1
|
Gálvez-Subiela A, Jiménez-Robles R, Badia-Valiente JD, Izquierdo M, Chafer A. Effect of Choline Chloride-Based DES on the Pore-Forming Ability and Properties of PVDF Membranes Prepared with Triethyl Phosphate as Green Solvent. Polymers (Basel) 2025; 17:984. [PMID: 40219371 PMCID: PMC11991192 DOI: 10.3390/polym17070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
This study explores the influence of various additives on the morphological, chemical, and thermal properties of poly(vinylidene fluoride) (PVDF) membranes prepared via the non-solvent induced phase separation (NIPS) technique. The use of a green solvent such as triethyl phosphate (TEP) was shown to be successful. A particular focus was dedicated to pore formers based on choline chloride-based deep eutectic solvents (DES) in combination with ethylene glycol and glycerol, i.e., ChCl/EG and ChCl/GLY, and its benchmark with traditional counterparts such as poly(ethylene glycol) (PEG) and glycerol (GLY). Comprehensive characterization was conducted using FESEM, FTIR, XRD, and DSC techniques to evaluate changes in membrane morphology, porosity, and crystallinity. PEG acted as a pore-forming agent, transitioning the internal structure from spherulitic to sponge-like with consistent pore sizes, while GLY produced a nodular morphology at higher concentrations due to increased dope solution viscosity. DES induced significant shifts in crystalline phase composition, decreasing α-phase fractions and promoting β-phase formation at higher concentrations. While the overall porosity remained unaffected by the addition of GLY or PEG, it was dependent on the DES concentration in the dope at lower values than those obtained by GLY and PEG. Membrane pore size with ChCl/GLY was lower than with ChCl/EG and GLY. All membranes showed performance at the hydrophobic regime. The findings demonstrate that ChCl/EG and ChCl/GLY can tailor the structural and thermal properties of TEP-driven PVDF membranes, providing a green and versatile approach to customize the membrane properties for specific applications.
Collapse
Affiliation(s)
| | | | | | - Marta Izquierdo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (A.G.-S.); (R.J.-R.); (J.D.B.-V.)
| | - Amparo Chafer
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (A.G.-S.); (R.J.-R.); (J.D.B.-V.)
| |
Collapse
|
2
|
Wang F, Yang P, Liu W, Li Z, Wang Z, Xiang Y, Zhang Q, Hu X. Simultaneous Visualization of Dynamical and Static Tactile Perception Using Piezoelectric-Ultrasonic Bimodal Electronic Skin Based on In Situ Polarized PVDF-TrFE/2DBP Composites and the TFT Array. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16057-16071. [PMID: 40007318 DOI: 10.1021/acsami.4c21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The key to realizing completed bionic tactile perception of human skin using electronic skin relies on simultaneously distinguishing dynamic and static stimuli and restoring their characteristic information, which is realized by integration of several individual sensors but remains certain limitations including large physical size and high energy consumption. In this study, a piezoelectric-ultrasonic bimodal electronic skin (PUVE) based on in situ polarized PVDF-TrFE/2DBP composites and a thin-film transistor (TFT) array is fabricated. The incorporation of 2DBP into the PVDF-TrFE film and the in situ polarization approach provide excellent piezoelectric and ultrasonic performances of PVDF-TrFE/2DBP composites. PUVE has an ultrahigh sensitivity of 3.2 mV kPa-1 over a wide pressure (0-310 kPa) range, with excellent spatial resolution (50 μm) and response time (40 ms). Meanwhile, the PUVE demonstrated outstanding repeatability and bending stability in 1500 cycles of cyclic pressure and 4000 cycles of 180° bending. The integrated piezoelectric and ultrasonic functions of PUVE can respond individually to dynamic and static tactile stimuli to ensure perceiving and decoupling of the dynamical and static mechanical signals with one single sensor. The PVDF-TrFE/2DBP composites is further integrated with the TFT array, realizing visualization function of contacting objects and restoring their characteristic information including the texture and location. Thus, the PUVE is expected to have a wide range of applications in intelligent robots and human prostheses.
Collapse
Affiliation(s)
- Fuyang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Pengfei Yang
- Huizhou China Eagle Electronic Technology Inc., Huizhou 516001, Guangdong, China
| | - Wei Liu
- Zhuhai Henger Microelectronic Equipment Co., Ltd., China, Zhuhai 519000, Guangdong, China
| | - Zhiqiang Li
- Zhuhai Henger Microelectronic Equipment Co., Ltd., China, Zhuhai 519000, Guangdong, China
| | - Zhao Wang
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Qian Zhang
- The School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 611731, Sichuan, China
| | - Xiaoran Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
3
|
Roni MNP, Neshath TA, Hakim MA, Hasan MM, Rahman MH, Hossan MS, Zahid AASM, Alam MNE, Khatun MH. Optimizing β-Phase Content in PVDF Membranes via Modification of Dope Solution with Citric Acid/Nano-TiO 2 Using Nonsolvent-Induced Phase Separation Method. Polymers (Basel) 2025; 17:481. [PMID: 40006143 PMCID: PMC11859342 DOI: 10.3390/polym17040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The morphology of Poly (vinylidene fluoride) (PVDF) membranes prepared via the nonsolvent-induced phase separation (NIPS) method was modulated by altering the dope solution with citric acid (CA) and titanium dioxide nanoparticles (nano-TiO2) to optimize the β-phase content. Three series of dope solutions were prepared in dimethyl acetamide (DMAc): (i) TONx series contained 0.0-10% citric acid, (ii) Mx series contained 0.0-0.4% nano-TiO2, and (iii) TAx series contained 5% CA and 0.0-0.40% nano-TiO2. A field emission scanning electron microscopy (FESEM) study revealed that CA enhances pore opening, and nano-TiO2 transforms the sponge-like uneven porous structures into a compact, relatively regular honeycomb structure in the PVDF membranes. The combined effect of CA and nano-TiO2 in the dope solution made the channels and chambers of the membrane well organized, and the walls of the channels transformed from solid fibrils to cross-woven nanofiber-like entities. Porosity initially peaked at 84% in the TAx series, gradually decreasing to 72% with increasing nano-TiO2 concentrations. X-ray diffraction (XRD), Fourier-Transformed Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC) revealed the presence of a combined relative amount of the β- and γ-polymorphs of 84% in a neat PVDF membrane, 88% in an Mx, and 96% in a TAx series membrane, with the β-PVDF constituting nearly the entire portion of the combined polymorphs. The presence of 96% electroactive polymorph content in the PVDF membrane is noteworthy, highlighting its potential biomedical and industrial applications.
Collapse
Affiliation(s)
- Md. Nahid Parvez Roni
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Tanvir Ahmed Neshath
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Azizul Hakim
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Mahadi Hasan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - M. Habibur Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Shamim Hossan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - A. A. S. Mostofa Zahid
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Nur E Alam
- Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh;
| | | |
Collapse
|
4
|
Wang J, Li Y, Bi F, Yang C, Vasilopoulou M, Chu J, Bao X. Revealing Intrinsic Free Charge Generation: Promoting the Construction of Over 19% Efficient Planar p-n Heterojunction Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202417143. [PMID: 39776226 DOI: 10.1002/anie.202417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases. Subsequently, the pure planar p-n heterojunction (PHJ) OSCs based on green orthogonal solvents were prepared and exhibited comparable even greater performance to that of BHJ OSCs. More interestingly, by introducing PVDF-TrFE as intrinsic region to regulate built-in electric field of the device, the planar p-i-n PHJ OSCs achieved much higher efficiency (>18%) and stability. Moreover, a prominent efficiency of over 19% has been obtained via ternary optimization, which is the new efficiency record for PHJ OSCs up to date. This study points towards the distinguishing intrinsic free charge generation mechanism, opens up a new avenue for OSCs to collectively realize high-efficiency, long-term duration, and simplified device engineering for future commercialization.
Collapse
Affiliation(s)
- Junjie Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yonghai Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Fuzhen Bi
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunpeng Yang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Athens, 15341, Greece
| | - Junhao Chu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xichang Bao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
5
|
Krammer M, Montes S, Kühnelt H, Jiang Q, Lager D, Bismarck A, Beutl A. Multifunctionality and Processability of a Thermoplastic Based Gel Electrolyte Cell for the Realization of Structural Batteries. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21317-21330. [PMID: 39720329 PMCID: PMC11664595 DOI: 10.1021/acs.jpcc.4c07301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
In this work, a battery layup consisting of a poorly flammable ionic liquid electrolyte and a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) thermoplastic has been developed along with composite anode and cathode electrodes. The developed gel electrolyte exhibits feasible ionic conductivity of about 1 mS/cm at 30 °C. State-of-the-art active electrode materials, i.e., LiNi0.8Mn0.1Co0.1O2 (NMC811) and graphite, have been employed. Full cells were tested in coin and pouch cell format, obtaining capacities of about 120 and 100 mA h/gNMC811, respectively, at a C-rate of C/10. Thereby, it was observed that good contact between the individual cell layers is crucial. Recently, it was shown that the mechanical properties of structural batteries, realized by integrating battery cells into carbon fiber-reinforced polymer (CFRP) laminates, depend significantly on the mechanical properties of the cell itself. Hence, to promote the realization of such a structural battery concept, tensile tests were carried out to investigate the mechanical properties of cells as well as the individual components developed in this work. The full cell showed values of 10 GPa and 49 MPa for the Young's modulus and tensile strength, respectively. Thus, feasible multifunctionality could be verified on the cell level. However, regarding the contributions of the different components, it could be shown that mainly the current collector foils contribute to the mechanical properties, in contrast to the electrode loadings and the gel electrolyte. Additionally, the thermal and chemical stability of the developed system was evaluated, highlighting the importance of these secondary properties for the fabrication of structural batteries, i.e., the integration of cells into load-bearing CFRP laminates. Specifically, it was observed that the developed system is thermally stable up to 150 °C and no HF release was detected upon exposure to ambient conditions.
Collapse
Affiliation(s)
- Martin Krammer
- Center for
Transport Technologies, Battery Technologies, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, Vienna 1210, Austria
| | - Susan Montes
- Center for
Transport Technologies, Battery Technologies, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, Vienna 1210, Austria
| | - Helmut Kühnelt
- Center
for
Transport Technologies, Electric Vehicle Technologies, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, Vienna 1210, Austria
| | - Qixiang Jiang
- Polymer and
Composite Engineering (PaCE) Group, Insitute of Materials Chemistry
& Research, Faculty of Chemistry, University
of Vienna, Währinger
Str. 42, Vienna 1090, Austria
| | - Daniel Lager
- Center for
Energy, Sustainable Thermal Energy Systems, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, Vienna 1210, Austria
| | - Alexander Bismarck
- Polymer and
Composite Engineering (PaCE) Group, Insitute of Materials Chemistry
& Research, Faculty of Chemistry, University
of Vienna, Währinger
Str. 42, Vienna 1090, Austria
| | - Alexander Beutl
- Center for
Transport Technologies, Battery Technologies, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, Vienna 1210, Austria
| |
Collapse
|
6
|
Shang B, Xiao M, Wang S, Han D, Huang S, Guo H, Meng Y. One-pot synthesis of crystalline polycarbonate- block-polyesters. Chem Commun (Camb) 2024; 60:14826-14829. [PMID: 39584746 DOI: 10.1039/d4cc05462h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We herein describe a simple and efficient one-pot synthesis approach to prepare crystalline polycarbonate-polyester diblock copolymers by copolymerizing tetrachlorophthalic anhydride, CO2, and ethylene oxide using a metal-free catalyst. The block copolymers possess a melting point as high as 169 °C and two distinct glass transition temperatures. It is also possible to control the length and composition of the copolymers, thereby customizing their crystallinity and physical performance.
Collapse
Affiliation(s)
- Bingkai Shang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 45000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Chen Y, Zhang X, Lu C. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. Chem Sci 2024:d4sc05166a. [PMID: 39355228 PMCID: PMC11440360 DOI: 10.1039/d4sc05166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024] Open
Abstract
With the rapid development of artificial intelligence, the applications of flexible piezoelectric sensors in health monitoring and human-machine interaction have attracted increasing attention. Recent advances in flexible materials and fabrication technologies have promoted practical applications of wearable devices, enabling their assembly in various forms such as ultra-thin films, electronic skins and electronic tattoos. These piezoelectric sensors meet the requirements of high integration, miniaturization and low power consumption, while simultaneously maintaining their unique sensing performance advantages. This review provides a comprehensive overview of cutting-edge research studies on enhanced wearable piezoelectric sensors. Promising piezoelectric polymer materials are highlighted, including polyvinylidene fluoride and conductive hydrogels. Material engineering strategies for improving sensitivity, cycle life, biocompatibility, and processability are summarized and discussed focusing on filler doping, fabrication techniques optimization, and microstructure engineering. Additionally, this review presents representative application cases of smart piezoelectric sensors in health monitoring and human-machine interaction. Finally, critical challenges and promising principles concerning advanced manufacture, biological safety and function integration are discussed to shed light on future directions in the field of piezoelectrics.
Collapse
Affiliation(s)
- Yanyu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials, Soochow University Suzhou Jiangsu 215123 China
| | - Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
8
|
Xu L, Lv J, Yu S. Piezoelectric Properties of As-Spun Poly(vinylidene Fluoride)/Multi-Walled Carbon Nanotube/Zinc Oxide Nanoparticle (PVDF/MWCNT/ZnO) Nanofibrous Films. Polymers (Basel) 2024; 16:2483. [PMID: 39274117 PMCID: PMC11398139 DOI: 10.3390/polym16172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Conductive multi-walled carbon nanotubes (MWCNTs) as well as piezoelectric zinc oxide (ZnO) nanoparticles are frequently used as a single additive and dispersed in polyvinylidene fluoride (PVDF) solutions for the fabrication of piezoelectric composite films. In this study, MWCNT/ZnO binary dispersions are used as spinning liquids to fabricate composite nanofibrous films by electrospinning. Binary additives are conducive to increasing the crystallinity, piezoelectric voltage coefficient, and consequent piezoelectricity of as-spun films owing to the stretch-enhanced polarization of the electrospinning process under an applied electric field. PCZ-1.5 film (10 wt. % PVDF/0.1 wt. % MWCNTs/1.5 wt. % ZnO nanoparticles) contains the maximum β-phase content of 79.0% and the highest crystallinity of 87.9% in nanofibers. A sensor using a PCZ-1.5 film as a functional layer generates an open-circuit voltage of 10 V as it is subjected to impact loads with an amplitude of 6 mm at 10 Hz. The piezoelectric sensor reaches a power density of 0.33 μW/cm2 and a force sensitivity of 582 mV/N. In addition, the sensor is successfully applied to test irregular motions of a bending finger and stepping foot. The result indicates that electrospun PVDF/MWCNT/ZnO nanofibrous films are suitable for wearable devices.
Collapse
Affiliation(s)
- Lei Xu
- School of Mechanical and Electric Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Jiao Lv
- School of Mechanical and Electric Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Shengrui Yu
- School of Mechanical and Electric Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
9
|
Zhao J, Liu X, Pu X, Shen Z, Xu W, Yang J. Preparation Method and Application of Porous Poly(lactic acid) Membranes: A Review. Polymers (Basel) 2024; 16:1846. [PMID: 39000701 PMCID: PMC11244136 DOI: 10.3390/polym16131846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Porous membrane technology has garnered significant attention in the fields of separation and biology due to its remarkable contributions to green chemistry and sustainable development. The porous membranes fabricated from polylactic acid (PLA) possess numerous advantages, including a low relative density, a high specific surface area, biodegradability, and excellent biocompatibility. As a result, they exhibit promising prospects for various applications, such as oil-water separation, tissue engineering, and drug release. This paper provides an overview of recent research advancements in the fabrication of PLA membranes using electrospinning, the breath-figure method, and the phase separation method. Firstly, the principles of each method are elucidated from the perspective of pore formation. The correlation between the relevant parameters and pore structure is discussed and summarized, subsequently followed by a comparative analysis of the advantages and limitations of each method. Subsequently, this article presents the diverse applications of porous PLA membranes in tissue engineering, oil-water separation, and other fields. The current challenges faced by these membranes, however, encompass inadequate mechanical strength, limited production efficiency, and the complexity of pore structure control. Suggestions for enhancement, as well as future prospects, are provided accordingly.
Collapse
Affiliation(s)
- Jinxing Zhao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xianggui Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Xuelian Pu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Zetong Shen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenqiang Xu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Jian Yang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
10
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Gao Y, Xu L, Feng ZH, Qian Y, Tian ZF, Ren XM. Polymorph transformation in a mixed-stacking nickel-dithiolene complex with the derivative of 4,4'-bipyridinium. Dalton Trans 2024; 53:8202-8213. [PMID: 38687296 DOI: 10.1039/d4dt00324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this study, two polymorphs of the [1,1'-dibutyl-4,4'-bipyridinium][Ni(mnt)2] salt (1) were synthesized. The dark-green polymorph (designated as 1-g) was prepared under ambient conditions by the rapid precipitation method in aqueous solutions. Subsequently, the red polymorph (labeled as 1-r) was obtained by subjecting 1-g to ultrasonication in MeOH at room temperature. Microanalysis, infrared spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) techniques were used to characterize the two polymorphs. Both 1-g and 1-r exhibit structural phase transitions: a reversible phase transition at ∼403 K (∼268 K) upon heating and 384 K (∼252 K) upon cooling for 1-g (1-r) within the temperature range below 473 K. Interestingly, on heating 1-r to 523 K, an irreversible phase transition occurred at about 494 K, resulting in the conversion of 1-r into 1-g. Relative to 1-r, 1-g represents a thermodynamically metastable phase wherein numerous high-energy conformations in butyl chains of cations are confined within the lattice owing to quick precipitation or rapid annealing from higher temperatures. Through variable-temperature single crystal and powder X-ray diffractions, UV-visible spectroscopy, dielectric spectroscopy, and DSC analyses, this study delves into the mechanism underlying phase transitions for each polymorph and the manual transformation between 1-g and 1-r as well.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Lei Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zi-Heng Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yin Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zheng-Fang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
12
|
Zaszczyńska A, Gradys A, Ziemiecka A, Szewczyk PK, Tymkiewicz R, Lewandowska-Szumieł M, Stachewicz U, Sajkiewicz PŁ. Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications. Int J Mol Sci 2024; 25:4980. [PMID: 38732199 PMCID: PMC11084807 DOI: 10.3390/ijms25094980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.
Collapse
Affiliation(s)
- Angelika Zaszczyńska
- Laboratory of Polymers Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (A.Z.); (A.G.); (R.T.)
| | - Arkadiusz Gradys
- Laboratory of Polymers Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (A.Z.); (A.G.); (R.T.)
| | - Anna Ziemiecka
- Laboratory of Cell Research and Application, 02-106 Warsaw, Poland; (A.Z.); (M.L.-S.)
| | - Piotr K. Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30-059 Krakow, Poland; (P.K.S.); (U.S.)
| | - Ryszard Tymkiewicz
- Laboratory of Polymers Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (A.Z.); (A.G.); (R.T.)
| | - Małgorzata Lewandowska-Szumieł
- Laboratory of Cell Research and Application, 02-106 Warsaw, Poland; (A.Z.); (M.L.-S.)
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-106 Warsaw, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30-059 Krakow, Poland; (P.K.S.); (U.S.)
| | - Paweł Ł. Sajkiewicz
- Laboratory of Polymers Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (A.Z.); (A.G.); (R.T.)
| |
Collapse
|
13
|
Pan X, Pan J, Li Z, Gai W, Dong G, Huang M, Huang L. Preparation of N-MG-modified PVDF-CTFE substrate composite nanofiltration membrane and its selective separation of salt and dye. RSC Adv 2024; 14:11992-12008. [PMID: 38638887 PMCID: PMC11024597 DOI: 10.1039/d4ra00359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Jian Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Zhuoqun Li
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Wenqiang Gai
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Guangshun Dong
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Min Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Lilan Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| |
Collapse
|
14
|
Suresh S, Nabiyeva T, Biniek L, Gowd EB. Poly(vinylidene fluoride) Aerogels with α, β, and γ Crystalline Forms: Correlating Physicochemical Properties with Polymorphic Structures. ACS POLYMERS AU 2024; 4:128-139. [PMID: 38618004 PMCID: PMC11010255 DOI: 10.1021/acspolymersau.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 04/16/2024]
Abstract
Strategic customization of crystalline forms of poly(vinylidene fluoride) (PVDF) aerogels is of great importance for a variety of applications, from energy harvesters to thermal and acoustic insulation. Here, we report sustainable strategies to prepare crystalline pure α, β, and γ forms of PVDF aerogels from their respective gels using a solvent exchange strategy with green solvents, followed by a freeze-drying technique. The crucial aspect of this process was the meticulous choice of appropriate solvents to enable the formation of thermoreversible gels of PVDF by crystallization-induced gelation. Depending on the polymer-solvent interactions, the chain conformation of PVDF can be modulated to obtain gels and aerogels with specific crystalline structures. The crystalline pure α-form and piezoelectric β-form aerogels were readily obtained by using cyclohexanone and γ-butyrolactone as gelation solvents. On the other hand, the γ-form aerogel was obtained using a binary solvent system consisting of dimethylacetamide and water. These aerogels with distinct crystalline structures exhibit different morphologies, mechanical properties, hydrophobicities, acoustic properties, and electrical properties. Measurement of thermal conductivity for these aerogels showed exceptionally low thermal conductivity values of ∼0.040 ± 0.003 W m-1 K-1 irrespective of their crystal structures. Our results showcase the fabrication approaches that enable PVDF aerogels with varied physicochemical properties for multifunctional applications.
Collapse
Affiliation(s)
- Sruthi Suresh
- Materials
Science and Technology Division CSIR-National Institute for Interdisciplinary
Science and Technology, Trivandrum 695 019 Kerala, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Turkan Nabiyeva
- Université
de Strasbourg, CNRS, Institute Charles Sadron UPR22, F-67000 Strasbourg, France
| | - Laure Biniek
- Université
de Strasbourg, CNRS, Institute Charles Sadron UPR22, F-67000 Strasbourg, France
| | - E. Bhoje Gowd
- Materials
Science and Technology Division CSIR-National Institute for Interdisciplinary
Science and Technology, Trivandrum 695 019 Kerala, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
15
|
Zhang J, Hou D, Wang J, Liu H, Huang C, Cheng S, Zhou L, Shen Z, Li B, Zhou J, Zhang P, Chen W. Bioinspired Dielectric Nanocomposites with High Charge-Discharge Efficiency Enabled by Superspreading-Induced Alignment of Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14162-14170. [PMID: 38469738 DOI: 10.1021/acsami.3c19546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
High-performance dielectric nanocomposites are promising candidates for thin-film dielectric capacitors for high-power pulse devices. However, the existing nanocomposites suffer from low charge-discharge efficiency (η), which results in severe generation and accumulation of Joule heat and subsequently the failure of the devices. In this work, we report nacre-inspired dielectric nanocomposites with outstanding η, which are enabled by superspreading shear flow-induced highly aligned two-dimensional (2D) nanofillers. Taking boron nitride nanosheets (BNNS) as an example, the highly aligned BNNS in the poly(vinylidene fluoride) (PVDF)-based nanocomposites contributes to a highly efficient Coulomb blockade effect for the injected charge carriers. Therefore, the bioinspired nanocomposites with highly aligned BNNS show significantly reduced dielectric loss (tan δ) (63.3%) and improved η (144.8%), compared to the ones with partially aligned nanosheets fabricated by solution casting. Furthermore, the optimized loading content of BNNS is as low as 3.6 wt %. The resulting nanocomposites exhibit reduced tan δ (0.018) and enhanced Eb (687 kV/mm), η (71%), and Ue (16.74 J/cm3). Our work demonstrates that the realization of high alignment of 2D nanofillers enabled by the superspreading shear flow is a promising way for the development of high-performance dielectric nanocomposites.
Collapse
Affiliation(s)
- Jisong Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Dajun Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Hexing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Sha Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ling Zhou
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - Zhonghui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Baowen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| |
Collapse
|
16
|
Dai J, Shao J, Zhang Y, Hang R, Yao X, Bai L, Hang R. Piezoelectric dressings for advanced wound healing. J Mater Chem B 2024; 12:1973-1990. [PMID: 38305583 DOI: 10.1039/d3tb02492j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The treatment of chronic refractory wounds poses significant challenges and threats to both human society and the economy. Existing research studies demonstrate that electrical stimulation fosters cell proliferation and migration and promotes the production of cytokines that expedites the wound healing process. Presently, clinical settings utilize electrical stimulation devices for wound treatment, but these devices often present issues such as limited portability and the necessity for frequent recharging. A cutting-edge wound dressing employing the piezoelectric effect could transform mechanical energy into electrical energy, thereby providing continuous electrical stimulation and accelerating wound healing, effectively addressing these concerns. This review primarily reviews the selection of piezoelectric materials and their application in wound dressing design, offering a succinct overview of these materials and their underlying mechanisms. This study also provides a perspective on the current limitations of piezoelectric wound dressings and the future development of multifunctional dressings harnessing the piezoelectric effect.
Collapse
Affiliation(s)
- Jinjun Dai
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jin Shao
- Taikang Bybo Dental, Zhuhai, 519100, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
17
|
Xie S, Yan H, Qi R. A Review of Polymer-Based Environment-Induced Nanogenerators: Power Generation Performance and Polymer Material Manipulations. Polymers (Basel) 2024; 16:555. [PMID: 38399933 PMCID: PMC10892734 DOI: 10.3390/polym16040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Natural environment hosts a considerable amount of accessible energy, comprising mechanical, thermal, and chemical potentials. Environment-induced nanogenerators are nanomaterial-based electronic chips that capture environmental energy and convert it into electricity in an environmentally friendly way. Polymers, characterized by their superior flexibility, lightweight, and ease of processing, are considered viable materials. In this paper, a thorough review and comparison of various polymer-based nanogenerators were provided, focusing on their power generation principles, key materials, power density and stability, and performance modulation methods. The latest developed nanogenerators mainly include triboelectric nanogenerators (TriboENG), piezoelectric nanogenerators (PENG), thermoelectric nanogenerators (ThermoENG), osmotic power nanogenerator (OPNG), and moist-electric generators (MENG). Potential practical applications of polymer-based nanogenerator were also summarized. The review found that polymer nanogenerators can harness a variety of energy sources, with the basic power generation mechanism centered on displacement/conduction currents induced by dipole/ion polarization, due to the non-uniform distribution of physical fields within the polymers. The performance enhancement should mainly start from strengthening the ion mobility and positive/negative ion separation in polymer materials. The development of ionic hydrogel and hydrogel matrix composites is promising for future nanogenerators and can also enable multi-energy collaborative power generation. In addition, enhancing the uneven distribution of temperature, concentration, and pressure induced by surrounding environment within polymer materials can also effectively improve output performance. Finally, the challenges faced by polymer-based nanogenerators and directions for future development were prospected.
Collapse
Affiliation(s)
- Shuanghong Xie
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China (H.Y.)
| | - Huping Yan
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China (H.Y.)
| | - Ronghui Qi
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China (H.Y.)
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Huang YH, Wang MJ, Chung TS. Development of multifunctional membranes via plasma-assisted nonsolvent induced phase separation. Nat Commun 2024; 15:1092. [PMID: 38316772 PMCID: PMC10844271 DOI: 10.1038/s41467-024-45414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Demands on superhydrophobic, self-cleaning and piezoelectric membranes have gained significantly due to their potential to overcome global shortages in clean water and energy. In this study, we have discovered a novel plasma-assisted nonsolvent induced phase separation (PANIPS) method to prepare superhydrophobic, self-cleaning and piezoelectric poly(vinylidene difluoride) (PVDF) membranes without additional chemical modifications or post-treatments. The PANIPS membranes exhibit water contact angles ranging from 151.2° to 166.4° and sliding angles between 6.7° and 29.7°. They also show a high piezoelectric coefficient (d33) of 10.5 pC N-1 and can generate a high output voltage of 10 Vpp. The PANIPS membranes can effectively recover pure water from various waste solutions containing Rose Bengal dye, humic acid, or sodium dodecyl sulfate via direct contact membrane distillation (DCMD). This study may provide valuable insights to fabricate PANIPS membranes and open up new avenues to molecularly design advanced superhydrophobic, self-cleaning, and piezoelectric membranes in the fields of clean water production, motion sensor, and piezoelectric nanogenerator.
Collapse
Affiliation(s)
- Yueh-Han Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| |
Collapse
|
19
|
Ma X, Wang X, Sun C, Wang B, Yu C, Shan G, Bao Y, Zheng Y, Pan P. Crystal Polymorphism of Isodimorphic Polyesters Tuned by cis- and trans-C═C Comonomer Units. ACS Macro Lett 2023; 12:1629-1635. [PMID: 37967041 DOI: 10.1021/acsmacrolett.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Polymorphism is ubiquitous in polymer crystallization due to the diversified chain conformations and interchain packings in polymer crystals. Controlling chain conformation is effective in tailoring the crystal polymorphism of polymers, which, however, is challenging at the molecular level. Herein, we have synthesized poly(butylene adipate) (PBA)-based copolymers containing C═C units and demonstrated the important role of trans/cis-C═C units in tuning the chain conformation and crystal polymorphism of polymers. Both PBA-based trans- and cis-copolymers show isodimorphic crystallization behavior with the partial inclusion of C═C units in PBA crystals. The presence of trans-C═C units favors the formation of metastable β-crystals of PBA and retards the β-to-α crystal transition upon heating due to the highly conformational matching between trans-C═C units and β-crystals. Conversely, the incorporation of cis-C═C units destroys the regularity of the trans conformation and favors the growth of α-crystals of PBA. This work has elucidated the crucial role of local chain conformation in the crystal polymorphism of polymers.
Collapse
Affiliation(s)
- Xuekuan Ma
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuanbo Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chenxuan Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bao Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
20
|
Zhang Y, Zhang W, Xia J, Xiong C, Li G, Li X, Sun P, Shi J, Tong B, Cai Z, Dong Y. Microwave-Responsive Flexible Room-Temperature Phosphorescence Materials Based on Poly(vinylidene fluoride) Polymer. Angew Chem Int Ed Engl 2023; 62:e202314273. [PMID: 37885123 DOI: 10.1002/anie.202314273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg =-27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Wei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Junming Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Chenchen Xiong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Gengchen Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Xiaodong Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Bin Tong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| |
Collapse
|
21
|
Luo Y, Xiao Y, Liu J, Wu Y, Zhao Z. Design and application of a flexible nano cardiac sound sensor based on P(VDF-TrFE)/KNN/GR composite piezoelectric film for heart disease diagnosis. NANOTECHNOLOGY 2023; 35:075502. [PMID: 37857282 DOI: 10.1088/1361-6528/ad0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
The paper proposes a flexible micro-nano composite piezoelectric thin film. This flexible piezoelectric film is fabricated through electrospinning process, utilizing a combination of 12 wt% poly(vinylidene fluoride-co-trifluoroethylene)(P(VDF-TrFE)), 8 wt% potassium sodium niobate (KNN) nanoparticles, and 0.5 wt% graphene (GR). Under cyclic loading, the composite film demonstrates a remarkable increase in open-circuit voltage and short-circuit current, achieving values of 36.1 V and 163.7 uA, respectively. These values are 5.8 times and 3.6 times higher than those observed in the pure P(VDF-TrFE) film. The integration of this piezoelectric film into a wearable flexible heartbeat sensor, coupled with the RepMLP classification model, facilitates heartbeat acquisition and real-time automated diagnosis. After training and validation on a dataset containing 2000 heartbeat samples, the system achieved an accuracy of approximately 99% in two classification of heart sound signals (normal and abnormal). This research substantially enhances the output performance of the piezoelectric film, offering a novel and valuable solution for the application of flexible piezoelectric films in physiological signal detection.
Collapse
Affiliation(s)
- Yi Luo
- School of Electronics and Information Engineering, Hangzhou DIANZI University, Hangzhou 310018, People's Republic of China
| | - Yu Xiao
- School of Communication Engineering, Hangzhou DIANZI University, Hangzhou 310018, People's Republic of China
| | - Jian Liu
- School of Communication Engineering, Hangzhou DIANZI University, Hangzhou 310018, People's Republic of China
| | - Ying Wu
- Academic Affairs Office, Hangzhou DIANZI University, Hangzhou 310018, People's Republic of China
| | - Zhidong Zhao
- School of Cyberspace Security, Hangzhou DIANZI University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
22
|
Basko A, Lebedeva T, Yurov M, Ilyasova A, Elyashevich G, Lavrentyev V, Kalmykov D, Volkov A, Pochivalov K. Mechanism of PVDF Membrane Formation by NIPS Revisited: Effect of Precipitation Bath Nature and Polymer-Solvent Affinity. Polymers (Basel) 2023; 15:4307. [PMID: 37959987 PMCID: PMC10650574 DOI: 10.3390/polym15214307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A new interpretation of the mechanism of the polyvinylidene fluoride (PVDF) membrane formation using the nonsolvent-induced phase separation (NIPS) method based on an analysis of the complete experimental phase diagram for the three-component mixture PVDF-dimethyl acetamide (DMAc)-water is proposed. The effects of the precipitation bath's harshness and thermodynamic affinity of the polymer's solvent on the morphology, crystalline structure, transport and physical-mechanical properties of the membranes are investigated. These characteristics were studied via scanning electron microscopy, wide-angle X-ray scattering, liquid-liquid porosimetry and standard methods of physico-mechanical analysis. It is established that an increase in DMAc concentration in the precipitation bath results in the growth of mean pore size from ~60 to ~150 nm and an increase in permeance from ~2.8 to ~8 L m-2 h-1 bar-1. It was observed that pore size transformations are accompanied by changes in the tensile strength of membranes from ~9 to ~11 and to 6 MPa, which were explained by the degeneration of finger-like pores and appearance of spherulitic structures in the samples. The addition of water to the dope solution decreased both the transport (mean pore size changed from ~55 to ~25 nm and permeance reduced from ~2.8 to ~0.5 L m-2 h-1 bar-1) and mechanical properties of the membranes (tensile strength decreased from ~9 to ~6 MPa). It is possible to conclude that the best membrane quality may be reached using pure DMAc as a solvent and a precipitation bath containing 10-30% wt. of DMAc, in addition to water.
Collapse
Affiliation(s)
- Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Anna Ilyasova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Galina Elyashevich
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Viktor Lavrentyev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Denis Kalmykov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| |
Collapse
|
23
|
Li F, Guo S, Shi J, An Q. Flexible Composites for Piezocatalysis. Chempluschem 2023; 88:e202300324. [PMID: 37669420 DOI: 10.1002/cplu.202300324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
Despite piezoelectric materials have a long history of application, piezoelectric catalysis has continued to be a hot topic in recent years. Flexible piezoelectric materials have just emerged in recent years due to their versatility and designability. In this paper, we review the recent advances in flexible piezoelectric materials for catalysis, discuss the fundamentals of the catalytic properties of composite materials, and detail the typical structures of these materials. We pay special attention to the types of filler in flexible piezoelectric composites, their role and the interaction between the particles and the flexible substrate. Notable examples of flexible piezoelectric materials for organic pollutants degradation, enhanced piezo-photocatalysis and antibacterial applications are also presented. Finally, we present key issues and future prospects for the development of flexible piezoelectric catalysts.
Collapse
Affiliation(s)
- Fujing Li
- College of Materials Science and Engineering, China University of Geosciences, Beijing, No.29 Xueyuan Road, Haidian District, Beijing, China
| | - Sufang Guo
- College of Materials Science and Engineering, China University of Geosciences, Beijing, No.29 Xueyuan Road, Haidian District, Beijing, China
| | - Jing Shi
- College of Materials Science and Engineering, China University of Geosciences, Beijing, No.29 Xueyuan Road, Haidian District, Beijing, China
| | - Qi An
- College of Materials Science and Engineering, China University of Geosciences, Beijing, No.29 Xueyuan Road, Haidian District, Beijing, China
| |
Collapse
|
24
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
25
|
Yang C, Zhang Z, Wang P, Xu P, Shen T, Wang M, Zheng Q, Zhang G. Ultrathin g-C 3N 4 composite Bi 2WO 6 embedded in PVDF UF membrane with enhanced permeability, anti-fouling performance and durability for efficient removal of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131154. [PMID: 36889068 DOI: 10.1016/j.jhazmat.2023.131154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A novel Bi2WO6-g-C3N4/polyvinylidene fluoride (PVDF) composite ultrafiltration (UF) membrane (BWO-CN/PVDF) was prepared by microwave hydrothermal and immersion precipitation phase transformation method. The BWO-CN/PVDF-0.10 exhibited an outstanding photocatalytic removal rate of atrazine (ATZ) (97.65 %) under the simulated sunlight and enhanced permeate flux (1356.09 L·m-2·h-1). The multiple optical and electrochemical detection confirmed that combining ultrathin g-C3N4 and Bi2WO6 can increase carrier separation rate and prolong its lifetime. The quenching test revealed that h+ and 1O2 were the prominent reactive species. Additionally, after a 10-cycle photocatalytic process, the BWO-CN/PVDF membrane presented remarkable reusability and durability. And it showed excellent anti-fouling performance by filtering BSA, HA, SA, and Songhua River under simulated solar irradiation. The molecular dynamic (MD) simulation showed that the combination of g-C3N4 and Bi2WO6 can enhance the interaction between BWO-CN and PVDF. This work opens up a new idea for designing and constructing a highly efficient photocatalytic membrane for water treatment.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhihao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingzhu Zheng
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangshan Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
26
|
Liu S, Véron E, Lotfi S, Fischer K, Schulze A, Schäfer AI. Poly(vinylidene fluoride) membrane with immobilized TiO 2 for degradation of steroid hormone micropollutants in a photocatalytic membrane reactor. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130832. [PMID: 36696777 DOI: 10.1016/j.jhazmat.2023.130832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The lack of effective technologies to remove steroid hormones (SHs) from aquatic systems is a critical issue for both environment and public health. The performance of a flow-through photocatalytic membrane reactor (PMR) with TiO2 immobilized on a photostable poly(vinylidene fluoride) membrane (PVDF-TiO2) was evaluated in the context of SHs degradation at concentrations from 0.05 to 1000 µg/L under UV exposure (365 nm). A comprehensive investigation into the membrane preparation approach, including varying the surface Ti content and distribution, and membrane pore size, was conducted to gain insights on the rate-limiting steps for the SHs degradation. Increasing surface Ti content from 4 % to 6.5 % enhanced the 17β-estradiol (E2) degradation from 46 ± 12-81 ± 6 %. Apparent degradation kinetics were independent of both TiO2 homogeneity and membrane pore size (0.1-0.45 µm). With optimized conditions, E2 removal was higher than 96 % at environmentally relevant feed concentration (100 ng/L), a flux of 60 L/m2h, 25 mW/cm2, and 6.5 % Ti. These results indicated that the E2 degradation on the PVDF-TiO2 membrane was limited by the catalyst content and light penetration depth. Further exploration of novel TiO2 immobilization approach that can offer a larger catalyst content and light penetration is required to improve the micropollutant removal efficiency in PMR.
Collapse
Affiliation(s)
- Siqi Liu
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eléonore Véron
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Shabnam Lotfi
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kristina Fischer
- Leibniz Institute of Surface Engineering (IOM), Permoserstr.15, D-04318 Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstr.15, D-04318 Leipzig, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
27
|
Chan KY, Li CL, Wang DM, Lai JY. Formation of Porous Structures and Crystalline Phases in Poly(vinylidene fluoride) Membranes Prepared with Nonsolvent-Induced Phase Separation-Roles of Solvent Polarity. Polymers (Basel) 2023; 15:polym15051314. [PMID: 36904555 PMCID: PMC10007550 DOI: 10.3390/polym15051314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
PVDF membranes were prepared with nonsolvent-induced phase separation, using solvents with various dipole moments, including HMPA, NMP, DMAc and TEP. Both the fraction of the polar crystalline phase and the water permeability of the prepared membrane increased monotonously with an increasing solvent dipole moment. FTIR/ATR analyses were conducted at the surfaces of the cast films during membrane formation to provide information on if the solvents were present as the PVDF crystallized. The results reveal that, with HMPA, NMP or DMAc being used to dissolve PVDF, a solvent with a higher dipole moment resulted in a lower solvent removal rate from the cast film, because the viscosity of the casting solution was higher. The lower solvent removal rate allowed a higher solvent concentration on the surface of the cast film, leading to a more porous surface and longer solvent-governed crystallization. Because of its low polarity, TEP induced non-polar crystals and had a low affinity for water, accounting for the low water permeability and the low fraction of polar crystals with TEP as the solvent. The results provide insight into how the membrane structure on a molecular scale (related to the crystalline phase) and nanoscale (related to water permeability) was related to and influenced by solvent polarity and its removal rate during membrane formation.
Collapse
Affiliation(s)
- Kuan-Ying Chan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ling Li
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310401, Taiwan
| | - Da-Ming Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3006; Fax: +886-2-2362-3040
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
28
|
Lei D, Hu N, Wu L, Alamusi, Ning H, Wang Y, Jin Z, Liu Y. Improvement of the piezoelectricity of PVDF-HFP by CoFe2O4 nanoparticles. NANO MATERIALS SCIENCE 2023. [DOI: 10.1016/j.nanoms.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
29
|
Miyashita T, Saito H. Crystal polymorphism of poly(vinylidene fluoride) blended with alkylammonium salts exhibiting different ion-dipole interaction strengths. Polym J 2023. [DOI: 10.1038/s41428-023-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
30
|
Liang J, Tan Y, Yu Y, Hu Y, Liao C. Preparation of dopamine/Ag‐modified graphene oxide/polysulfone/poly(vinylidene fluoride) ultrafiltration membrane with hydrophilic and antibacterial dual function. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiahao Liang
- College of Resources and Environment Hunan Agricultural University Changsha People's Republic of China
| | - Yijin Tan
- College of Resources and Environment Hunan Agricultural University Changsha People's Republic of China
| | - Yang Yu
- College of Resources and Environment Hunan Agricultural University Changsha People's Republic of China
| | - Yongli Hu
- College of Resources and Environment Hunan Agricultural University Changsha People's Republic of China
| | - Chanjuan Liao
- College of Resources and Environment Hunan Agricultural University Changsha People's Republic of China
| |
Collapse
|
31
|
Wang X, Chen D, He T, Zhou Y, Tian L, Wang Z, Cui Z. Preparation of Lateral Flow PVDF Membrane via Combined Vapor- and Non-Solvent-Induced Phase Separation (V-NIPS). MEMBRANES 2023; 13:91. [PMID: 36676897 PMCID: PMC9861150 DOI: 10.3390/membranes13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A large pore size Poly(vinylidene fluoride) (PVDF) membrane was prepared by the V-NIPS method using PVDF/N, N-dimethylacetamide (DMAc)/Polyvinyl pyrrolidone (PVP)/Polyethylene glycol (PEG) system. Firstly, the effect of different additive ratios on the membrane morphology and pore size was studied, and it was found that when the PVP:PEG ratio was 8:2, PVDF membranes with a relatively large pore size tend to be formed; the pore size is about 7.5 µm. Then, the effects of different exposure time on the membrane morphology and pore size were investigated, and it was found that as the vapor temperature increased, the pores on the surface of the membrane first became slightly smaller and then increased. Finally, the effects of different vapor temperatures on the membrane properties were discussed. The results showed that the as-prepared membrane exhibited suitable capillary flow rate and similar performance compared with a commercially available membrane in colloidal gold tests. The likely cause is that the amount of negative charge is less and the capillary migration rate is too fast. This paper provides a reference for the preparation of PVDF colloidal gold detection membrane.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Dejian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Yue Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Li Tian
- Nanjing Jiuying Membrane Technologies Co., Ltd., Nanjing 211899, China
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
32
|
Ren W, Pan J, Gai W, Pan X, Chen H, Li J, Huang L. Fabrication and characterization of PVDF-CTFE/SiO2 electrospun nanofibrous membranes with micro and nano-rough structures for efficient oil-water separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Hou H, Huang B, Yu X, Lan J, Chen F. Sulfonate betaine modified
PVDF
/
SiO
2
composite electrolyte for solid state lithium ion battery. J Appl Polym Sci 2022. [DOI: 10.1002/app.53573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongying Hou
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Baoxiang Huang
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Xiaohua Yu
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Jian Lan
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Fangshu Chen
- Law School Kunming University of Science and Technology Kunming China
| |
Collapse
|
34
|
Broadband dielectric dispersion (20 Hz–1 GHz) and relaxation, crystalline structure, and thermal characterization of PVDF/PMMA blend films. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers (Basel) 2022; 14:polym14245439. [PMID: 36559805 PMCID: PMC9782556 DOI: 10.3390/polym14245439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. This paper summarizes different preparation methods of these fluoropolymer membrane, such as non-solvent-induced phase separation (NIPS), thermally-induced phase separation (TIPS), vapor-induced phase separation (VIPS), etc. Hydrophobic modification methods, including surface coating, surface grafting and blending, etc., are also introduced. Moreover, the research advances on the application of less toxic solvents for preparing these membranes are herein reviewed. This review aims to provide guidance to researchers for their future membrane development in membrane distillation and membrane crystallization, using fluoropolymer materials.
Collapse
|
36
|
Zhang Y, Zhang H, Chen L, Wang J, Wang J, Li J, Zhao Y, Zhang M, Zhang H. Piezoelectric Polyvinylidene Fluoride Membranes with Self-Powered and Electrified Antifouling Performance in Pressure-Driven Ultrafiltration Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16271-16280. [PMID: 36239692 DOI: 10.1021/acs.est.2c05359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electroactive membranes have the potential to address membrane fouling via electrokinetic phenomena. However, additional energy consumption and complex material design represent chief barriers to achieving sustainable and economically viable antifouling performance. Herein, we present a novel strategy for fabricating a piezoelectric antifouling polyvinylidene fluoride (PVDF) membrane (Pi-UFM) by integrating the ion-dipole interactions (NaCl coagulation bath) and mild poling (in situ electric field) into a one-step phase separation process. This Pi-UFM with an intact porous structure could be self-powered in a typical ultrafiltration (UF) process via the responsivity to pressure stimuli, where the dominant β-PVDF phase and the out-of-plane aligned dipoles were demonstrated to be critical to obtain piezoelectricity. By challenging with different feed solutions, the Pi-UFM achieved enhanced antifouling capacity for organic foulants even with high ionic strength, suggesting that electrostatic repulsion and hydration repulsion were behind the antifouling mechanism. Furthermore, the TMP-dependent output performance of the Pi-UFM in both air and water confirmed its ability for converting ambient mechanical energy to in situ surface potential (ζ), demonstrating that this antifouling performance was a result of the membrane electromechanical transducer actions. Therefore, this study provides useful insight and strategy to enable piezoelectric materials for membrane filtration applications with energy efficiency and extend functionalities.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Haoquan Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Jie Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jun Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jian Li
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Hongwei Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
37
|
Saldaña-Baqué P, Strutton JW, Shankar R, Morgan SE, McCollum JM. Exploiting Partial Solubility in Partially Fluorinated Thermoplastic Blends to Improve Adhesion during Fused Deposition Modeling. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8062. [PMID: 36431544 PMCID: PMC9695794 DOI: 10.3390/ma15228062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This work studies the effect of interlayer adhesion on mechanical performance of fluorinated thermoplastics produced by fused deposition modeling (FDM). Here, we study the anisotropic mechanical response of 3D-printed binary blends of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA) with the isotropic mechanical response of these blends fabricated via injection molding. Various PVDF/PMMA filament compositions were produced by twin-screw extrusion and, subsequently, injection-molded or 3D printed into dog-bone shapes. Specimen mechanical and thermal properties were evaluated by mode I tensile testing and differential scanning calorimetry, respectively. Results show that higher PMMA concentration not only improved the tensile strength and decreased ductility but reduced PVDF crystallization. As expected, injection-molded samples revealed better mechanical properties compared to 3D printed specimens. Interestingly, 3D printed blends with lower PMMA content demonstrated better diffusion (adhesion) across interfaces than those with a higher amount of PMMA. The present study provides new findings that may be used to tune mechanical response in 3D printed fluorinated thermoplastics, particularly for energy applications.
Collapse
Affiliation(s)
- Pau Saldaña-Baqué
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Jared W. Strutton
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Rahul Shankar
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sarah E. Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jena M. McCollum
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
38
|
Solvent Evaporation Rate as a Tool for Tuning the Performance of a Solid Polymer Electrolyte Gas Sensor. Polymers (Basel) 2022; 14:polym14214758. [DOI: 10.3390/polym14214758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Solid polymer electrolytes show their potential to partially replace conventional electrolytes in electrochemical devices. The solvent evaporation rate represents one of many options for modifying the electrode–electrolyte interface by affecting the structural and electrical properties of polymer electrolytes used in batteries. This paper evaluates the effect of solvent evaporation during the preparation of solid polymer electrolytes on the overall performance of an amperometric gas sensor. A mixture of the polymer host, solvent and an ionic liquid was thermally treated under different evaporation rates to prepare four polymer electrolytes. A carbon nanotube-based working electrode deposited by spray-coating the polymer electrolyte layer allowed the preparation of the electrode–electrolyte interface with different morphologies, which were then investigated using scanning electron microscopy and Raman spectroscopy. All prepared sensors were exposed to nitrogen dioxide concentration of 0–10 ppm, and the current responses and their fluctuations were analyzed. Electrochemical impedance spectroscopy was used to describe the sensor with an equivalent electric circuit. Experimental results showed that a higher solvent evaporation rate leads to lower sensor sensitivity, affects associated parameters (such as the detection/quantification limit) and increases the limit of the maximum current flowing through the sensor, while the other properties (hysteresis, repeatability, response time, recovery time) change insignificantly.
Collapse
|
39
|
(PVDF)2(PEO)2 miktoarm star copolymers: Synthesis and isothermal crystallization leading to exclusive β-phase formation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Poly (vinylidene fluoride) solid polymer electrolyte structure revealed by secondary ion mass spectrometry. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Two-Stage Evolution of Gamma-Phase Spherulites of Poly (Vinylidene Fluoride) Induced by Alkylammonium Salt. Polymers (Basel) 2022; 14:polym14183901. [PMID: 36146045 PMCID: PMC9504496 DOI: 10.3390/polym14183901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the evolution of the γ-phase spherulites of poly(vinylidene fluoride) (PVDF) added to 1 wt% of tetrabutylammonium hydrogen sulfate during the isothermal crystallization at 165 °C through polarized optical microscopy and light scattering measurements. Optically isotropic domains grew, and then optical anisotropy started to increase in the domain to yield spherulite. Double peaks were seen in the time variation of the Vv light scattering intensity caused by the density fluctuation and optical anisotropy, and the Hv light scattering intensity caused by the optical anisotropy started to increase during the second increase in the Vv light scattering intensity. These results suggest the two-stage evolution of the γ-phase spherulites, i.e., the disordered domain grows in the first stage and ordering in the spherulite increases due to the increase in the fraction of the lamellar stacks in the spherulite without a change in the spherulite size in the second stage. Owing to the characteristic crystallization behavior, the birefringence in the γ-phase spherulites of the PVDF/TBAHS was much smaller than that in the α-phase spherulites of the neat PVDF.
Collapse
|
42
|
Effect of the TrFE Content on the Crystallization and SSA Thermal Fractionation of P(VDF-co-TrFE) Copolymers. Int J Mol Sci 2022; 23:ijms231810365. [PMID: 36142274 PMCID: PMC9499170 DOI: 10.3390/ijms231810365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
In this contribution, we study the effect of trifluoro ethylene (TrFE) comonomer content (samples with 80/20, 75/25, and 70/30 VDF/TrFE molar ratios were used) on the crystallization in P(VDF-co-TrFE) in comparison with a PVDF (Poly(vinylidene fluoride)) homopolymer. Employing Polarized Light Optical Microscopy (PLOM), the growth rates of spherulites or axialites were determined. Differential Scanning Calorimetry (DSC) was used to determine overall crystallization rates, self-nucleation, and Successive Self-nucleation and Annealing (SSA) thermal fractionation. The ferroelectric character of the samples was explored by polarization measurements. The results indicate that TrFE inclusion can limit the overall crystallization of the copolymer samples, especially for the ones with 20 and 25% TrFE. Self-nucleation measurements in PVDF indicate that the homopolymer can be self-nucleated, exhibiting the classic three Domains. However, the increased nucleation capacity in the copolymers provokes the absence of the self-nucleation Domain II. The PVDF displays a monomodal distribution of thermal fractions after SSA, but the P(VDF-co-TrFE) copolymers do not experience thermal fractionation, apparently due to TrFE incorporation in the PVDF crystals. Finally, the maximum and remnant polarization increases with increasing TrFE content up to a maximum of 25% TrFE content, after which it starts to decrease due to the lower dipole moment of the TrFE defect inclusion within the PVDF crystals.
Collapse
|
43
|
Ayyappan J, Menon NH, Sabu A, Ramanujam BTS. Polyvinylidene fluoride‐natural graphite flexible composite films: Formation of graphite nanosheets, electroactive phase, analysis of electrical and thermal properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- J. Ayyappan
- Department of Sciences, Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu India
| | - Niranjan Haridas Menon
- Department of Sciences, Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu India
| | - Aleena Sabu
- Department of Sciences, Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu India
| | - B. T. S. Ramanujam
- Department of Sciences, Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu India
| |
Collapse
|
44
|
Zhu Y, Shen Z, Li Y, Chai B, Chen J, Jiang P, Huang X. High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites. NANO-MICRO LETTERS 2022; 14:151. [PMID: 35876955 PMCID: PMC9314523 DOI: 10.1007/s40820-022-00902-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 05/21/2023]
Abstract
Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications. Inorganic nanofillers with high insulation property are frequently introduced into fluoropolymer to improve its breakdown strength and energy storage capability. Normally, inorganic nanofillers are thought to introducing traps into polymer matrix to suppress leakage current. However, how these nanofillers effect the leakage current is still unclear. Meanwhile, high dopant (> 5 vol%) is prerequisite for distinctly improved energy storage performance, which severely deteriorates the processing and mechanical property of polymer nanocomposites, hence brings high technical complication and cost. Herein, boron nitride nanosheet (BNNS) layers are utilized for substantially improving the electrical energy storage capability of polyvinylidene fluoride (PVDF) nanocomposite. Results reveal that the high conduction band minimum of BNNS produces energy barrier at the interface of adjacent layers, preventing the electron in PVDF from passing through inorganic layers, leading to suppressed leakage current and superior breakdown strength. Accompanied by improved Young's modulus (from 1.2 GPa of PVDF to 1.6 GPa of nanocomposite), significantly boosted discharged energy density (14.3 J cm-3) and charge-discharge efficiency (75%) are realized in multilayered nanocomposites, which are 340 and 300% of PVDF (4.2 J cm-3, 25%). More importantly, thus remarkably boosted energy storage performance is accomplished by marginal BNNS. This work offers a new paradigm for developing dielectric nanocomposites with advanced energy storage performance.
Collapse
Affiliation(s)
- Yingke Zhu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory of Metal Matrix Composites, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhonghui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Yong Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Bin Chai
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory of Metal Matrix Composites, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jie Chen
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory of Metal Matrix Composites, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Pingkai Jiang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory of Metal Matrix Composites, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xingyi Huang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key Laboratory of Metal Matrix Composites, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
45
|
Liang Y, Guan S, Xin C, Wen K, Xue C, Chen H, Liu S, Wu X, Yuan H, Li L, Nan CW. Effects of Molecular Weight on the Electrochemical Properties of Poly(vinylidene difluoride)-Based Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32075-32083. [PMID: 35786868 DOI: 10.1021/acsami.2c07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer-based electrolytes have attracted ever-increasing attention for solid-state batteries due to their excellent flexibility and processability. Among them, poly(vinylidene difluoride) (PVDF)-based electrolytes with high ionic conductivity, wide electrochemical stability window, and good mechanical properties show great potential and have been widely investigated by using different Li salts, solvents, and inorganic fillers. Here, we report the influence of the molecular weight of PVDF itself on the electrochemical properties of the electrolytes by using two kinds of common PVDF polymers, i.e., PVDF 761 and 5130. Our results demonstrate that the electrolyte with a larger molecular weight (PVDF 5130) has a denser structure and lower crystallinity, and thus much better electrochemical performance, than one with a smaller molecular weight (PVDF 761). With PVDF 5130, the LiFePO4-based solid-state cells present a steady cycling performance with a capacity retention of 85% after 1000 cycles at 1 C and 30 °C. The cycle life of the LiCoO2-based solid-state cells is also extended by using PVDF 5130.
Collapse
Affiliation(s)
- Ying Liang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shundong Guan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chengzhou Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kaihua Wen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chuanjiao Xue
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hetian Chen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Sijie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xinbin Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haocheng Yuan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liangliang Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
He S, Guo M, Wang Y, Liang Y, Shen Y. An Optical/Ferroelectric Multiplexing Multidimensional Nonvolatile Memory from Ferroelectric Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202181. [PMID: 35405769 DOI: 10.1002/adma.202202181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Multiplexing physical dimensions to realize multidimensional storage in a single material has been a goal to increase storage density and data security. Multidimensional storage is only achieved in optical storage material (OSM) by far. Poly(vinylidene fluoride) (PVDF), a semicrystalline polymer, is widely studied as a candidate for ferroelectric random access (FeRAM). Herein, the atomic force microscopy (AFM)-based infrared spectroscopy techniqueis used to induce multilevel phase transformations in PVDF ultrathin film on nanometric scales and for writing/readout of IR signals. An optical/ferroelectric multiplexing PVDF memory, where information can be coded with independent four-level optical IR and bilevel ferroelectric signals, is demonstrated. High data security and a storage density up to 180 GBit in.-2 are achieved simultaneously. Owing to the different critical temperature for phase transformation (optical data, <167 °C) and polarization switching (ferroelectric data, <100 °C), the multiplexing memory can function both as optical read-only memory and FeRAM. This work expands material supporting physical dimensions multiplexing beyond OSM for the first time, opening up new opportunities for future high-capacity, multifunctional nano-memory. The strategy proposed here enables on-demand and tunable programming on IR waves, offering prospects for fabrication of active nano-optical devices.
Collapse
Affiliation(s)
- Shan He
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Mengfan Guo
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Yue Wang
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Yuhan Liang
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Yang Shen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Sun DX, Liao XL, Zhang N, Huang T, Lei YZ, Xu XL, Wang Y. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Russo F, Tiecco M, Galiano F, Mancuso R, Gabriele B, Figoli A. Launching deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs), in combination with different harmless co-solvents, for the preparation of more sustainable membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Zhang P, Rajabzadeh S, Istirokhatun T, Shen Q, Jia Y, Yao X, Venault A, Chang Y, Matsuyama H. A novel method to immobilize zwitterionic copolymers onto PVDF hollow fiber membrane surface to obtain antifouling membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Distinctive Polymorphism-like Isodimorphism in Poly(propylene succinate-ran-propylene fumarate). CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2717-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|