052, China
| | - Yangfei Cao
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Tongtao Li
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Angang Dong
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Lee K, Sohn BH. Step-growth polymerization of supracolloidal chains from patchy micelles of diblock copolymers. J Colloid Interface Sci 2023; 648:727-735. [PMID: 37321092 DOI: 10.1016/j.jcis.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
HYPOTHESIS The formation of supracolloidal chains from the patchy micelles of diblock copolymers bears a close resemblance to traditional step-growth polymerization of difunctional monomers in many aspects, including chain-length evolution, size distribution, and initial-concentration dependence. Thus, understanding the colloidal polymerization based on the step-growth mechanism can offer potential control over the formation of supracolloidal chains in terms of chain structure and reaction rate. EXPERIMENTS We analyzed the size evolution of supracolloidal chains of patchy micelles of PS-b-P4VP by investigating a large number of colloidal chains visualized in SEM images. We varied the initial concentration of patchy micelles to achieve a high degree of polymerization and a cyclic chain. To manipulate the polymerization rate, we also changed the ratio of water to DMF and adjusted the patch size by employing PS(25)-b-P4VP(7) and PS(145)-b-P4VP(40). FINDINGS We confirmed the step-growth mechanism for the formation supracolloidal chains from patchy micelles of PS-b-P4VP. Based on this mechanism, we were able to achieve a high degree of polymerization early in the reaction by increasing the initial concentration and form cyclic chains by diluting the solution. We also accelerated colloidal polymerization by increasing the ratio of water to DMF in the solution and patch size by using PS-b-P4VP with a larger molecular weight.
Collapse
Affiliation(s)
- Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Herranz M, Pedrosa C, Martínez-Fernández D, Foteinopoulou K, Karayiannis NC, Laso M. Fine-tuning of colloidal polymer crystals by molecular simulation. Phys Rev E 2023; 107:064605. [PMID: 37464607 DOI: 10.1103/physreve.107.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/04/2023] [Indexed: 07/20/2023]
Abstract
Through extensive molecular simulations we determine a phase diagram of attractive, fully flexible polymer chains in two and three dimensions. A rich collection of distinct crystal morphologies appear, which can be finely tuned through the range of attraction. In three dimensions these include the face-centered cubic, hexagonal close packed, simple hexagonal, and body-centered cubic crystals and the Frank-Kasper phase. In two dimensions the dominant structures are the triangular and square crystals. A simple geometric model is proposed, based on the concept of cumulative neighbors of ideal crystals, which can accurately predict most of the observed structures and the corresponding transitions. The attraction range can thus be considered as an adjustable parameter for the design of colloidal polymer crystals with tailored morphologies.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Clara Pedrosa
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
6
|
Zheng Y, Jin Y, Zhang N, Wang D, Yang Y, Zhang M, Wang G, Qu W, Wu Y. Preparation and characterization of Ti3C2TX MXene/PVDF cation exchange membrane for electrodialysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Mhanna R, Gao Y, Van Tol I, Springer E, Wu N, Marr DWM. Chain Assembly Kinetics from Magnetic Colloidal Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5730-5737. [PMID: 35486385 DOI: 10.1021/acs.langmuir.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first aligning superparamagnetic particles under a one-dimensional magnetic field and then chemically linking them using a four-armed maleimide-functionalized poly(ethylene glycol). Here, we systematically vary the concentration of the poly(ethylene glycol) linkers, the reaction temperature, and the magnetic field strength to study their impact on the physical properties of synthesized chains, including the chain length distribution, reaction temperature, and bending modulus. We find that this chain fabrication process resembles step-growth polymerization and can be accurately described by the Flory-Schulz model. Under optimized experimental conditions, we have successfully synthesized long flexible colloidal chains with a bending modulus, which is 4 orders of magnitude smaller than previous studies. Such flexible and long chains can be folded entirely into concentric rings and helices with multiple turns, demonstrating the potential for investigating the actuation, assembly, and folding behaviors of these colloidal polymer analogues.
Collapse
Affiliation(s)
- Ramona Mhanna
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yan Gao
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Isaac Van Tol
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ela Springer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David W M Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Liu B, Li W, Duguet E, Ravaine S. Linear Assembly of Two-Patch Silica Nanoparticles and Control of Chain Length by Coassembly with Colloidal Chain Stoppers. ACS Macro Lett 2022; 11:156-160. [PMID: 35574797 DOI: 10.1021/acsmacrolett.1c00699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The self-assembly of patchy nanosized building blocks is an efficient strategy for producing highly organized materials. Herein we report the chaining of divalent silica nanoparticles with polystyrene patches dispersed in tetrahydrofuran triggered by lowering the solvent quality. We study the influence of the patch-to-particle size ratio and show that the nature of the added nonsolvent, for example, ethanol, water, or salty water, and its volume fraction should be carefully adjusted. We demonstrate that colloidal assembly initially obeys the kinetic model of step-growth polymerization and that beyond a certain length, the chains have the possibility to cyclize. We also show that the length of the chains can be controlled by the addition of one-patch silica nanoparticles, which act as colloidal analogues of chain stoppers.
Collapse
Affiliation(s)
- Bin Liu
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Weiya Li
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Etienne Duguet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Serge Ravaine
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
10
|
Lee K, Kim JY, Kim K, Jeon J, Kang H, Sohn BH. Porous self-supporting film of semi-flexible supracolloidal chains of diblock copolymer micelles. J Colloid Interface Sci 2021; 600:804-810. [PMID: 34052531 DOI: 10.1016/j.jcis.2021.05.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
Patchy micelles of diblock copolymers can be polymerized into a linear supracolloidal chain. We measure the persistence and contour lengths of supracolloidal chains coated on a solid substrate to evaluate their flexibility. Based on the analysis, the chain is semi-flexible, and the conformation is suitably explained by the worm-like chain model. In addition, utilizing a spin-coating technique with the semi-flexible nature of the chains, we produce a self-supporting film of supracolloidal chains having nanoscale pores essentially from colloidal constituents that tend to form dense packing if there is no prior organization of them into a semi-flexible chain.
Collapse
Affiliation(s)
- Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungtae Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonghyuk Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejung Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Cerdà JJ, Bona-Casas C, Cerrato A, Sintes T, Massó J. Colloidal magnetic brushes: influence of the magnetic content and presence of short-range attractive forces in the micro-structure and field response. SOFT MATTER 2021; 17:5780-5791. [PMID: 34027950 DOI: 10.1039/d0sm02006k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The behaviour of supramolecular brushes, whose filaments are composed of sequences of magnetic and non-magnetic colloidal particles, has been studied using Langevin dynamics simulations. Two types of brushes have been considered: sticky or Stockmayer brushes (SB) and non-sticky magnetic brushes (NSB). In both cases, the microstructure and the collective behaviour have been analysed for a wide range of magnetic field strengths including the zero-field case, and negative fields. The results show that, for the same magnetic content, SB placed in a magnetic field present an extensibility up to two times larger than NSB. The analysis of the microstructure of SB at zero field shows that magnetic particles belonging to different filaments in the brush self-organize into ring and chain aggregates, while magnetic colloids in NSB mainly remain in a non-aggregated state. Clustering among magnetic particles belonging to different filaments is observed to gradually fade away as the magnetic content of SB filaments increases towards 100%. Under an external field, SB are observed to form chains, threads and sheets depending on the magnetic content and the applied field strength. The chain-like clusters in SB are observed to decrease in size as the magnetic content in the filaments increases. A non-monotonic field dependence is observed for the average size of these clusters. In spite of the very different microstructure, both NSB and SB are observed to have a very similar magnetization, especially in high strength fields.
Collapse
Affiliation(s)
- Joan J Cerdà
- Dpt. de Física UIB i Institut d'Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, E-07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
12
|
Yin H, Xing K, Zhang Y, Dissanayake DMAS, Lu Z, Zhao H, Zeng Z, Yun JH, Qi DC, Yin Z. Periodic nanostructures: preparation, properties and applications. Chem Soc Rev 2021; 50:6423-6482. [PMID: 34100047 DOI: 10.1039/d0cs01146k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodic nanostructures, a group of nanomaterials consisting of single or multiple nano units/components periodically arranged into ordered patterns (e.g., vertical and lateral superlattices), have attracted tremendous attention in recent years due to their extraordinary physical and chemical properties that offer a huge potential for a multitude of applications in energy conversion, electronic and optoelectronic applications. Recent advances in the preparation strategies of periodic nanostructures, including self-assembly, epitaxy, and exfoliation, have paved the way to rationally modulate their ferroelectricity, superconductivity, band gap and many other physical and chemical properties. For example, the recent discovery of superconductivity observed in "magic-angle" graphene superlattices has sparked intensive studies in new ways, creating superlattices in twisted 2D materials. Recent development in the various state-of-the-art preparations of periodic nanostructures has created many new ideas and findings, warranting a timely review. In this review, we discuss the current advances of periodic nanostructures, including their preparation strategies, property modulations and various applications.
Collapse
Affiliation(s)
- Hang Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Template-mediated self-assembly of magnetite-gold nanoparticle superstructures at the water-oil interface of AOT reverse microemulsions. J Colloid Interface Sci 2021; 581:44-55. [PMID: 32771751 DOI: 10.1016/j.jcis.2020.07.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Bimetallic magnetite-gold nanostructures are interesting candidates to combine and enhance individual properties of each metal element in catalytic and analytical applications. Microemulsions have been employed in templated synthesis of nanoparticles, and their combination with different types of nanoparticles can further mediate interactions at the water-oil interface, providing new forms of hybrid nanostructures. EXPERIMENTS Reverse water-in-oil microemulsions of droplet sizes below 50 nm were prepared from ternary mixtures of Aerosol-OT (AOT) as surfactant, incorporating 4 nm sized superparamagnetic nanoparticles (MNPs) to the hexane-pentanol oil phase and 5 nm sized polyethyleneimine-stabilized gold nanoparticles (Au(PEI)-NPs) to the water phase. The resulting isotropic L2 phase, Winsor phases and organized nanostructures were investigated using conductometry, calorimetry, UV-Vis spectroscopy, cryo-SEM and HRTEM. FINDINGS Droplet-droplet interactions, morphology and surfactant film properties of AOT microemulsions could be modulated in different ways by the presence of the different nanoparticles from each liquid phase. Additionally, phase separation into Winsor phases allows the formation upon solvent evaporation of films with bimetallic heterostructures on the micrometer scale. This demonstrates a new way of nanoparticle templated assembly at liquid interfaces by assisted interactions between microemulsions and nanoparticles, as a promising strategy to obtain thin films of small, isotropic nanoparticles with hierarchical ordering.
Collapse
|
14
|
Dey P, Thurecht KJ, Fredericks PM, Blakey I. Stepwise Like Supramolecular Polymerization of Plasmonic Nanoparticle Building Blocks through Complementary Interactions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Priyanka Dey
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Kristofer J. Thurecht
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter M. Fredericks
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Idriss Blakey
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
15
|
Li Z, Wang W, Yin Y. Colloidal Assembly and Active Tuning of Coupled Plasmonic Nanospheres. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Capasso Palmiero U, Küffner AM, Krumeich F, Faltova L, Arosio P. Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Andreas M. Küffner
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
17
|
Welch PM, Dreier TA, Magurudeniya HD, Frith MG, Ilavsky J, Seifert S, Rahman AK, Rahman A, Singh AJ, Ringstrand BS, Hanson CJ, Hollingsworth JA, Firestone MA. 3D Volumetric Structural Hierarchy Induced by Colloidal Polymerization of a Quantum-Dot Ionic Liquid Monomer Conjugate. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul M. Welch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Timothy A. Dreier
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Matthew G. Frith
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jan Ilavsky
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sönke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aunik K. Rahman
- Applied Research & Photonics, Inc., Harrisburg, Pennsylvania 17111, United States
| | - Anis Rahman
- Applied Research & Photonics, Inc., Harrisburg, Pennsylvania 17111, United States
| | - Amita Joshi Singh
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | | | | | |
Collapse
|
18
|
Capasso Palmiero U, Küffner AM, Krumeich F, Faltova L, Arosio P. Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angew Chem Int Ed Engl 2020; 59:8138-8142. [DOI: 10.1002/anie.202000835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Andreas M. Küffner
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
19
|
Cai Y, Zhang Y, Ji S, Ye Y, Wu S, Liu J, Chen S, Liang C. Laser ablation in liquids for the assembly of Se@Au chain-oligomers with long-term stability for photothermal inhibition of tumor cells. J Colloid Interface Sci 2020; 566:284-295. [PMID: 32007739 DOI: 10.1016/j.jcis.2020.01.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
For the potential use of Au nanoparticles (NPs) in photothermal therapy, it is important and effective to achieve the uniaxial assembly of Au NPs to allow enhanced absorption in the near infrared (NIR) region. Herein, we first presented the construction of amorphous selenium encapsulated gold (Se@Au) chain-oligomers by successive laser ablation of Au and Se targets in sodium chloride solution without other toxic precursors, stabilizers, or templating molecules. Se@Au chain-oligomers showed evidently enhanced NIR absorption and excellent photothermal transduction efficiency (η), which was higher than 47% at 808 nm. After being stored for 1 year, the Se@Au colloids still exhibited outstanding photothermal performance. The cytotoxicity assay demonstrated that there is negligible toxicity of Se@Au chain-oligomers in cells, but cell viability declined to only 1% in phototherapeutic experiments that were implemented in vitro. In intracellular Reactive Oxygen Species (ROS) generation measurements, Se@Au chain-oligomers could trigger a 35.9% increment of ROS upon laser irradiation. The possible synergetic effects between the anticancer function of Se and photothermal behaviors of Se@Au oligomers were intended to increase ROS level in cells. Therefore, such designed Se@Au chain-oligomers of high stability exhibit promising potential for their use as in vivo photothermal therapeutic agents.
Collapse
Affiliation(s)
- Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yajun Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sihan Ji
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Shouliang Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
20
|
Bridonneau N, Noël V, Zrig S, Carn F. Self-Assembly of Gold Nanoparticles with Oppositely Charged, Long, Linear Chains of Periodic Copolymers. J Phys Chem B 2020; 124:900-908. [DOI: 10.1021/acs.jpcb.9b09590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Bridonneau
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, F-75013 Paris, France
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - V. Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - S. Zrig
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - F. Carn
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, F-75013 Paris, France
| |
Collapse
|
21
|
Li W, Palis H, Mérindol R, Majimel J, Ravaine S, Duguet E. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chem Soc Rev 2020; 49:1955-1976. [DOI: 10.1039/c9cs00804g] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
About the latest developments regarding self-assembly of textured colloids and its prospects.
Collapse
Affiliation(s)
- Weiya Li
- Univ. Bordeaux
- CNRS
- ICMCB
- UMR 5026
- Pessac
| | | | | | | | | | | |
Collapse
|
22
|
Gao H, Ma X, Lin J, Wang L, Cai C, Zhang L, Tian X. Synthesis of Nanowires via Temperature-Induced Supramolecular Step-Growth Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongbing Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Yi C, Yang Y, Nie Z. Alternating Copolymerization of Inorganic Nanoparticles. J Am Chem Soc 2019; 141:7917-7925. [DOI: 10.1021/jacs.9b02316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People’s Republic of China
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Cai C, Ge Y, Lin J, Xu Z, Gao H, Xu W. Assembly of silica rods into tunable branched living nanostructures mediated by coalescence of catalyst droplets. Chem Commun (Camb) 2019; 55:4391-4394. [PMID: 30916080 DOI: 10.1039/c9cc00959k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Branched nanostructures with tunable arm numbers were prepared through the assembly of silica rods mediated by coalescence of catalyst droplets on the end of the rods. The formed primary branched colloids retain living characteristics similar to the original ones, that is, they can further assemble into multilevel and hierarchical branched structures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
25
|
Ma X, Gu M, Zhang L, Lin J, Tian X. Sequence-Regulated Supracolloidal Copolymers via Copolymerization-Like Coassembly of Binary Mixtures of Patchy Nanoparticles. ACS NANO 2019; 13:1968-1976. [PMID: 30624891 DOI: 10.1021/acsnano.8b08431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic copolymers of molecular systems serve as an inspiration for creation of one-dimensional copolymer-like superstructures via coassembly of anisometric nanoparticles. In contrast to the covalent and molecular copolymers, the details of formation mechanisms of copolymer-like superstructures, as well as the factors determining their length and the sequences of arranged nanoparticles, are still poorly understood. Herein, we propose a joint theoretical-computational framework to probe into the coassembly mechanism and kinetics of binary mixtures of patchy nanoparticles. By applying the coarse-grained molecular dynamics simulations, it is demonstrated that the coassembly of patchy nanoparticles markedly resembles many aspects of molecular step-growth copolymerization, and the sequences of nanoparticles inside the copolymer-like superstructures can be finely regulated by the relative activity and the initial ingredient of patchy nanoparticles as well as the coassembly strategy. A quantitatively copolymerization-like model is developed to account for the coassembly kinetics of patchy nanoparticles and the sequence distribution of arranged nanoparticles, all governed by the elaborate design of lower-level building units. The jointly theoretical and simulated studies offer mechanistic insights into the copolymerization-like kinetics and the sequence prediction for the coassembly of binary mixtures of patchy nanoparticles, paving the way toward the rational design of copolymer-like superstructures with various sequences and functionalities.
Collapse
Affiliation(s)
- Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Mengxin Gu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
26
|
Xia YQ, Tian WD, Chen K, Ma YQ. Globule-stretch transition of a self-attracting chain in the repulsive active particle bath. Phys Chem Chem Phys 2019; 21:4487-4493. [PMID: 30734786 DOI: 10.1039/c8cp05976d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Folding and unfolding of a chain structure are often manipulated in experiments by tuning the pH, temperature, single-molecule forces or shear fields. Here, we carry out Brownian dynamics simulations to explore the behavior of a single self-attracting chain in a suspension of self-propelling particles (SPPs). As the propelling force increases, the globule-stretch (G-S) transition of the chain occurs due to the enhanced disturbance from the SPPs. Two distinct mechanisms of the transition in the limits of low and high rotational diffusion rates of SPPs have been observed: shear-induced stretching at a low rate and collision-induced melting at a high rate. The G-S and S-G (stretch-globule) curves form a hysteresis loop at the low rate, while they merge at the high rate. Besides, we find that two competing effects result in a non-monotonic dependence of the G-S transition on SPP density at the low rate. Our results suggest an alternative approach to manipulating the folding and unfolding of (bio)polymers by utilizing active agents.
Collapse
Affiliation(s)
- Yi-Qi Xia
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | |
Collapse
|
27
|
Ma X, Zhou Y, Zhang L, Lin J, Tian X. Polymerization-like kinetics of the self-assembly of colloidal nanoparticles into supracolloidal polymers. NANOSCALE 2018; 10:16873-16880. [PMID: 30168825 DOI: 10.1039/c8nr05310c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The self-assembly of colloidal nanoparticles is conceptually analogous to the polymerization of reactive monomers in molecular systems. However, less is known about the polymerization of colloidal nanoparticles into supracolloidal polymers. Herein, using coarse-grained molecular dynamics and theoretical analysis, we reveal the self-assembly mechanism and kinetics of colloidal nanoparticles constructed from triblock terpolymers. The results show that the formation pathway of supracolloidal polymers involves monomer condensation and oligomer coalescence through the manner of end-to-end collisions. In contrast to the polymerization kinetics of molecular systems, the simulations and theoretical analysis definitely demonstrate that the growth of supracolloidal polymers obeys diffusion-controlled step-growth polymerization kinetics with a variable rate coefficient, where the growth rate is dependent upon the concentration of colloidal nanoparticles and the molecular information of triblock terpolymers. Our findings possess wide implications for understanding the growth of supracolloidal polymers, which is important for the rational and precise design of one-dimensional self-assembled superstructures with new horizons for biomedical applications.
Collapse
Affiliation(s)
- Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
28
|
Atsumi C, Araoka S, Landenberger KB, Kanazawa A, Nakamura J, Ohtsuki C, Aoshima S, Sugawara-Narutaki A. Ring-Like Assembly of Silica Nanospheres in the Presence of Amphiphilic Block Copolymer: Effects of Particle Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7751-7758. [PMID: 29878793 DOI: 10.1021/acs.langmuir.8b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Block copolymer-mediated self-assembly of colloidal nanoparticles has attracted great attention for the fabrication of a wide variety of nanoparticle arrays. We have previously shown that silica nanospheres (SNSs) 15 nm in diameter assemble into ring-like nanostructures in the presence of amphiphilic block copolymers poly[(2-ethoxyethyl vinyl ether)- block-(2-methoxyethyl vinyl ether)] (EOVE-MOVE) in an aqueous phase. Here, the effects of particle size of SNSs on this polymer-mediated self-assembly are studied systematically using scanning electron microscopy to observe SNSs of seven different sizes between 13 to 42 nm. SNSs of 13, 16, 19, and 21 nm in diameter assemble into nanorings in the presence of EOVE-MOVE. In contrast, larger SNSs of 26, 34, and 42 nm aggregate heavily, form chain-like networks, and remain dispersed, respectively, instead of forming ring-like nanostructures. The assembly trend for 26-42 nm-SNSs agrees with that expected from the increased colloidal stability for larger particles. Time-course observation for the assembled morphology of 16 nm-SNSs reveals that the nanorings, once formed, assemble further into network-like structures, as if the nanorings behave as building units for higher-order assembly. This indicates that the ring-like assembly is a fast process that can proceed onto random colloidal aggregation. Detailed analysis of nanoring structures revealed that the average number of SNSs comprising one ring decreased from 5.0 to 3.1 with increasing the SNS size from 13 to 21 nm. A change in the number of ring members was also observed when the length of EOVE-MOVE varied while the size of SNSs was fixed. Dynamic light scattering measurements and atomic force microscopy confirmed the SNSs/polymer composite structures. We hypothesize that a stable composite morphology may exist that is influenced by both the size of SNSs and the polymer molecular structures.
Collapse
Affiliation(s)
- Chisato Atsumi
- Department of Crystalline Materials Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Shintaro Araoka
- Department of Macromolecular Science , Osaka University, Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Kira B Landenberger
- Department of Polymer Chemistry , Kyoto University, Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science , Osaka University, Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Jin Nakamura
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Chikara Ohtsuki
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science , Osaka University, Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Ayae Sugawara-Narutaki
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
29
|
Pageni P, Yang P, Bam M, Zhu T, Chen YP, Decho AW, Nagarkatti M, Tang C. Recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates. Biomaterials 2018; 178:363-372. [PMID: 29759729 DOI: 10.1016/j.biomaterials.2018.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
Over-prescription and improper use of antibiotics has led to the emergence of bacterial resistance, posing a major threat to public health. There has been significant interest in the development of alternative therapies and agents to combat antibiotic resistance. We report the preparation of recyclable magnetic iron oxide nanoparticles grafted with charged cobaltocenium-containing metallopolymers by surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. β-Lactam antibiotics were then conjugated with metallopolymers to enhance their vitality against both Gram-positive and Gram-negative bacteria. The enhanced antibacterial activity was a result of synergy of antimicrobial segments that facilitate the inhibition of hydrolysis of antibiotics and local enhancement of antibiotic concentration on a nanoparticle surface. These magnetic nanoparticles can be recycled numerous times without losing the initial antimicrobial potency. Studies suggested negligible toxicity of metallopolymer-grafted nanoparticles to red blood cells and minimal tendency to induce resistance in bacteria.
Collapse
Affiliation(s)
- Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Peng Yang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, United States
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Yung Pin Chen
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
30
|
Kim K, Jang S, Jeon J, Kang D, Sohn BH. Fluorescent Supracolloidal Chains of Patchy Micelles of Diblock Copolymers Functionalized with Fluorophores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4634-4639. [PMID: 29597351 DOI: 10.1021/acs.langmuir.8b00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By selective attachment of fluorescent dyes to the core-forming block, we produced patchy micelles of diblock copolymers with fluorophores localized in the micellar cores. From these patchy micelles functionalized with dyes, fluorescent supracolloidal chains in a few micrometers were polymerized by combining the patches in neighboring micelles, indicating that selective modification of the core-forming block delivered the functionality into the supracolloidal chain without altering the polymerization of patchy micelles. Thus, with the same polymerization condition, we were able to produce red-, green-, and blue-emitting supracolloidal chains by varying the fluorescent dyes attached to the core-forming block. In addition, we directly visualized individual supracolloidal chains by fluorescence confocal microscopy as well as by transmission electron microscopy.
Collapse
Affiliation(s)
- Kyungtae Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sukwoo Jang
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jonghyuk Jeon
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Donghwi Kang
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byeong-Hyeok Sohn
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
31
|
Yang C, Ma X, Lin J, Wang L, Lu Y, Zhang L, Cai C, Gao L. Supramolecular “Step Polymerization” of Preassembled Micelles: A Study of “Polymerization” Kinetics. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
32
|
Supracolloidal Self-Assembly of Micro-Hosts and -Guests on Substrates. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Jang S, Kim K, Jeon J, Kang D, Sohn BH. Supracolloidal chains of patchy micelles of diblock copolymers with in situ synthesized nanoparticles. SOFT MATTER 2017; 13:6756-6760. [PMID: 28937168 DOI: 10.1039/c7sm01497j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supracolloidal chains of diblock copolymer micelles were functionalized with gold and silver nanoparticles (NPs). Both NPs were independently synthesized in situ in the core of spherical micelles which were then converted to patchy micelles. With these patchy micelles as colloidal monomers, supracolloidal chains were polymerized by combining the patches of neighboring micelles. Since all micelles contained NPs, NPs were incorporated in every repeat unit of chains. In addition, a single gold NP was synthesized in the micellar core in contrast to several silver NPs so that we differentiated the chains with Au NPs from those with Ag NPs by the number of NPs in the repeat unit as well as by plasmonic bands in UV-Vis spectra.
Collapse
Affiliation(s)
- Sukwoo Jang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | | | | | | | | |
Collapse
|
34
|
Li T, Xue B, Wang B, Guo G, Han D, Yan Y, Dong A. Tubular Monolayer Superlattices of Hollow Mn3O4 Nanocrystals and Their Oxygen Reduction Activity. J Am Chem Soc 2017; 139:12133-12136. [DOI: 10.1021/jacs.7b06587] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tongtao Li
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Bin Xue
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Biwei Wang
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Guannan Guo
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Dandan Han
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Yancui Yan
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Collaborative Innovation
Center of Chemistry for Energy Materials, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, and Department of
Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Yang C, Gao L, Lin J, Wang L, Cai C, Wei Y, Li Z. Toroid Formation through a Supramolecular "Cyclization Reaction" of Rodlike Micelles. Angew Chem Int Ed Engl 2017; 56:5546-5550. [PMID: 28407350 DOI: 10.1002/anie.201701978] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 01/01/2023]
Abstract
Constructing polymeric toroids with a uniform, tunable size is challenging. Reported herein is the formation of uniform toroids from poly(γ-benzyl-l-glutamate)-graft-poly(ethylene glycol) (PBLG-g-PEG) graft copolymers by a two-step self-assembly process. In the first step, uniform rodlike micelles are prepared by dialyzing the polymer dissolved in tetrahydrofuran (THF)/N,N'-dimethylformamide (DMF) against water. With the addition of THF in the second step, the rodlike micelles curve and then close end-to-end to form uniform toroids, which resemble a cyclization reaction.
Collapse
Affiliation(s)
- Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhan Wei
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
36
|
Yang C, Gao L, Lin J, Wang L, Cai C, Wei Y, Li Z. Toroid Formation through a Supramolecular “Cyclization Reaction” of Rodlike Micelles. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yuhan Wei
- School of Polymer Science and Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Zhibo Li
- School of Polymer Science and Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| |
Collapse
|
37
|
Liras M, Quijada-Garrido I, García O. QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py00954b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart (photoluminescent and pH/temperature sensitive) nanogels and hydrogels.
Collapse
Affiliation(s)
- M. Liras
- Instituto IMDEA-Energía
- Parque Tecnológico de Móstoles
- E-28935 Móstoles-Madrid
- Spain
| | - I. Quijada-Garrido
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- E-28006-Madrid
- Spain
| | - O. García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- E-28006-Madrid
- Spain
| |
Collapse
|
38
|
Thermoresponsive random and block copolymers based on diethylene glycol methacrylate and a novel thiolated methacrylic monomer for the coating of semiconductor nanoparticles. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Graña-Suárez L, Verboom W, Egberink RJM, Sarkar S, Mahalingam V, Huskens J. Host-Guest and Electrostatic Interactions in Supramolecular Nanoparticle Clusters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura Graña-Suárez
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P. O. Box 217 7500 AE Enschede The Netherlands
| | - Willem Verboom
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P. O. Box 217 7500 AE Enschede The Netherlands
| | - Richard J. M. Egberink
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P. O. Box 217 7500 AE Enschede The Netherlands
| | - Shyam Sarkar
- Department of Chemistry; Ananda Mohan College; 102/1, Raja Rammohan Sarani 700009 Kolkata W.B. India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER); 741246 Kolkata Mohanpur India
| | - Jurriaan Huskens
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P. O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
40
|
Zhang BK, Li HS, Li J, Chen K, Tian WD, Ma YQ. The unique role of bond length in the glassy dynamics of colloidal polymers. SOFT MATTER 2016; 12:8104-8111. [PMID: 27714340 DOI: 10.1039/c6sm01386d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bond length is generally not considered as a controllable variable for molecular polymers. Hence, no experimental, simulation or theoretical research, to our knowledge, has examined the influence of bond length on the glassy dynamics of polymers. Recently, a new class of assembling materials called "colloidal polymers" has been synthesized. These colloidal polymers have advantages over molecular polymers in the visibility and flexibility of tuning, for example, the size and shape of the "monomers", the interaction, and the bond length. Dense suspension of colloidal polymers will become a very promising ideal model system for exploring the fundamental problems in the glass transition of chain "molecules". Here, we study the static structure and activated dynamics of hard-sphere colloidal polymers by generalizing the colloidal nonlinear Langevin equation theory to colloidal polymers. Surprisingly, we find that the bond length plays a critical and unique role in many aspects. For instance, the universal relations of the characteristic local lengths and the activated barrier versus the "degree of supercooling", and the structural relaxation versus local vibrational motion are found to be dependent on bond length and independent of chain length and rigidity. We hope that our findings inspire future experimental and simulation research studies on the glassy dynamics of colloidal polymers.
Collapse
Affiliation(s)
- Bo-Kai Zhang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China. and National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Hui-Shu Li
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China.
| | - Jian Li
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China. and Department of Physics, Nanjing Normal University, Nanjing 210023, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China.
| | - Yu-Qiang Ma
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China. and National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
41
|
Pavlopoulos NG, Dubose JT, Hartnett ED, Char K, Pyun J. Colloidal Random Terpolymers: Controlling Reactivity Ratios of Colloidal Comonomers via Metal Tipping. ACS Macro Lett 2016; 5:950-954. [PMID: 35607210 DOI: 10.1021/acsmacrolett.6b00511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report on a versatile synthetic method of preparing colloidal copolymers and terpolymers composed of dipolar Au@Co core-shell nanoparticles (NPs) in the backbone, along with semiconductor CdSe@CdS nanorod (NR), or tetrapod (TP) side chain groups. A seven-step colloidal total synthesis enabled the synthesis of well-defined colloidal comonomers composed of a dipolar Au@CoNP attached to a single CdSe@CdS NR, or TP, where magnetic dipolar associations between Au@CoNP units promoted the formation of colloidal co- or terpolymers. The key step in this synthesis was the ability to photodeposit a single AuNP tip onto CdSe@CdS NR or TP that enables selective seeding of a dipolar CoNP onto the AuNP seed. We show that the variation of the AuNP size directly controlled the size and dipolar character of the CoNP tip, where the size modulation of the Au and Au@CoNP tips is analogous to control of comonomer reactivity ratios in classical copolymerization processes.
Collapse
Affiliation(s)
- Nicholas G. Pavlopoulos
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey T. Dubose
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Erin D. Hartnett
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kookheon Char
- Department
of Chemical and Biological Engineering, Program for Chemical Convergence
for Energy and Environment, and the Center for Intelligent Hybrids, Seoul National University, Seoul 151-744, Korea
| | - Jeffrey Pyun
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemical and Biological Engineering, Program for Chemical Convergence
for Energy and Environment, and the Center for Intelligent Hybrids, Seoul National University, Seoul 151-744, Korea
| |
Collapse
|
42
|
Rayati S, Nejabat F. Preparation of porphyrin nanoparticles: Effect of bromine atom on the particle size and catalytic activity. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Li J, Zhang BK, Li HS, Chen K, Tian WD, Tong PQ. Glassy dynamics of model colloidal polymers: The effect of "monomer" size. J Chem Phys 2016; 144:204509. [PMID: 27250318 DOI: 10.1063/1.4952605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, attempts have been made to assemble colloidal particles into chains, which are termed "colloidal polymers." An apparent difference between molecular and colloidal polymers is the "monomer" size. Here, we propose a model to represent the variation from molecular polymer to colloidal polymer and study the quantitative differences in their glassy dynamics. For chains, two incompatible local length scales, i.e., monomer size and bond length, are manifested in the radial distribution function and intramolecular correlation function. The mean square displacement of monomers exhibits Rouse-like sub-diffusion at intermediate time/length scale and the corresponding exponent depends on the volume fraction and the monomer size. We find that the threshold volume fraction at which the caging regime emerges can be used as a rescaling unit so that the data of localization length versus volume fraction for different monomer sizes can gather close to an exponential curve. The increase of monomer size effectively increases the hardness of monomers and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between colloidal polymers of different monomer sizes have been discussed. In the case of having the same peak time of the non-Gaussian parameter, the motion of monomers of larger size is much less non-Gaussian. The mode-coupling critical exponents for colloidal polymers are in agreement with that of flexible bead-spring chains.
Collapse
Affiliation(s)
- Jian Li
- Department of Physics, Nanjing Normal University, Nanjing 210023, China
| | - Bo-Kai Zhang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hui-Shu Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Pei-Qing Tong
- Department of Physics, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
44
|
Zhang X, Lv L, Ji L, Guo G, Liu L, Han D, Wang B, Tu Y, Hu J, Yang D, Dong A. Self-Assembly of One-Dimensional Nanocrystal Superlattice Chains Mediated by Molecular Clusters. J Am Chem Soc 2016; 138:3290-3. [DOI: 10.1021/jacs.6b00055] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xianfeng Zhang
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Longfei Lv
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Li Ji
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guannan Guo
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Limin Liu
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Dandan Han
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Biwei Wang
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yaqi Tu
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jianhua Hu
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Dong Yang
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Collaborative Innovation
Center of Chemistry for Energy Materials,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
and Department of Chemistry and ‡State Key Laboratory of Molecular Engineering
of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
45
|
Stover RJ, Moaseri E, Gourisankar SP, Iqbal M, Rahbar NK, Changalvaie B, Truskett TM, Johnston KP. Formation of Small Gold Nanoparticle Chains with High NIR Extinction through Bridging with Calcium Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1127-38. [PMID: 26735290 DOI: 10.1021/acs.langmuir.5b03639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The self-assembly of citrate-capped Au nanoparticles (5 nm) resulted in branched nanochains by adding CaCl2 versus spherical nanoclusters for NaCl. These assemblies were formed between 1 s to 30 min by tuning the electrostatic repulsion and the interparticle bridging attraction between the cations and citrate ligands as a function of electrolyte concentration. For dilute Ca(2+), strong interparticle bridging favored particle attachment at chain ends. This resulted in the formation of small, branched chains with lengths as short as 20 nm, due to the large Debye length for the diffuse counterions. Furthermore, the bridging produced very small interparticle spacings and sintering, as evident in high-resolution TEM despite the low temperature. This morphology produced a large red shift in the surface plasmon resonance, as characterized by a broad extinction peak with NIR absorption out to 1000 nm, which is unusual for such small particles. Whereas these properties were seen for primary particles with partial citrate monolayers, the degrees of sintering and NIR extinction were small in the case of citrate multilayers. The ability to design the size and shape of nanoparticle clusters as well as the interparticle spacing by tuning bridging and electrostatic interactions may be expected to be quite general and of broad applicability in materials synthesis.
Collapse
Affiliation(s)
- Robert J Stover
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Ehsan Moaseri
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Sai P Gourisankar
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Muhammad Iqbal
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Negin K Rahbar
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Behzad Changalvaie
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Thomas M Truskett
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Keith P Johnston
- Texas Materials Institute, ‡McKetta Department of Chemical Engineering, and §Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
46
|
Lee S, Jang S, Kim K, Jeon J, Kim SS, Sohn BH. Branched and crosslinked supracolloidal chains with diblock copolymer micelles having three well-defined patches. Chem Commun (Camb) 2016; 52:9430-3. [DOI: 10.1039/c6cc04994j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report controlled branching and eventual crosslinking in supracolloidal chains by introducing well-defined trifunctional patchy micelles.
Collapse
Affiliation(s)
- Sanghwa Lee
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Sukwoo Jang
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Kyungtae Kim
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Jonghyuk Jeon
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Sung-Soo Kim
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | | |
Collapse
|
47
|
Chae S, Lee S, Kim K, Jang SW, Sohn BH. Fluorescent supracolloidal polymer chains with quantum dots. Chem Commun (Camb) 2016; 52:6475-8. [DOI: 10.1039/c6cc01218c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We demonstrate the fabrication of fluorescent supracolloidal chains functionalized with quantum dots, which were polymerized from patched micelles of diblock copolymers by adjusting the polarity of the solvent. Supracolloidal random and block chains with green- and red-emitting quantum dots were also synthesized.
Collapse
Affiliation(s)
- Seungyong Chae
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Sanghwa Lee
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Kyungtae Kim
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Suk Woo Jang
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | | |
Collapse
|
48
|
Pavlopoulos NG, Dubose JT, Pinna N, Willinger M, Char K, Pyun J. Synthesis and Assembly of Dipolar Heterostructured Tetrapods: Colloidal Polymers with “Giant
tert‐butyl
” Groups. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nicholas G. Pavlopoulos
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Jeffrey T. Dubose
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Nicola Pinna
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Marc‐Georg Willinger
- Department of Inorganic Chemistry Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Kookheon Char
- Department of Chemical and Biological Engineering Program for Chemical Convergence for Energy & Environment & the Center for Intelligent Hybrids Seoul National University Seoul 151-744 Korea
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
- Department of Chemical and Biological Engineering Program for Chemical Convergence for Energy & Environment & the Center for Intelligent Hybrids Seoul National University Seoul 151-744 Korea
| |
Collapse
|
49
|
Pavlopoulos NG, Dubose JT, Pinna N, Willinger MG, Char K, Pyun J. Synthesis and Assembly of Dipolar Heterostructured Tetrapods: Colloidal Polymers with "Giant tert-butyl" Groups. Angew Chem Int Ed Engl 2015; 55:1787-91. [PMID: 26696128 DOI: 10.1002/anie.201510458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 11/08/2022]
Abstract
We report on the first synthesis of a heterostructured semiconductor tetrapod from CdSe@CdS that carries a single dipolar nanoparticle tip from a core-shell colloid of Au@Co. A four-step colloidal total synthesis was developed, where the key step in the synthesis was the selective deposition of a single AuNP tip onto a CdSe@CdS tetrapod under UV-irradiation. Synthetic accessibility to this dipolar heterostructured tetrapod enabled the use of these as colloidal monomers to form colloidal polymers that carry the semiconductor tetrapod as a side chain group attached to the CoNP colloidal polymer main chain. The current report details a number of novel discoveries on the selective synthesis of an asymmetric heterostructured tetrapod that is capable of 1D dipolar assembly into colloidal polymers that carry tetrapods as side chain groups that mimic "giant tert-butyl groups".
Collapse
Affiliation(s)
- Nicholas G Pavlopoulos
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Jeffrey T Dubose
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Nicola Pinna
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Marc-Georg Willinger
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Kookheon Char
- Department of Chemical and Biological Engineering, Program for Chemical Convergence for Energy & Environment & the Center for Intelligent Hybrids, Seoul National University, Seoul, 151-744, Korea.
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA. .,Department of Chemical and Biological Engineering, Program for Chemical Convergence for Energy & Environment & the Center for Intelligent Hybrids, Seoul National University, Seoul, 151-744, Korea.
| |
Collapse
|
50
|
Merg AD, Slocik J, Blaber MG, Schatz GC, Naik R, Rosi NL. Adjusting the Metrics of 1-D Helical Gold Nanoparticle Superstructures Using Multivalent Peptide Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9492-9501. [PMID: 26262910 DOI: 10.1021/acs.langmuir.5b02208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The properties of nanoparticle superstructures depend on many factors, including the structural metrics of the nanoparticle superstructure (particle diameter, interparticle distances, etc.). Here, we introduce a family of gold-binding peptide conjugate molecules that can direct nanoparticle assembly, and we describe how these molecules can be systematically modified to adjust the structural metrics of linear double-helical nanoparticle superstructures. Twelve new peptide conjugates are prepared via linking a gold-binding peptide, AYSSGAPPMPPF (PEP(Au)), to a hydrophobic aliphatic tail. The peptide conjugates have 1, 2, or 3 PEP(Au) headgroups and a C12, C14, C16, or C18 aliphatic tail. The soft assembly of these peptide conjugates was studied using transmission electron microscopy (TEM), atomic force microscopy (AFM), and infrared (IR) spectroscopy. Several peptide conjugates assemble into 1-D twisted fibers having measurable structural parameters such as fiber width, thickness, and pitch that can be systematically varied by adjusting the aliphatic tail length and number of peptide headgroups. The linear soft assemblies serve as structural scaffolds for arranging gold nanoparticles into double-helical superstructures, which are examined via TEM. The pitch and interparticle distances of the gold nanoparticle double helices correspond to the underlying metrics of the peptide conjugate soft assemblies, illustrating that designed peptide conjugate molecules can be used to not only direct the assembly of gold nanoparticles but also control the metrics of the assembled structure.
Collapse
Affiliation(s)
- Andrea D Merg
- Department of Chemistry, University of Pittsburgh , 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Joseph Slocik
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States
| | - Martin G Blaber
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Rajesh Naik
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh , 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|