1
|
Sagawa K, Uchiyama M, Watanabe H, Homma C, Kamigaito M. Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity. PRECISION CHEMISTRY 2024; 2:628-633. [PMID: 39734757 PMCID: PMC11672533 DOI: 10.1021/prechem.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (rr/mr/mm = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA (rr ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA (mm ≈ 32%). Molecular weight control of PMMA was achieved (Đ = 1.1-1.2) by adding 1,1-diphenylethanol as a reversible terminator while maintaining control of the tacticity with the above ligands. Stereoblock PMMA consisting of atactic and syndiotactic segments was successfully synthesized via sequential PTAP using macroinitiator/macro-CTA methods.
Collapse
Affiliation(s)
- Katsutoshi Sagawa
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hironobu Watanabe
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Chihiro Homma
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Destarac M, Guinaudeau A, Mazières S, Wilson J. Chain Transfer Kinetics of Rhodixan ® A1 RAFT/MADIX Agent. Molecules 2024; 29:6004. [PMID: 39770096 PMCID: PMC11678032 DOI: 10.3390/molecules29246004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Rhodixan® A1 is the trade name for O-ethyl S-(1-methoxycarbonylethyl)dithiocarbonate, a RAFT/MADIX agent used by Syensqo to produce block copolymer additives for aqueous formulations on an industrial scale. Chain transfer coefficients to Rhodixan® A1 determined for 25 different styrenic, acrylate, and acrylamide monomers were relatively low (0.6 < Ctr < 3.8) and evolved in the following order: styrenics < acrylates < acrylamides. The corresponding interchain transfer coefficients followed the same trend (0.6 < Ctr,PnXA1 < 5.9). In all cases, polymers with predetermined Mn are obtained at high monomer conversion, with dispersities inversely proportional to Ctr,PnXA1 in most cases. With the added benefit of the established excellent reactivity of Rhodixan® A1 towards unconjugated monomers such as vinyl esters, diallyl, or N-vinyl monomers, RAFT/MADIX is a fantastic technological toolbox for tailor-making complex copolymers from monomers of highly disparate reactivities.
Collapse
Affiliation(s)
- Mathias Destarac
- Laboratoire SOFTMAT, CNRS UMR 5623, University of Toulouse, University Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; (A.G.); (S.M.)
| | - Aymeric Guinaudeau
- Laboratoire SOFTMAT, CNRS UMR 5623, University of Toulouse, University Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; (A.G.); (S.M.)
- Syensqo, Centre de Recherche et Innovation Lyon, 85 Rue des Frères Perret, BP 62 69192 Saint Fons, France
| | - Stéphane Mazières
- Laboratoire SOFTMAT, CNRS UMR 5623, University of Toulouse, University Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; (A.G.); (S.M.)
| | - James Wilson
- Syensqo, Centre de Recherche et Innovation Aubervilliers, 52 Rue de la Haie Coq, 93308 Aubervilliers Cedex, France;
| |
Collapse
|
3
|
Zhang L, Zou X, Ding C, Wang Z. Mechanically induced cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers. Chem Sci 2024:d4sc05263c. [PMID: 39479168 PMCID: PMC11514177 DOI: 10.1039/d4sc05263c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Mechanoredox catalysis has emerged as a sustainable approach for organic transformations. Mechanically controlled polymerization that uses mechanoredox catalysts enables synthesis of complex polymers and mechanoresponsive materials with diverse applications. Despite its potential, the focus has predominantly been on free radical polymerization and acrylate monomers. The mechanochemical synthesis of poly(vinyl ether)s (PVEs) poses a significant challenge in the field. Herein, we report an efficient mechanically induced cationic reversible addition-fragmentation chain transfer (mechano-cRAFT) polymerization using 2D MoS2 as a mechanoredox catalyst, where free radical intermediates can be further oxidized to cations to promote cationic polymerization of vinyl ethers. This mechano-cRAFT polymerization can be conducted in air and with minimal organic solvent, resulting in quantitative monomer conversion. This strategy is applicable to a range of vinyl ether monomers, yielding polymers with controlled molecular weight and narrow dispersity. We also performed trapping experiments to investigate the piezoelectrically mediated redox process, and further validated the mechanism through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Longfei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiuyang Zou
- Jiangsu Province Engineering Research Center of Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 China
| | - Chengqiang Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
4
|
Uchiyama M, Ohira N, Yamashita K, Sagawa K, Kamigaito M. Proton transfer anionic polymerization with C-H bond as the dormant species. Nat Chem 2024; 16:1630-1637. [PMID: 38965437 DOI: 10.1038/s41557-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Living anionic polymerization-the most common living polymerization and the one with the longest history-generally requires stringent, water-free conditions and one metal initiator per polymer chain. Here we present the proton transfer anionic polymerization of methacrylates using acidic C-H bonds as the dormant species that are activated by base catalysts. The polymerization mechanism involves reversible chain transfer or termination of the growing enolate species. A weakly acidic compound, such as an alkyl isobutyrate, serves as the initiator or chain-transfer agent in the presence of a bulky potassium base catalyst to produce a polymer chain and, thereby, diminishes the metal compound per chain ratio. An added alcohol serves as a reversible terminator to tame the propagation. End-functionalized, star, block and graft polymers are easily accessible from compounds with C-H bonds.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| | - Natsumi Ohira
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Konomi Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Katsutoshi Sagawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| |
Collapse
|
5
|
Wei Z, He W, Liu Z, Lin Y, Wang M, Li L, Wu C, Yang S, Liu G, Yang R. Orthogonal Radical and Cationic Single-Unit Monomer Insertions for Engineering Polymer Architectures. Angew Chem Int Ed Engl 2024; 63:e202402265. [PMID: 38760991 DOI: 10.1002/anie.202402265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The single-unit monomer insertion (SUMI), derived from living/controlled polymerization, can be directly functionalized at the end or within the chain of polymers prepared by living/controlled polymerization, offering potential applications in the preparation of polymers with complex architectures. Many scenarios demand the simultaneous incorporation of monomers suitable for different polymerization methods into complex polymers. Therefore, it becomes imperative to utilize SUMI technologies with diverse mechanisms, especially those that are compatible with each other. Here, we reported the orthogonal SUMI technique, seamlessly combining radical and cationic SUMI approaches. Through the careful optimization of monomer and chain transfer agent pairs and adjustments to reaction conditions, we can efficiently execute both radical and cationic SUMI processes in one pot without mutual interference. The utilization of orthogonal SUMI pairs facilitates the integration of radical and cationic reversible addition-fragmentation chain transfer (RAFT) polymerization in various configurations. This flexibility enables the synthesis of diblock, triblock, and star polymers that incorporate both cationically and radically polymerizable monomers. Moreover, we have successfully implemented a mixing mechanism of free radicals and cations in RAFT step-growth polymerization, resulting in the creation of a side-chain sequence-controlled polymer brushes.
Collapse
Affiliation(s)
- Ze Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhihua Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yating Lin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Maolin Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liang Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chunxiao Wu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
6
|
Singha S, Pan S, Tallury SS, Nguyen G, Tripathy R, De P. Recent Developments on Cationic Polymerization of Vinyl Ethers. ACS POLYMERS AU 2024; 4:189-207. [PMID: 38882029 PMCID: PMC11177306 DOI: 10.1021/acspolymersau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/18/2024]
Abstract
In recent times, the evolution of cationic polymerization has taken a multidirectional approach, with the development of cationic reversible addition-fragmentation chain transfer (RAFT) polymerization. In contrast to the conventional cationic polymerization methods, which were typically carried out under inert atmospheres and low temperatures, various novel polymerization techniques have been developed where the reactions are carried out in open air, operate at room temperature, are cost-effective, and are environmentally friendly. Besides, several external stimuli, such as heat, light, chemicals, electrical potential, etc. have been employed to activate and control the polymerization process. It also enables the combination of cationic polymerization with other polymerization methods in a single reaction vessel, eliminating the necessity for isolation and purification during intermediate steps. In addition, significant advancements have been made through various modifications in catalyst systems, resulting in polymers with an exceptionally high level of stereoregularity. This review article comprehensively analyses the recent developments in cationic polymerization, encompassing their applications and offering insights into future perspectives.
Collapse
Affiliation(s)
- Sourav Singha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Swagata Pan
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Syamal S Tallury
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Giang Nguyen
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Ranjan Tripathy
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
7
|
Wu L, Chowdhury A, Zhou Z, Chen K, Wang W, Niu J. Precision Cellulose from Living Cationic Polymerization of Glucose 1,2,4-Orthopivalates. J Am Chem Soc 2024; 146:7963-7970. [PMID: 38483110 DOI: 10.1021/jacs.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Cellulose serves as a sustainable biomaterial for a wide range of applications in biotechnology and materials science. While chemical and enzymatic glycan assembly methods have been developed to access modest quantities of synthetic cellulose for structure-property studies, chemical polymerization strategies for scalable and well-controlled syntheses of cellulose remain underdeveloped. Here, we report the synthesis of precision cellulose via living cationic ring-opening polymerization (CROP) of glucose 1,2,4-orthopivalates. In the presence of dibutyl phosphate as an initiator and triflic acid as a catalyst, precision cellulose with well-controlled molecular weights, defined chain-end groups, and excellent regio- and stereospecificity was readily prepared. We further demonstrated the utility of this method through the synthesis of precision native d-cellulose and rare precision l-cellulose.
Collapse
Affiliation(s)
- Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arjun Chowdhury
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kuiru Chen
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wenqi Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
8
|
Yang Z, Liao Y, Zhang Z, Chen J, Zhang X, Liao S. Asymmetric Ion-Pairing Photoredox Catalysis for Stereoselective Cationic Polymerization under Light Control. J Am Chem Soc 2024; 146:6449-6455. [PMID: 38316013 DOI: 10.1021/jacs.3c12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
By virtue of noninvasive regulations by light, photocontrolled polymerizations have attracted considerable attention for the precision synthesis of macromolecules. However, a cationic polymerization with simultaneous photocontrol and tacticity-regulation remains elusive so far. Herein, we introduce an asymmetric ion-pairing photoredox catalysis strategy that allows for the development of a stereoselective cationic polymerization with concurrent light regulation for the first time. By employing an ion pair catalyst (PC+/*A-) consisting of a photoredox active cation (PC+) and a sterically confined chiral anion (*A-) to deliver the stereochemical control, the cationic polymerization of vinyl ethers can be achieved with photocontrol and high isotactic selectivity (up to 91% m) at a remarkable low catalyst loading (50 ppm).
Collapse
Affiliation(s)
- Zan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yun Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhengyi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Sun P, Li Z, Zhang X, Liao Y, Liao S. Visible Light-Regulated Ring-Opening Polymerization of Lactones by Employing Indigo as a Photoacid Catalyst. Macromol Rapid Commun 2024:e2400054. [PMID: 38471494 DOI: 10.1002/marc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The development of visible light-regulated polymerizations for precision synthesis of polymers has drawn considerable attention in the past years. In this study, an ancient dye, indigo, is successfully identified as a new and efficient photoacid catalyst, which can readily promote the ring-opening polymerization of lactones under visible light irradiation in a well-controlled manner, affording the desired polyester products with predictable molecular weights and narrow dispersity. The enhanced acidity of indigos by excitation is crucial to the H-bonding activation of the lactone monomers. Chain extension and block copolymer synthesis are also demonstrated with this method.
Collapse
Affiliation(s)
- Pan Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zixuan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xun Zhang
- Department State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Lingling Lu, Shanghai, 200032, China
| | - Yun Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Lin X, Gu Q, Li J, Zhu J. Zinc-Mediated Living Cationic Polymerization. ACS Macro Lett 2023; 12:1692-1697. [PMID: 38038281 DOI: 10.1021/acsmacrolett.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Here, we present a facile and robust method for living cationic polymerization using zinc wire as a catalyst precursor. Well-defined poly(vinyl ether)s with various molecular weights and narrow molecular weight distributions (Đ < 1.10) can be achieved at room temperature. Excellent living characteristics were observed in kinetic and chain extension experiments. Mechanistic investigations revealed that the polymerization was catalyzed by the in situ generation of trace zinc ions, which is the key to polymerization under mild conditions. The utilization of zinc wire offers several advantages, including reusability, easy separation and low metal residue. Furthermore, we extended the application of this method in continuous flow polymerization, opening up a promising avenue for scalable and efficient industrial production under mild conditions.
Collapse
Affiliation(s)
- Xia Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qianxi Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Chen K, Guo X, Chen M. Controlled Radical Copolymerization toward Well-Defined Fluoropolymers. Angew Chem Int Ed Engl 2023; 62:e202310636. [PMID: 37581580 DOI: 10.1002/anie.202310636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xing Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
13
|
Tanimoto T, Uchiyama M, Kamigaito M. Cationic β-Scission of C-H and C-C Bonds for Selective Dimerization and Subsequent Sulfur-Free RAFT Polymerization of α-Methylstyrene and Isobutylene. Angew Chem Int Ed Engl 2023; 62:e202307791. [PMID: 37527192 DOI: 10.1002/anie.202307791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
A series of exo-olefin compounds ((CH3 )2 C(PhY)-CH2 C(=CH2 )PhY) were prepared by selective cationic dimerization of α-methylstyrene (αMS) derivatives (CH2 =C(CH3 )PhY) with p-toluenesulfonic acid (TsOH) via β-C-H scission. They were subsequently used as reversible chain transfer agents for sulfur-free cationic RAFT polymerization of αMS via β-C-C scission in the presence of Lewis acid catalysts such as SnCl4 . In particular, exo-olefin compounds with electron-donating substituents, such as a 4-MeO group (Y) on the aromatic ring, worked as efficient cationic RAFT agents for αMS to produce poly(αMS) with controlled molecular weights and exo-olefin terminals. Other exo-olefin compounds (R-CH2 C(=CH2 )(4-MeOPh)) with various R groups were prepared by different methods to examine the effects of R groups on the cationic RAFT polymerization. A sulfur-free cationic RAFT polymerization also proceeded for isobutylene (IB) with the exo-olefin αMS dimer ((CH3 )2 C(Ph)-CH2 C(=CH2 )Ph). Furthermore, telechelic poly(IB) with exo-olefins at both terminals was obtained with a bifunctional RAFT agent containing two exo-olefins. Finally, block copolymers of αMS and methyl methacrylate (MMA) were prepared via mechanistic transformation from cationic to radical RAFT polymerization using exo-olefin terminals containing 4-MeOPh groups as common sulfur-free RAFT groups for both cationic and radical polymerizations.
Collapse
Affiliation(s)
- Takayuki Tanimoto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging Bioprinting for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304738. [PMID: 37566537 DOI: 10.1002/adma.202304738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Bioprinting has attracted much attention due to its suitability for fabricating biomedical devices. In particular, bioprinting has become one of the growing centers in the field of wound healing, with various types of bioprinted devices being developed, including 3D scaffolds, microneedle patches, and flexible electronics. Bioprinted devices can be designed with specific biostructures and biofunctions that closely match the shape of wound sites and accelerate the regeneration of skin through various approaches. Herein, a comprehensive review of the bioprinting of smart wound dressings is presented, emphasizing the crucial effect of bioprinting in determining biostructures and biofunctions. The review begins with an overview of bioprinting techniques and bioprinted devices, followed with an in-depth discussion of polymer-based inks, modification strategies, additive ingredients, properties, and applications. The strategies for the modification of bioprinted devices are divided into seven categories, including chemical synthesis of novel inks, physical blending, coaxial bioprinting, multimaterial bioprinting, physical absorption, chemical immobilization, and hybridization with living cells, and examples are presented. Thereafter, the frontiers of bioprinting and wound healing, including 4D bioprinting, artificial intelligence-assisted bioprinting, and in situ bioprinting, are discussed from a perspective of interdisciplinary sciences. Finally, the current challenges and future prospects in this field are highlighted.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiao Liang
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| |
Collapse
|
15
|
Chae JH, Choi M, Son S, Ko SM, Lee IH. Living Cationic Ring-Opening Polymerization of Hetero Diels-Alder Adducts to Give Multifactor-Controlled and Fast-Photodegradable Vinyl Polymers. Angew Chem Int Ed Engl 2023; 62:e202305414. [PMID: 37259631 DOI: 10.1002/anie.202305414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels-Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.
Collapse
Affiliation(s)
- Ju-Hyung Chae
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Minyeong Choi
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Semin Son
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Su-Min Ko
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, 16499, Suwon, Republic of Korea
| |
Collapse
|
16
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
17
|
Tao W, He W, Feng X, Liu G, Shi Q, Tan J, Hu J, Yang S, Liu G, Yang R. Cationic Single-Unit Monomer Insertion (cSUMI): From Discrete Oligomers to the α-/ω-End and In-Chain Sequence-Regulated Polymers. J Am Chem Soc 2023; 145:3636-3646. [PMID: 36724078 DOI: 10.1021/jacs.2c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single-unit monomer insertion (SUMI) has become an important strategy for the synthesis of sequence-controlled vinyl polymers due to its strong versatility and high efficiency. However, all reported SUMI processes are based on a free-radical mechanism, resulting in a limited number of monomer types being applicable to SUMI or a limited number of sequences of structural units that SUMI can synthesize. Herein, we developed a novel SUMI based on a cationic mechanism (cSUMI), which operates through a degenerative (similar to radical SUMI) but cationic chain transfer process. By optimizing the chain transfer agent (CTA) and monomer pairs, a high-efficiency cSUMI was achieved for vinyl ether and styrene monomers. Based on this reaction, a range of discrete oligomers containing vinyl ether and styrene moieties, and even α-/ω-end and in-chain sequence-regulated polymers were synthesized, most of which cannot be achieved by radical SUMI. In addition, we explored the application of these sequence-regulated polymers in the preparation of miktoarm star polymers, delivery of photosensitizers, and solubilization of fluorescence probes. The development of SUMI with a new mechanism will certainly broaden the scope of structures and sequences in precise vinyl-based polymers.
Collapse
Affiliation(s)
- Wei Tao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xuepu Feng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guoqin Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiangqiang Shi
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajia Tan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
18
|
Zhao B, Li J, Li G, Yang X, Lu S, Pan X, Zhu J. Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207637. [PMID: 36707417 DOI: 10.1002/smll.202207637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The application of reversible deactivation radical polymerization techniques in 3D printing is emerging as a powerful method to build "living" polymer networks, which can be easily postmodified with various functionalities. However, the building speed of these systems is still limited compared to commercial systems. Herein, a digital light processing (DLP)-based 3D printing system via photoinduced free radical-promoted cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers, which can build "living" objects by a commercial DLP 3D printer at a relatively fast building speed (12.99 cm h-1 ), is reported. The polymerization behavior and printing conditions are studied in detail. The livingness of the printed objects is demonstrated by spatially controlled postmodification with a fluorescent monomer.
Collapse
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangliang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinrui Yang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shaopu Lu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
19
|
Uchiyama M, Murakami Y, Satoh K, Kamigaito M. Synthesis and Degradation of Vinyl Polymers with Evenly Distributed Thioacetal Bonds in Main Chains: Cationic DT Copolymerization of Vinyl Ethers and Cyclic Thioacetals. Angew Chem Int Ed Engl 2023; 62:e202215021. [PMID: 36369911 PMCID: PMC10107285 DOI: 10.1002/anie.202215021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/15/2022]
Abstract
We report a novel method to synthesize degradable poly(vinyl ether)s with cleavable thioacetal bonds periodically arranged in the main chains using controlled cationic copolymerization of vinyl ethers with a 7-membered cyclic thioacetal (7-CTA) via degenerative chain transfer (DT) to the internal thioacetal bonds. The thioacetal bonds, which are introduced into the main chain by cationic ring-opening copolymerization of 7-CTA with vinyl ethers, serve as in-chain dormant species to allow homogeneous propagation of vinyl ethers for all internal segments to afford copolymers with controlled overall and segmental molecular weights. The obtained polymers can be degraded into low- and controlled-molecular-weight polymers with narrow molecular weight distributions via hydrolysis. Various vinyl ethers with hydrophobic, hydrophilic, and functional pendants are available. Finally, one-pot synthesis of multiblock copolymers and their degradation into diblock copolymers are also achieved.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yukihiro Murakami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
20
|
Shrestha LK, Shrestha RG, Shahi S, Gnawali CL, Adhikari MP, Bhadra BN, Ariga K. Biomass Nanoarchitectonics for Supercapacitor Applications. J Oleo Sci 2023; 72:11-32. [PMID: 36624057 DOI: 10.5650/jos.ess22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU)
| | | | - Biswa Nath Bhadra
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
21
|
Amano M, Uchiyama M, Satoh K, Kamigaito M. Sulfur-Free Radical RAFT Polymerization of Methacrylates in Homogeneous Solution: Design of exo-Olefin Chain-Transfer Agents (R-CH 2 C(=CH 2 )Z). Angew Chem Int Ed Engl 2022; 61:e202212633. [PMID: 36250802 PMCID: PMC10099145 DOI: 10.1002/anie.202212633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/05/2022]
Abstract
In this work, the development of exo-olefin compounds (R-CH2 C(=CH2 )Z) as chain-transfer agents for the sulfur-free reversible addition-fragmentation chain transfer (RAFT) radical polymerization of methacrylates in homogeneous solution is described. A series of exo-olefin compounds with a methyl methacrylate (MMA) dimer structure as the R group and a substituted α-methylstyrene unit as the -CH2 C(=CH2 )Z (Z: Ph-Y) group were synthesized and used for the radical polymerization of MMA in toluene and PhC(CF3 )2 OH. These compounds underwent transfer of the CH2 C(=CH2 )Z group via addition-fragmentation of the propagating methacryloyl radical. More electron-donating (Y) substituents, such as methoxy and dimethylamino groups, produced polymers with narrower molecular weight distributions. A continuous monomer addition method further improved molecular weight control and enabled the synthesis of colorless, sulfur-free, multiblock copolymers of methacrylates in homogeneous solutions.
Collapse
Affiliation(s)
- Maki Amano
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-kuNagoya464-8603Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-kuNagoya464-8603Japan
| | - Kotaro Satoh
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology2-12-1-H120 OokayamaMeguro-kuTokyo152-8550Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-kuNagoya464-8603Japan
| |
Collapse
|
22
|
From controlled radical polymerization of vinyl ether to polymerization-induced self-assembly. Polym J 2022. [DOI: 10.1038/s41428-022-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Yang Z, Chen J, Liao S. Monophosphoniums as Effective Photoredox Organocatalysts for Visible Light-Regulated Cationic RAFT Polymerization. ACS Macro Lett 2022; 11:1073-1078. [PMID: 35984378 DOI: 10.1021/acsmacrolett.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible light-regulated metal-free polymerizations have attracted considerable attention for macromolecular syntheses in recent years. However, few organic photocatalysts show high efficiency and strict photocontrol in cationic polymerizations. Herein, we introduce monophosphonium-doped polycyclic arenes as an organic photocatalyst, which features the high tunability, broad redox window, long excited state lifetime, and excellent temporal control in the cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers. A correlation of the catalytic performance and the photophysical and electrochemical properties of photocatalysts is also discussed.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Zhao B, Li J, Li Z, Lin X, Pan X, Zhang Z, Zhu J. Photoinduced 3D Printing through a Combination of Cationic and Radical RAFT Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Zhuang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xia Lin
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Zhengbiao Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
25
|
Uchiyama M, Watanabe D, Tanaka Y, Satoh K, Kamigaito M. Asymmetric Cationic Polymerization of Benzofuran through a Reversible Chain-Transfer Mechanism: Optically Active Polybenzofuran with Controlled Molecular Weights. J Am Chem Soc 2022; 144:10429-10437. [PMID: 35658439 PMCID: PMC9204774 DOI: 10.1021/jacs.2c02569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Benzofuran (BzF)
is a prochiral, 1,2-disubstituted, unsymmetric
cyclic olefin that can afford optically active polymers by asymmetric
polymerization, unlike common acyclic vinyl monomers. Although asymmetric
cationic polymerization of BzF was reported by Natta et al. in the
1960s, the polymer structure has not been clarified, and there are
no reports on molecular weight control. Herein, we report dual control
of the optical activity and molecular weight of poly(BzF) using thioether-based
reversible chain-transfer agents for asymmetric cationic polymerization
with β-amino acid derivatives as chiral additives and aluminum
chloride as a catalyst. This asymmetric moderately living cationic
polymerization leads to an increase in molecular weight and specific
optical rotation with monomer conversion. In addition, asymmetric
block polymers consisting of opposite absolute configurational segments
were synthesized using both enantiomers sequentially as chiral additives.
Finally, a comprehensive analysis of the polymerization products and
the model reaction revealed that the optical activity of poly(BzF)
originates from the threo-diisotactic structure, which occurs by regio-,
trans-, and enantioselective propagation.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daichi Watanabe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuhei Tanaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
26
|
Yang Z, Xiao W, Zhang X, Liao S. Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polym Chem 2022. [DOI: 10.1039/d2py00134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-controlled cationic degenerate chain transfer polymerization of vinyl ethers has been developed by using a bisphosphonium organophotocatalyst.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenpei Xiao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Science, Beijing 100190, China
| |
Collapse
|
27
|
Matsuda M, Uchiyama M, Itabashi Y, Ohkubo K, Kamigaito M. Acridinium salts as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d1py01568k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of acridinium salts with high excited-state oxidative power are employed as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations under visible light.
Collapse
Affiliation(s)
- Marina Matsuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
28
|
Sakai T, Ito N, Hara M, Seki T, Uchiyama M, Kamigaito M, Satoh K, Hoshino T, Takeoka Y. One-pot synthesis of structure-controlled temperature-responsive polymer gels. Polym Chem 2022. [DOI: 10.1039/d2py00554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simultaneous use of metal Lewis acids and photo-radical generators for dithioesters, which are the common dormant species for cationic and radical polymerization, made it possible to convert a cationic species into a radical by photoirradiation.
Collapse
Affiliation(s)
- Tomoki Sakai
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Nagisa Ito
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Material Chemical Technology Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | | | - Yukikazu Takeoka
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| |
Collapse
|
29
|
Bingham NM, Abousalman-Rezvani Z, Collins K, Roth PJ. Thiocarbonyl Chemistry in Polymer Science. Polym Chem 2022. [DOI: 10.1039/d2py00050d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organised by reaction type, this review highlights the unique reactivity of thiocarbonyl (C=S) groups with radicals, anions, nucleophiles, electrophiles, in pericyclic reactions, and in the presence of light. In the...
Collapse
|
30
|
Destephen A, González de San Román E, Ballard N. The influence of thiocarbonylthio compounds on the B(C 6F 5) 3 catalyzed cationic polymerization of styrene. Polym Chem 2022. [DOI: 10.1039/d2py00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When applied to the cationic polymerization of styrene, thiocarbonylthio compounds can lead to a dual control mechanism, where degenerative chain transfer occurs concurrent with a reversible addition mechanism.
Collapse
Affiliation(s)
- Aurélie Destephen
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Estibaliz González de San Román
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
31
|
Lin X, Li J, Pan X, Zhang Z, Zhu J. Controlled Cationic Polymerization Using RAFT Agents with Selenonium Cations as Metal-Free Lewis Acids: From Homogeneous to Heterogeneous Catalysis. Polym Chem 2022. [DOI: 10.1039/d2py00089j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living cationic polymerization is a well-known technique, but it is generally limited by strict operating conditions. Here, a series of selenonium cations was used as a new class of catalysts...
Collapse
|