1
|
Ma S, Chen M, Wang Y, Wang J, Hao Y, Wang X, Zhang H, Wei Y, Liang Z, Hu Y, Lian X, Huang D. Gelatin‑sodium alginate composite hydrogel doped with black phosphorus@ZnO heterojunction for cutaneous wound healing with antibacterial, immunomodulatory, and angiogenic properties. Int J Biol Macromol 2024; 274:133456. [PMID: 38945324 DOI: 10.1016/j.ijbiomac.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hydrogels with novel antimicrobial properties and accelerated wound healing are of great interest in the field of wound dressings because they not only prevent bacterial infections but also fulfill the essential needs of wound healing. In this study, multifunctional hydrogel dressings consisting of black phosphorus nanosheets(BPNS) surface-modified Zinc oxide (BP@ZnO heterojunction) based on gelatin (Gel), sodium alginate (SA), glutamine transferase (mTG), and calcium ions with a three-dimensional crosslinked network were prepared. The BP@ZnO-Gel/SA hydrogel has excellent mechanical properties, hemocompatibility (hemolysis rate: 3.29 %), swelling rate(832.8 ± 19.2 %), cytocompatibility, photothermal and photodynamic antibacterial properties(Sterilization rate: 96.4 ± 3.3 %). In addition, the hydrogel accelerates wound healing by promoting cell migration, immune regulation and angiogenesis. Thus, this hydrogel achieves the triple effect of antimicrobial, immunomodulation and angiogenesis, and is a tissue engineering strategy with great potential.
Collapse
Affiliation(s)
- Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mengjin Chen
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yanchao Hao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xin Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hao Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
2
|
Liu B, Fang R, Li W, Wu X, Liu T, Lin M, Sun J, Chen X. Fast Catalyst-Free Synthesis of Stereoselective Polypeptides via Hierarchical Chiral Assembly. J Am Chem Soc 2024. [PMID: 38858162 DOI: 10.1021/jacs.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Understanding how life's essential homochiral biopolymers arose from racemic precursors is a challenging quest. Herein, we present a groundbreaking approach involving hierarchical chiral assembly-driven stereoselective ring-opening polymerization of ε-benzyloxycarbonyl-l/d-lysine N-carboxyanhydrides assisted by ultrasonication in an aqueous medium. This method enabled a narrow dispersity within a few minutes and the achievement of high molecular weight for polypeptides, employing a living polymerization mechanism. The polymerization of l and d enantiomers yielded predominantly right- and left-handed superhelical assemblies in a one-pot preparation, respectively. Notably, stereoselective polypeptide segments were efficiently prepared through hierarchical assembly-driven polymerization of racemic monomers in the absence of a catalyst. This research offers an innovative strategy for the convenient preparations of stereoenriched polypeptides and, more importantly, sheds light on the plausible emergence of homochiral peptides in the origin of life.
Collapse
Affiliation(s)
- Borui Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Rui Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Wenlong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xiaoyu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Tianli Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| |
Collapse
|
3
|
Gao S, Deng J, Su Z, Liu M, Tang S, Hu T, Qi E, Fu C, Pan GY. Turning Polysaccharides into Injectable and Rapid Self-Healing Antibacterial Hydrogels for Antibacterial Treatment and Bacterial-Infected Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9082-9096. [PMID: 38619979 DOI: 10.1021/acs.langmuir.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Great efforts have been devoted to the development of novel and multifunctional wound dressing materials to meet the different needs of wound healing. Herein, we covalently grafted quaternary ammonium groups (QAGs) containing 12-carbon straight-chain alkanes to the dextran polymer skeleton. We then oxidized the resulting product into oxidized quaternized dextran (OQD). The obtained OQD polymer is rich in antibacterial QAGs and aldehyde groups. It can react with glycol chitosan (GC) via the Schiff-base reaction to form a multifunctional GC@OQD hydrogel with good self-healing behavior, hemostasis, injectability, inherent superior antibacterial activity, biocompatibility, and excellent promotion of healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. The biosafe and nontoxic GC@OQD hydrogel with a three-dimensional porous network structure possesses an excellent swelling rate and water retention capacity. It can be used for hemostasis and treating irregular wounds. The designed GC@OQD hydrogel with inherent antibacterial activity possesses good antibacterial efficacy on both S. aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria), as well as MRSA bacteria, with antibacterial activity greater than 99%. It can be used for the treatment of wounds infected by MRSA and significantly promotes the healing of wounds. Thus, the multifunctional antibacterial GC@OQD hydrogel has the potential to be applied in clinical practice as a wound dressing.
Collapse
Affiliation(s)
- Shiqi Gao
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Jianbin Deng
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Zhicheng Su
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Mengqi Liu
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Songyun Tang
- School of Pharmacy, Guilin Medical University, Guilin 541100, P. R. China
| | - Tingting Hu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, P. R. China
| | - Enfeng Qi
- School of Mathematics and Statistics, Guangxi Normal University, Guilin 541000, P. R. China
| | - Can Fu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, P. R. China
- Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541100, P. R. China
| | - Guang-Yu Pan
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541100, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541100, China
| |
Collapse
|
4
|
Wang J, Wang D, Su Z, Song Y, Zhang J, Xiahou Y. Green synthesis of chitosan/glutamic acid/agarose/Ag nanocomposite hydrogel as a new platform for colorimetric detection of Cu ions and reduction of 4-nitrophenol. Int J Biol Macromol 2024; 259:129394. [PMID: 38218277 DOI: 10.1016/j.ijbiomac.2024.129394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
In this study, the green synthesis of chitosan/glutamic acid/agarose/Ag (Chi/GA/Aga/Ag) nanocomposite hydrogel was obtained via in situ reduction of Ag ions during the crosslinking process of chitosan-agarose double network hydrogels. The rich hydroxyl, carboxyl and amino groups in both agarose, chitosan, and glutamic acid can effectively control the growth, dispersion and immobilization of nearly spherical Ag nanoparticles (70 nm) in the Chi/GA/Aga/Ag composite hydrogel. Glutamic acids can act as the structure-directing agents to induce the formation of chitosan/glutamic acid hydrogel. The mechanical strength of the Chi/GA/Aga/Ag composite hydrogel can be enhanced by the introduction of chitosan-agarose double network hydrogels, which guarantees that it can be directly used as a visual test strip of the Cu ions with a lower detection limit of 1 μM and an active catalyst for the reduction of 4-nitrophenol within 18 min. The quantitative and semi-quantitative measurement of Cu ions can be carried out by UV-visible absorption spectroscopy and visual measurement, which provided a convenient, portable, and "naked-eye" solid-state detection methodology.
Collapse
Affiliation(s)
- Jin Wang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China.
| | - Daijie Wang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Zhi Su
- Heze Branch, Heze Ecological Environment Monitoring Center of Shandong Province, Heze 274000, China
| | - Yahui Song
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Jihui Zhang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Yujiao Xiahou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
6
|
Gu W, An J, Li Y, Yang Y, Wang S, Shan H, Li S, Li H, Liu G, Li K, Yin Y, Mu J, Chen X. Tuning the Organ Tropism of Polymersome for Spleen-Selective Nanovaccine Delivery to Boost Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301686. [PMID: 37165781 DOI: 10.1002/adma.202301686] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The past few decades have witnessed explosive development in drug delivery systems. However, in vivo delivery suffers from non-specific distribution in non-targeted organs or tissues, which may cause undesired side effects and even genotoxicity. Here, a general strategy that enables tuning the tropism of polymersomes for liver- and spleen-selective delivery is reported. By using a library screening approach, spleen-targeted polymersome PH9-Aln-8020 and liver-targeted polymersome PA9-ZP3-5050 are identified accordingly. Meanwhile, the second near-infrared (NIR-II) fluorescence imaging allows for in vivo dynamic evaluation of their spatial and temporal accumulation in specific tissues. O ur findings indicate that both polymer composition and protein corona on the surface are essential to determine the in vivo fate of polymersomes and tendency for specific organs. Importantly, PH9-Aln-8020 is employed as a systemic nanocarrier to co-deliver the antigen and adjuvant, which remarkably boost splenic immune responses in acute myeloid leukemia, melanoma, and melanoma lung metastasis mouse models. This study may open a new frontier for polymersomes in organ-selective delivery and other biomedical applications.
Collapse
Affiliation(s)
- Wenxing Gu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jingnan An
- The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yajie Yang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Shumin Wang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Shenhua Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Guoyong Liu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
7
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
10
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Zhou L, Zhou L, Wei C, Guo R. A bioactive dextran-based hydrogel promote the healing of infected wounds via antibacterial and immunomodulatory. Carbohydr Polym 2022; 291:119558. [DOI: 10.1016/j.carbpol.2022.119558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
12
|
Soto-Cruz J, Mukwaya V, Naz M, Zhang P, López-Brenes MJ, Sáenz-Arce G, Rojas-Carrillo O, Dou H. Polysaccharide/Lipid Nanoconjugates as Alternative Building Blocks for Highly Biocompatible Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9556-9566. [PMID: 35880575 DOI: 10.1021/acs.langmuir.2c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharide/lipid nanoconjugates are attractive building blocks for the construction of micro- and nanosized structures because of the roles of glycolipids in human body, courtesy of their intrinsic and functional properties. Herein, nanoconjugates based on dextran and oleic acid (Dex-OA) were synthesized via facile amide-linkage chemistry. The resultant Dex-OA micelles could self-assemble into spherical water-filled microcapsules via a water-in-oil emulsification process. By cross-linking, the microcapsules could be transferred to aqueous media, forming a stable microcapsule dispersion. According to optical and fluorescence microscopy, the microcapsules displayed a spherical morphology, and their synthesis is dependent on the concentration of Dex-OA nanoconjugates. Furthermore, the microcapsules could easily encapsulate and retain fluorescently labeled dextran. This strategy offers a robust and efficient method for the construction of microcapsules from fully natural amphiphilic building blocks with the potential for application in diverse fields such as biomedicine, protocell research, and microreactors.
Collapse
Affiliation(s)
- Jackeline Soto-Cruz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
- National Center for Biotechnological Innovations (CENIBiot), CeNAT-CONARE, Avenue 35, Street 100, Pavas, San José 10109, Costa Rica
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | | | - Giovanni Sáenz-Arce
- Departamento de Física, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Oscar Rojas-Carrillo
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
13
|
Wei Z, Wang S, Hirvonen J, Santos HA, Li W. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Adv Healthc Mater 2022; 11:e2200846. [PMID: 35678152 PMCID: PMC11468590 DOI: 10.1002/adhm.202200846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/24/2023]
Abstract
Micrometer-sized hydrogels are cross-linked three-dimensional network matrices with high-water contents and dimensions ranging from several to hundreds of micrometers. Due to their excellent biocompatibility and capability to mimic physiological microenvironments in vivo, micrometer-sized hydrogels have attracted much attention in the biomedical engineering field. Their biological properties and applications are primarily influenced by their chemical compositions and geometries. However, inhomogeneous morphologies and uncontrollable geometries limit traditional micrometer-sized hydrogels obtained by bulk mixing. In contrast, microfluidic technology holds great potential for the fabrication of micrometer-sized hydrogels since their geometries, sizes, structures, compositions, and physicochemical properties can be precisely manipulated on demand based on the excellent control over fluids. Therefore, micrometer-sized hydrogels fabricated by microfluidic technology have been applied in the biomedical field, including drug encapsulation, cell encapsulation, and tissue engineering. This review introduces micrometer-sized hydrogels with various geometries synthesized by different microfluidic devices, highlighting their advantages in various biomedical applications over those from traditional approaches. Overall, emerging microfluidic technologies enrich the geometries and morphologies of hydrogels and accelerate translation for industrial production and clinical applications.
Collapse
Affiliation(s)
- Zhenyang Wei
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Jouni Hirvonen
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
- Department of Biomedical EngineeringW.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center Groningen/University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Wei Li
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
14
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
|
16
|
Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Zashikhina N, Levit M, Dobrodumov A, Gladnev S, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14091677. [PMID: 35566847 PMCID: PMC9104652 DOI: 10.3390/polym14091677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this research, the development and investigation of novel nanoobjects based on biodegradable random polypeptides and synthetic non-degradable glycopolymer poly(2-deoxy-2-methacrylamido-d-glucose) were proposed as drug delivery systems. Two different approaches have been applied for preparation of such nanomaterials. The first one includes the synthesis of block-random copolymers consisting of polypeptide and glycopolymer and capable of self-assembly into polymer particles. The synthesis of copolymers was performed using sequential reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerization (ROP) techniques. Amphiphilic poly(2-deoxy-2-methacrylamido-d-glucose)-b-poly(l-lysine-co-l-phenylalanine) (PMAG-b-P(Lys-co-Phe)) copolymers were then used for preparation of self-assembled nanoparticles. Another approach for the formation of polypeptide-glycopolymer particles was based on the post-modification of preformed polypeptide particles with an oxidized glycopolymer. The conjugation of the polysaccharide on the surface of the particles was achieved by the interaction of the aldehyde groups of the oxidized glycopolymer with the amino groups of the polymer on particle surface, followed by the reduction of the formed Schiff base with sodium borohydride. A comparative study of polymer nanoparticles developed with its cationic analogues based on random P(Lys-co-d-Phe), as well as an anionic one—P(Lys-co-d-Phe) covered with heparin––was carried out. In vitro antitumor activity of novel paclitaxel-loaded PMAG-b-P(Lys-co-Phe)-based particles towards A549 (human lung carcinoma) and MCF-7 (human breast adenocarcinoma) cells was comparable to the commercially available Paclitaxel-LANS.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Sergey Gladnev
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
- Correspondence:
| |
Collapse
|
18
|
Liarou E, Houck HA, Du Prez FE. Reversible Transformations of Polymer Topologies through Visible Light and Darkness. J Am Chem Soc 2022; 144:6954-6963. [DOI: 10.1021/jacs.2c01622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Evelina Liarou
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Hannes A. Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| |
Collapse
|
19
|
Wang J, Chen G, Liu N, Han X, Zhao F, Zhang L, Chen P. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022; 302:102638. [PMID: 35299136 DOI: 10.1016/j.cis.2022.102638] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
In the past decades, the striking development of cationic polypeptides and cell-penetrating peptides (CPPs) tailored for small interfering RNA (siRNA) delivery has been fuelled by the conception of nuclear acid therapy and precision medicine. Owing to their amino acid compositions, inherent secondary structures as well as diverse geometrical shapes, peptides or peptide-containing polymers exhibit good biodegradability, high flexibility, and bio-functional diversity as nonviral siRNA vectors. Also, a variety of noncovalent nanocomplexes could be built via self-assembling and electrostatic interactions between cationic peptides and siRNAs. Although the peptide/siRNA nanocomplex-based RNAi therapies, STP705 and MIR-19, are under clinical trials, a guideline addressing the current bottlenecks of peptide/siRNA nanocomplex delivery is in high demand for future research and development. In this review, we present strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes in the treatment of genetic disorders. Through thorough analysis of those RNAi formulations using different delivery strategies, we seek to shed light on the rationale of peptide design and modification in constructing robust siRNA delivery systems, including targeted and co-delivery systems. Based on this, we provide a timely and comprehensive understanding of how to engineer biocompatible and efficient peptide-based siRNA vectors.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Xiaoxia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China.
| |
Collapse
|
20
|
Bai Q, Teng L, Zhang X, Dong C. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022; 11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Polymeric hydrogels have been increasingly studied for wound sealants, adhesives, hemostats, and dressings, however, multi-component gelation, adhesion-causing tissue damage, inefficient hemostasis, and skin scarring in wound healing hamper their advances. So it is urgent to develop multifunctional single-component polymeric hydrogels with benign tissue detachment, high performance hemostasis, and scarless wound healing attributes. Herein, a dopamine-modified poly(l-glutamate) hydrogel at an ultralow concentration of 0.1 wt% is serendipitously constructed by physical treatments, in which a gelation mechanism is disclosed via oxidative catechol-crosslinking and sequential dicatechol-carboxyl hydrogen-bonding interactions. The covalent/H-bonding co-crosslinked and highly negative-charged networks enable the polypeptide hydrogels thermo-, salt-, urea-resistant, self-healing, injectable, and adhesive yet detachable. In vitro and in vivo assays demonstrate they have superior biocompatibility with ≈0.5% hemolysis and negligible inflammation. The polypeptide/graphene oxide hybrid hydrogel performs fast and efficient hemostasis of 12 s and 1.4% blood loss, surpassing some hydrogels and commercial counterparts. Remarkably, the polypeptide hydrogels achieve scarless and full wound healing and regenerate thick dermis with some embedded hair follicles within 14 days, presenting superior full-thickness wound healing and skin scar-preventing capabilities. This work provides a simple and practicable method to construct multifunctional polypeptide hemostatic and healing hydrogels that overcome some above-mentioned hurdles.
Collapse
Affiliation(s)
- Qian Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Teng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chang‐Ming Dong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
21
|
Soete M, Van Hoorde J, Du Prez F. Discrete, self-immolative N-substituted oligourethanes and their use as molecular tags. Polym Chem 2022. [DOI: 10.1039/d2py00630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depolymerization of N-substituted oligourethanes via an intramolecular cyclization event was studied in-depth, while the applicability of these macromolecules as anti-counterfeiting tags was demonstrated by labeling a polyurethane material.
Collapse
Affiliation(s)
- Matthieu Soete
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jens Van Hoorde
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Song Y, Dong CM. Sugar-dependent targeting and immune adjuvant effects of hyperbranched glycosylated polypeptide nanoparticles for ovalbumin delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Biomacromolecule-mediated pulmonary delivery of siRNA and anti-sense oligos: challenges and possible solutions. Expert Rev Mol Med 2021; 23:e22. [PMID: 34906269 DOI: 10.1017/erm.2021.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomacromolecules have gained much attention as biomedicine carriers in recent years due to their remarkable biophysical and biochemical properties including sustainability, non-toxicity, biocompatibility, biodegradability, long systemic circulation time and ability to target. Recent developments in a variety of biological functions of biomacromolecules and progress in the study of biological drug carriers suggest that these carriers may have advantages over carriers of synthetic materials in terms of half-life, durability, protection and manufacturing facility. Despite the full pledge advancements in the applications of biomacromolecules, its clinical use is hindered by certain factors that allow the pre-mature release of loaded cargos before reaching the target site. The delivery therapeutics are degraded by systemic nucleases, cleared by reticulo-endothelial system, cleared by pulmonary mucus cilia or engulfed by lysosome during cellular uptake that has led to the failure of clinical therapy. It clearly indicates that there is a wide range of gaps in the results of experimental work and clinical applications of biomacromolecules. This review focuses mainly on the barriers (intracellular/extracellular) and hurdles to the delivery of biomacromolecules with special emphasis on siRNA as well as the delivery of antisense oligos in multiple pulmonary diseases, particularly focusing on lung cancer. Also, the challenges posed to such delivery and possible solutions have been highlighted.
Collapse
|
24
|
|
25
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Tan Y, Liu Y, Liu Y, Ma R, Luo J, Hong H, Chen X, Wang S, Liu C, Zhang Y, Chen T. Rational Design of Thermosensitive Hydrogel to Deliver Nanocrystals with Intranasal Administration for Brain Targeting in Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9812523. [PMID: 34888525 PMCID: PMC8627567 DOI: 10.34133/2021/9812523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 04/23/2023]
Abstract
Mitochondrial dysfunction is commonly detected in individuals suffering from Parkinson's disease (PD), presenting within the form of excessive reactive oxygen species (ROS) generation as well as energy metabolism. Overcoming this dysfunction within brain tissues is an effective approach to treat PD, while unluckily, the blood-brain barrier (BBB) substantially impedes intracerebral drug delivery. In an effort to improve the delivery of efficacious therapeutic drugs to the brain, a drug delivery platform hydrogel (MAG-NCs@Gel) was designed by complexing magnolol (MAG)-nanocrystals (MAG-NCs) into the noninvasive thermosensitive poly(N-isopropylacrylamide) (PNIPAM) with self-gelation. The as-prepared MAG-NCs@Gel exhibited obvious improvements in drug solubility, the duration of residence with the nasal cavity, and the efficiency of brain targeting, respectively. Above all, continuous intranasal MAG-NCs@Gel delivery enabled MAG to cross the BBB and enter dopaminergic neurons, thereby effectively alleviating the symptoms of MPTP-induced PD. Taking advantage of the lower critical solution temperature (LCST) behavior of this delivery platform increases its viscoelasticity in nasal cavity, thus improving the efficiency of MAG-NCs transit across the BBB. As such, MAG-NCs@Gel represented an effective delivery platform capable of normalizing ROS and adenosine triphosphate (ATP) in the mitochondria of dopaminergic neurons, consequently reversing the mitochondrial dysfunction and enhancing the behavioral skills of PD mice without adversely affecting normal tissues.
Collapse
Affiliation(s)
- Yun Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huijie Hong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
27
|
Tinajero-Díaz E, Kimmins SD, García-Carvajal ZY, Martínez de Ilarduya A. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Du C, Zhou L, Qian J, He M, Zhang ZG, Feng C, Zhang Y, Zhang R, Dong CM. Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44002-44012. [PMID: 34494817 DOI: 10.1021/acsami.1c11381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ferroptosis therapy (FT) based on the Fenton reaction of ferrous nanoparticles has been becoming a unique strategy for cancer treatment; however, current ferrous nanoparticles suffer from slower Fenton reaction kinetics, lower ferroptosis efficacy, and long-term toxicity, so it is urgent to construct biocompatible ferrous nanomaterials with highly efficient Fenton reaction activity for cancer FT. Inspired by single-atom catalysis and size-determined tumor penetration, we conceived an innovative strategy for constructing ultrasmall zwitterionic polypeptide-coordinated nanohybrids of PCGA@FeNP with about 6 nm by utilizing thiol/hydroxyl-iron cooperative coordination chemistry. The ultrasmall size, unsaturated ferrous coordination, and intracellular acidic pH could accelerate the Fenton reaction, thus boosting the efficacy of ferroptosis. Moreover, those coordinated nanohybrids exhibited prominent photothermia with 59.5% conversion efficiency, further accelerating the Fenton reaction and inducing a synergistic effect between FT and photothermal therapy (PTT). In vitro and in vivo GPX-4 expression ascertained that PCGA@FeNP indeed induced effective FT and synergistic FT-PTT. Remarkably, in vivo FT-PTT completely ablated 4T1 solid tumors by one treatment, presenting outstanding and synergistic antitumor efficacy via the photothermia-boosted ferroptosis and apoptosis pathways. This work supplies a practicable strategy to fabricate ultrasmall zwitterionic coordination nanohybrids for highly efficient cancer FT and FT-PTT theranostics with potential clinical transitions.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Onder OC, Utroša P, Caserman S, Podobnik M, Žagar E, Pahovnik D. Preparation of Synthetic Polypeptide–PolyHIPE Hydrogels with Stimuli-Responsive Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ozgun Can Onder
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Petra Utroša
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Varlas S, Maitland GL, Derry MJ. Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly. Polymers (Basel) 2021; 13:2603. [PMID: 34451144 PMCID: PMC8402019 DOI: 10.3390/polym13162603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Georgia L Maitland
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
31
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
32
|
Tao X, Jiang F, Cheng K, Qi Z, Yadavalli VK, Lu S. Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels. Int J Mol Sci 2021; 22:7107. [PMID: 34281160 PMCID: PMC8268721 DOI: 10.3390/ijms22137107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Silk fibroin (SF) has attracted much attention due to its high, tunable mechanical strength and excellent biocompatibility. Imparting the ability to respond to external stimuli can further enhance its scope of application. In order to imbue stimuli-responsive behavior in silk fibroin, we propose a new conjugated material, namely cationic SF (CSF) obtained by chemical modification of silk fibroin with ε-Poly-(L-lysine) (ε-PLL). This pH-responsive CSF hydrogel was prepared by enzymatic crosslinking using horseradish peroxidase and H2O2. Zeta potential measurements and SDS-PAGE gel electrophoresis show successful synthesis, with an increase in isoelectric point from 4.1 to 8.6. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) results show that the modification does not affect the crystalline structure of SF. Most importantly, the synthesized CSF hydrogel has an excellent pH response. At 10 wt.% ε-PLL, a significant change in swelling with pH is observed. We further demonstrate that the hydrogel can be glucose-responsive by the addition of glucose oxidase (GOx). At high glucose concentration (400 mg/dL), the swelling of CSF/GOx hydrogel is as high as 345 ± 16%, while swelling in 200 mg/dL, 100 mg/dL and 0 mg/dL glucose solutions is 237 ± 12%, 163 ± 12% and 98 ± 15%, respectively. This shows the responsive swelling of CSF/GOx hydrogels to glucose, thus providing sufficient conditions for rapid drug release. Together with the versatility and biological properties of fibroin, such stimuli-responsive silk hydrogels have great potential in intelligent drug delivery, as soft matter substrates for enzymatic reactions and in other biomedical applications.
Collapse
Affiliation(s)
- Xiaosheng Tao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.T.); (F.J.); (K.C.); (Z.Q.)
| | - Fujian Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.T.); (F.J.); (K.C.); (Z.Q.)
| | - Kang Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.T.); (F.J.); (K.C.); (Z.Q.)
| | - Zhenzhen Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.T.); (F.J.); (K.C.); (Z.Q.)
| | - Vamsi K. Yadavalli
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.T.); (F.J.); (K.C.); (Z.Q.)
| |
Collapse
|
33
|
Tang CC, Zhang SH, My Phan TH, Tseng YC, Jan JS. Block length and topology affect self-assembly and gelation of poly(l-lysine)-block-poly(S-benzyl-l-cysteine) block copolypeptides. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Gelatin-Graphene Oxide Nanocomposite Hydrogels for Kluyveromyces lactis Encapsulation: Potential Applications in Probiotics and Bioreactor Packings. Biomolecules 2021; 11:biom11070922. [PMID: 34206397 PMCID: PMC8302002 DOI: 10.3390/biom11070922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, high biocompatibility, antimicrobial activity, and response to electrical fields in its reduced form. Finally, GO has been reported to enhance the mechanical properties of several materials, including natural and synthetic polymers and ceramics. The synthesized GO-gelatin nanocomposite hydrogels were characterized in morphological, swelling, mechanical, thermal, and rheological properties and their ability to maintain probiotic cell viability. The obtained nanocomposites exhibited larger pore sizes for successful cell entrapment and proliferation, tunable degradation rates, pH-dependent swelling ratio, and higher mechanical stability and integrity in simulated GI media and during bioreactor operation. These results encourage us to consider the application of the obtained nanocomposites to not only formulate high-performance nutraceuticals but to extend it to tissue engineering, bioadhesives, smart coatings, controlled release systems, and bioproduction of highly added value metabolites.
Collapse
|
35
|
Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021; 275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Recent years have seen increasing interests in the use of ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs) to prepare synthetic polypeptides, a class of biocompatible and versatile materials, for various biomedical applications. Because of their rich side-chain functionalities, diverse hydrophilicity/hydrophobicity profiles, and the capability of forming stable secondary structures, polypeptides can assemble into a variety of well-organized nano-structures that have unique advantages in drug delivery and controlled release. Herein, we review the design and use of polypeptide-based drug delivery system derived from NCA chemistry, and discuss the future perspectives of this exciting and important biomaterial area that may potentially change the landscape of next-generation therapeutics and diagnosis. Given the high significance of precise control over release for polypeptide-based systems, we specifically focus on the versatile designs of drug delivery systems capable of programmed release, through the changes in the chemical and physical properties controlled by the built-in molecular structures of polypeptides.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Shiqi Wei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuetao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zihuan Fu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
36
|
Zashikhina N, Vasileva M, Perevedentseva O, Tarasenko I, Tennikova T, Korzhikova-Vlakh E. Synthesis and Characterization of Macroinitiators Based on Polyorganophosphazenes for the Ring Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2021; 13:polym13091446. [PMID: 33947073 PMCID: PMC8124460 DOI: 10.3390/polym13091446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Among the various biocompatible amphiphilic copolymers, biodegradable ones are the most promising for the preparation of drug delivery systems since they are destroyed under physiological conditions, that, as a rule, reduce toxicity and provide controlled release of the drug. Hybrid graft-copolymers consisting of the main inorganic polyphosphazene chain and polypeptide side chains are of considerable interest for the development of delivery systems with a controlled degradation rate, since the main and side chains will have different degradation mechanisms (chemical and enzymatic hydrolysis, respectively). Variable particle degradation rate, controlled by the adjusting the composition of substituents, will allow selective delivery in vivo and controlled drug release. The present work proposes the preparation of biodegradable macroinitiators based on polyorganophosphazenes for the synthesis of hybrid copolymers. Synthesis of novel biodegradable macroinitiators based on polyorganophosphazenes was performed via macromolecular substitution of a polydichlorophosphazene chain with the sodium alcoholates, amines and amino acids. The composition of copolymers obtained was calculated using NMR. These polyorganophosphazenes bearing primary amino groups can be considered as convenient macroinitiators for the polymerization of NCA of α-amino acids in order to prepare hybrid copolymers polyphosphazene-graft-polypeptide. The developed macroinitiators were amphiphilic and self-assembled in the aqueous media into nanoparticles. Furthermore, the ability to encapsulate and release a model substance was demonstrated. In addition, the in vitro cytotoxicity of synthesized polymers was evaluated using two cell lines.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
| | - Marina Vasileva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
| | - Olga Perevedentseva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
- St. Petersburg State Institute of Technology, Moskovsky Prospect 26, 190013 St. Petersburg, Russia
| | - Irina Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia;
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia;
- Correspondence: ; Tel.: +7-(812)-323-04-61
| |
Collapse
|
37
|
Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021; 171:139-163. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
In recent years, gene therapy has come into the spotlight for the prevention and treatment of a wide range of diseases. Polypeptides have been widely used in mediating nucleic acid delivery, due to their versatilities in chemical structures, desired biodegradability, and low cytotoxicity. Chemistry plays an essential role in the development of innovative polypeptides to address the challenges of producing efficient and safe gene vectors. In this Review, we mainly focused on the latest chemical advances in the design and preparation of polypeptide-based nucleic acid delivery vehicles. We first discussed the synthetic approach of polypeptides via ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), and introduced the various types of polypeptide-based gene delivery systems. The extracellular and intracellular barriers against nucleic acid delivery were then outlined, followed by detailed review on the recent advances in polypeptide-based delivery systems that can overcome these barriers to enable in vitro and in vivo gene transfection. Finally, we concluded this review with perspectives in this field.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
38
|
Lv M, Jan Cornel E, Fan Z, Du J. Advances and Perspectives of Peptide and Polypeptide‐Based Materials for Biomedical Imaging. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Mingchen Lv
- Department of Polymeric Materials School of Materials Science and Engineering Tongji University Shanghai 201804 China
| | - Erik Jan Cornel
- Department of Polymeric Materials School of Materials Science and Engineering Tongji University Shanghai 201804 China
| | - Zhen Fan
- Department of Polymeric Materials School of Materials Science and Engineering Tongji University Shanghai 201804 China
- Department of Orthopedics Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
- Institute for Advanced Study Tongji University Shanghai 200092 China
| | - Jianzhong Du
- Department of Polymeric Materials School of Materials Science and Engineering Tongji University Shanghai 201804 China
- Department of Orthopedics Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| |
Collapse
|
39
|
Shi Y, Li D, Ding J, He C, Chen X. Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties. Polym Chem 2021. [DOI: 10.1039/d1py00290b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties were developed and characterized.
Collapse
Affiliation(s)
- Yingge Shi
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
40
|
Kimmins SD, Hanay SB, Murphy R, O'Dwyer J, Ramalho J, Ryan EJ, Kearney CJ, O'Brien FJ, Cryan SA, Fitzgerald-Hughes D, Heise A. Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels. J Mater Chem B 2021; 9:5456-5464. [PMID: 34048521 DOI: 10.1039/d1tb00776a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios of l- and d-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained by N-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing more l-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition and l/d enantiomers was tested against reference laboratory strains of Gram-negative Escherichia coli (E. coli; ATCC25922) and Gram-positive, Staphylococcus aureus (S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels. In vitro leachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.
Collapse
Affiliation(s)
- Scott D Kimmins
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Placilla, Valparaíso, Chile
| | - Saltuk B Hanay
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Robert Murphy
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Joanne O'Dwyer
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Jessica Ramalho
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Emily J Ryan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, RCSI University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| |
Collapse
|
41
|
Rational Optimization of the Petasis Three‐Component Reaction as a Feasible Elementary Reaction in Polymer Chemistry. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Duan W, Ji S, Guan Y, Mu X, Fang S, Lu Y, Zhou X, Sun J, Li Z. Esterase-Responsive Polypeptide Vesicles as Fast-Response and Sustained-Release Nanocompartments for Fibroblast-Exempt Drug Delivery. Biomacromolecules 2020; 21:5093-5103. [PMID: 33151670 DOI: 10.1021/acs.biomac.0c01251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzyme-responsive polypeptide vesicles have attracted considerable attention for precision theranostics because of their biocompatibility, biodegradability, and unique secondary conformation transition triggered by the catalytic actions of enzymes. These promising potentials of polypeptide vesicles could be limited in a drug delivery system by the very slow enzyme diffusion rate into vesicles that could reduce the efficacy of the drug. On the other hand, stimuli-responsive polymeric vesicles that respond to stimuli can undergo microstructure destruction for the burst release of drugs, which would penetrate through the membrane of dead cells and the tumor extracellular matrix, inducing acute toxicity to neighboring cells. Here, we designed amphiphilic PEG-polypeptide copolymers containing esterase-labile carbamate-caged primary amines. It was found that the diblock can self-assemble into vesicular structures. Esterase-triggered self-immolative decaging reactions could quickly release the primary amine moiety of monomers that can undergo an amidation reaction for transition of the bilayer of vesicles from hydrophobic to partially hydrophilic. This esterase-responsive process retains the nanostructure of vesicles but permeabilizes the vesicle membrane, which can afford the sustained release of encapsulating drugs. These esterase-responsive polypeptide vesicles mediate selective cytotoxicity in cancer cells with high esterase expression over normal fibroblasts with low esterase, enabling the potent anticancer chemotherapy with minimized side effects.
Collapse
Affiliation(s)
- Weihua Duan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Sifan Ji
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Yu Guan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Xueluer Mu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Sha Fang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Jing Sun
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
43
|
Song Y, Chen Y, Li P, Dong CM. Photoresponsive Polypeptide-Glycosylated Dendron Amphiphiles: UV-Triggered Polymersomes, OVA Release, and In Vitro Enhanced Uptake and Immune Response. Biomacromolecules 2020; 21:5345-5357. [DOI: 10.1021/acs.biomac.0c01465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yingying Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pan Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
44
|
Synthesis and Characterization of the Novel Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-Carboxy Anhydride. Synthesis of Well-Defined Linear and Branched Polypeptides. Polymers (Basel) 2020; 12:polym12122819. [PMID: 33261159 PMCID: PMC7759796 DOI: 10.3390/polym12122819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The synthesis of well-defined polypeptides exhibiting complex macromolecular architectures requires the use of monomers that can be orthogonally deprotected, containing primary amines that will be used as the initiator for the Ring Opening Polymerization (ROP) of N-carboxy anhydrides. The synthesis and characterization of the novel monomer Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-carboxy anhydride (Nε-Fmoc-l-Lysine NCA), as well as the novel linear Poly(Nε-Fmoc-l-Lys)n homopolypeptide and Poly(l-Lysine)78-block-[Poly(l-Lysine)10-graft-Poly(l-Histidine)15] block-graft copolypeptide, are presented. The synthesis of the graft copolypeptide was conducted via ROP of the Nε-Boc-l-Lysine NCA while using n-hexylamine as the initiator, followed by the polymerization of Nε-Fmoc-l-Lysine NCA. The last block was selectively deprotected under basic conditions, and the resulting ε-amines were used as the initiating species for the ROP of Nim-Trityl-l-Histidine NCA. Finally, the Boc- and Trt- groups were deprotected by TFA. High Vacuum Techniques were applied to achieve the conditions that are required for the synthesis of well-defined polypeptides. The molecular characterization indicated that the polypeptides exhibited high degree of molecular and compositional homogeneity. Finally, Dynamic Light Scattering, ζ-potential, and Circular Dichroism measurements were used in order to investigate the ability of the polypeptide to self-assemble in different conditions. This monomer opens avenues for the synthesis of polypeptides with complex macromolecular architectures that can define the aggregation behavior, and, therefore, can lead to the synthesis of "smart" stimuli-responsive nanocarriers for controlled drug delivery applications.
Collapse
|
45
|
Dong S, Jiang Y, Qin G, Liu L, Zhao H. Methionine-Based pH and Oxidation Dual-Responsive Block Copolymer: Synthesis and Fabrication of Protein Nanogels. Biomacromolecules 2020; 21:4063-4075. [PMID: 32914964 DOI: 10.1021/acs.biomac.0c00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we synthesized a block copolymer containing pendent thioether functionalities by reversible addition-fragmentation chain transfer polymerization of a tert-butyloxycarbonyl (Boc)-l-methionine-(2-methacryloylethyl)ester (Boc-METMA) monomer using a poly(ethylene glycol) (PEG)-based chain transfer agent. The deprotection of Boc groups resulted in an oxidation and pH dual-responsive cationic block copolymer PEG-b-P(METMA). The block copolymer PEG-b-P(METMA) possessing protonable amine groups was water-soluble at pH < 6.0 and self-assembled to form spherical micelles at pH > 6.0. In the presence of H2O2, the micelles first became highly swollen with time and completely disassembled at last, demonstrating the H2O2-responsive feature because of the oxidation of hydrophobic thioether to hydrophilic sulfoxide. The anticancer drug curcumin (Cur) was entrapped in the polymeric micelles and the Cur-loaded micelles displayed a H2O2-triggered release profile as well as a pH-dependent release behavior, making PEG-b-P(METMA) micelles promising nanocarriers for reactive oxygen species-responsive drug delivery. Taking advantage of the protonated amine groups, the cationic polyelectrolyte PEG-b-P(METMA) formed polyion complex micelles with glucose oxidase (GOx) through electrostatic interactions at pH 5.8. By cross-linking the cores of PIC micelles with glutaraldehyde, the PIC micelles were fixed to generate stable GOx nanogels under physiological conditions. The GOx nanogels were glucose-responsive and exhibited glucose-dependent H2O2-generation activity in vitro and improved storage and thermal stability of GOx. Cur can be encapsulated in the GOx nanogels, and the Cur-loaded GOx nanogels demonstrate the glucose-responsive release profile. The GOx nanogels displayed high cytotoxicity to 4T1 cells and were effectively internalized by the cells. Therefore, these GOx nanogels have potential applications in the areas of cancer starvation and oxidation therapy.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
46
|
Zhao X, Chen M, Zhang W, Wang C, Wang F, You Y, Zhang W, Hong C. Polymerization‐Induced Self‐Assembly to Produce Prodrug Nanoparticles with Reduction‐Responsive Camptothecin Release and pH‐Responsive Charge‐Reversible Property. Macromol Rapid Commun 2020; 41:e2000260. [PMID: 32648310 DOI: 10.1002/marc.202000260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao Zhao
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Miao Chen
- Xi’an Modern Chemistry Research Institute Xi’an Shanxi 710065 China
| | - Wei‐Guo Zhang
- The First Affiliated Hospital of Xinxiang Medical University Xinxiang Henan 453100 China
| | - Chang‐Hui Wang
- Department of CardiologyFirst Affiliated Hospital of Anhui Medical University Hefei Anhui 230026 China
| | - Fei Wang
- Neurosurgical DepartmentThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of China Hefei Anhui 230036 China
| | - Ye‐Zi You
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Wen‐Jian Zhang
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Chun‐Yan Hong
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
47
|
Functional Glycopolypeptides: Synthesis and Biomedical Applications. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6052078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Employing natural-based renewable sugar and saccharide resources to construct functional biopolymer mimics is a promising research frontier for green chemistry and sustainable biotechnology. As the mimics/analogues of natural glycoproteins, synthetic glycopolypeptides attracted great attention in the field of biomaterials and nanobiotechnology. This review describes the synthetic strategies and methods of glycopolypeptides and their analogues, the functional self-assemblies of the synthesized glycopolypeptides, and their biological applications such as biomolecular recognition, drug/gene delivery, and cell adhesion and targeting, as well as cell culture and tissue engineering. Future outlook of the synthetic glycopolypeptides was also discussed.
Collapse
|
48
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
49
|
Abstract
From drug delivery to nanoreactors and protocells, polymersomes have gained considerable interest from researchers due to their novel applications.
Collapse
Affiliation(s)
- James Lefley
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
50
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|