1
|
Wang Q, Meng JR, Shen YF, Zheng RH, Zhu H, Yao PF, Peng Q, Li QW. Synthesis of Low-Symmetric α-Cobalt(II) Hydroxide-Incorporated Cyanuric Acid Layers with High Néel Temperature and Large Coercivity: Structure and Magnetism. Inorg Chem 2024; 63:17914-17920. [PMID: 39258333 DOI: 10.1021/acs.inorgchem.4c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
α-Cobalt(II) (CoII) hydroxide (compound 1) incorporating cyanuric acid layers was synthesized via the solvothermal method. 1 exhibited two distinct characteristics, which were different from reported α-CoII hydroxides. (i) The presence of abundant consecutive hydrogen bonds between the adjacent hydroxide layers enhanced the driving force of crystallization along the direction of the c axis. Thus, 1 revealed high crystallinity without the disorder phenomenon. (ii) 1 showed low symmetry. The configuration of CoTd sites did not follow the regular triangular net. The low symmetry favored the magnetic anisotropy. Thus, 1 revealed ferrimagnetic behavior with a high Néel temperature (TN = 56.8 K) and coercivity (Hc = 36 kOe at 2 K). The ferrimagnetic behavior of 1 was validated via the Hubbard U correction density functional theory.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jun-Rong Meng
- Guangxi Key Laboratory of Urban Water Environment, College of Chemistry and Environmental Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yi-Fan Shen
- Guangxi Key Laboratory of Urban Water Environment, College of Chemistry and Environmental Engineering, Baise University, Baise, Guangxi 533000, China
| | - Ri-Hui Zheng
- Guangxi Key Laboratory of Urban Water Environment, College of Chemistry and Environmental Engineering, Baise University, Baise, Guangxi 533000, China
| | - Hongdan Zhu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Peng-Fei Yao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
- Guangxi Key Laboratory of Urban Water Environment, College of Chemistry and Environmental Engineering, Baise University, Baise, Guangxi 533000, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Quan-Wen Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Wang X, Li W, Zhang J, Zhao Q, Zhang G, Bai C, Lv L. Cu 2(OH) 3NO 3/γ-Al 2O 3 catalyzes Fenton-like oxidation for the advanced treatment of effluent organic matter (EfOM) in fermentation pharmaceutical wastewater: The synergy of Cu 2(OH) 3NO 3 and γ-Al 2O 3. WATER RESEARCH 2024; 261:122049. [PMID: 38976932 DOI: 10.1016/j.watres.2024.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The secondary effluent of fermentation pharmaceutical wastewater exhibits high chromaticity, elevated salinity, and abundant refractory effluent organic matter (EfOM), presenting significant treatment challenges and environmental threats. Herein, Cu2(OH)3NO3/γ-Al2O3 was fabricated through ultrasound-assisted impregnation and calcination to catalyze the Fenton-like oxidation for degrading organic pollutants in this secondary effluent. Under neutral conditions, with 400.00 mg/L H2O2, 8 g/L catalyst, and at 30 ℃, the EfOM and CODCr removal efficiencies can reach 96.90 % and 51.56 %, respectively. The Cu2(OH)3NO3/γ-Al2O3 catalyst possesses ideal reusability, maintaining CODCr, chromaticity, and EfOM removal efficiencies at 44.44 %-64.59 %, 85.45 %-93.45 %, and 61.00 %-95.00 % over 220 h in a continuous-flow catalytic oxidation system operated at room temperatures (15-25 ℃). Electron paramagnetic resonance results and density functional theory calculations indicate that •OOH may be the predominant reactive oxygen species, facilitated by the easier elongation of the OH bond in H2O2 compared to the OO bond. The adjusted electronic structure endows Cu2(OH)3NO3/γ-Al2O3 composite sites with superior catalytic selectivity for H2O2 activation compared to Cu2(OH)3NO3 single crystal sites, with γ-Al2O3 additionally facilitating H2O2 activation through electron donation. This research highlights the efficacy of Cu2(OH)3NO3/γ-Al2O3 in the advanced treatment of complex industrial wastewater, elucidating its catalytic mechanisms and potential applications.
Collapse
Affiliation(s)
- Xuhui Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China.
| | - Jingyi Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Caihua Bai
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
3
|
Fischer JC, Steentjes R, Chen DH, Richards BS, Zojer E, Wöll C, Howard IA. Determining Structures of Layer-by-Layer Spin-Coated Zinc Dicarboxylate-Based Metal-Organic Thin Films. Chemistry 2024; 30:e202400565. [PMID: 38642002 DOI: 10.1002/chem.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.
Collapse
Affiliation(s)
- Jan C Fischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Robbin Steentjes
- Institute for Solid-State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria
| | - Dong-Hui Chen
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Egbert Zojer
- Institute for Solid-State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Zhang JR, Mo Y, Fang W, Yuan YX, Yao JL, Wu JH. Insight into Multiphase Interlayer Molecular Packing and Stepwise Phase Transition in 4-(Phenylazo)benzoate Anion-Intercalated Layered Zinc Hydroxide. Inorg Chem 2024; 63:3692-3701. [PMID: 38340058 DOI: 10.1021/acs.inorgchem.3c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The properties of layered intercalation hybrids are closely related to interlayer molecular packing. To develop functional intercalation hybrids, it is essential to gain deep insights into interlayer molecular packing. This work reports a new comprehensive insight into the controllable multiphase interlayer molecular packing in 4-(phenylazo)benzoate anion-intercalated layered zinc hydroxide (LZH-4-PAB intercalation hybrids). The new insight breaks up the general understanding that the interlayer molecular packing of anions is usually single-phase, lacking diversity and controllability. Furthermore, it uncovers an interesting stepwise rather than the generally expected continuous phase transition of the interlayer molecular packing. The intercalated 4-PAB anions initially organize into the horizontal monolayer packing (θ = 0°, Phase I), which stepwise transforms to the tilted interdigitated antiparallel bilayer packing (θ ≈ 50°, Phase II) along with an increased intercalation loading and eventually to the vertical interdigitated antiparallel bilayer packing (θ = 90°, Phase III). The LZH-4-PAB hybrids exhibited a greatly enhanced interlayer molecular packing-dependent UV-vis absorption. This study provides helpful guidance for developing property-tailored intercalation hybrids. It may attract new interest in more layered intercalation hybrids. New and rich intercalation chemistry might be discovered in more functional intercalation hybrids beyond the 4-PAB anion-intercalated layered zinc hydroxide.
Collapse
Affiliation(s)
- Jing-Ru Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 RenAi Road, Suzhou, Jiangsu 215123, China
| | - Yi Mo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 RenAi Road, Suzhou, Jiangsu 215123, China
| | - Wei Fang
- Testing and Analysis Center, Soochow University, 199 RenAi Road, Suzhou, Jiangsu 215123, China
| | - Ya-Xian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 RenAi Road, Suzhou, Jiangsu 215123, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 RenAi Road, Suzhou, Jiangsu 215123, China
| | | |
Collapse
|
5
|
Romero-García DM, Velázquez-Carriles CA, Gomez C, Velázquez-Juárez G, Silva-Jara JM. Tannic acid-layered hydroxide salt hybrid: assessment of antibiofilm formation and foodborne pathogen growth inhibition. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2659-2669. [PMID: 37599839 PMCID: PMC10439069 DOI: 10.1007/s13197-023-05790-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 08/22/2023]
Abstract
Pathogenic bacteria in food are a public health problem worldwide. Polyphenolic bioactive compounds with antimicrobial activity and antioxidant capacity represent a tangible alternative to overcome this problem. To preserve the biological functions of phenolic compounds such as tannic acid, which has been described to possess antioxidant and antimicrobial activity, this study describes the synthesis of a zinc nanohydroxide to stabilize its properties. Characterization by XRD, FT-IR, SEM, DLS, and UV-vis evidenced the presence of tannic acid in the nanohybrid TA-Zn-LHS which was further confirmed by DPPH, ABTS and FRAP antioxidant activity techniques. Bacterial growth inhibition of Escherichia coli ATCC 8739, Salmonella Enteritidis, and Staphylococcus aureus ATCC 25923 was over 80% at 50 mg/mL of the TA-Zn-LHS and over 90% with Zn-LHS. Antibiofilm evaluation of these same strains showed biofilm formation inhibition > 90% and > 80% for Zn-LHS and TA-Zn-LHS, respectively. The toxicity evaluation of the materials in Artemia salina showed a classification of the materials as non-toxic to slightly toxic in concentrations up to 1 mg/mL. These results allow us to introduce a new nanohybrid useful for food safety with safe biological functions.
Collapse
Affiliation(s)
- Dulce María Romero-García
- Chemical Engineering Department, Universidad de Guadalajara CUCEI, Guadalajara, Jalisco 44430 México
| | | | - Cesar Gomez
- Chemical Engineering Department, Universidad de Guadalajara CUCEI, Guadalajara, Jalisco 44430 México
| | | | - Jorge Manuel Silva-Jara
- Pharmacobiology Department, Universidad de Guadalajara CUCEI, Guadalajara, Jalisco 44430 México
| |
Collapse
|
6
|
Chen Z, Fan Q, Huang M, Cölfen H. The Structure, Preparation, Characterization, and Intercalation Mechanism of Layered Hydroxides Intercalated with Guest Anions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300509. [PMID: 37271930 DOI: 10.1002/smll.202300509] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Indexed: 06/06/2023]
Abstract
Since the intercalation of anions into layered hydroxides (LHs) has a great impact not only on their nucleation and growth but also on their structure, composition, and size, the intercalation chemistry of LHs has aroused the strong interest of researchers. However, the progress in the fundamental understanding of LHs intercalated with guest anions have not been paralleled by a concomitant development of the preparation and performance improvement of such materials. Considering the guidance of a timely in-depth review for scientists in this area, a systematic introduction about the development that is made on the above-mentioned issues is highly needed but yet missing so far. Herein, recent advances in understanding the chemical composition and structure of LHs intercalated with guest anions are systematically summarized. Meanwhile, typical and emerging bottom-up synthesis methods of LHs intercalated with anions are reviewed, and the potential impact of external reaction parameters on the intercalation of anions into LHs are discussed . Besides, different analytical characterization techniques employed in the examination of guest anion-intercalated LHs are deliberated upon. Finally, although progress is slow in exploring the intercalation mechanism, as many examples as possible are included in this review and inferred the possible intercalation mechanism.
Collapse
Affiliation(s)
- Zongkun Chen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Qiqi Fan
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| |
Collapse
|
7
|
Qu S, Hadjittofis E, Malaret F, Hallett J, Smith R, Campbell KS. Controlling simonkolleite crystallisation via metallic Zn oxidation in a betaine hydrochloride solution. NANOSCALE ADVANCES 2023; 5:2437-2452. [PMID: 37143811 PMCID: PMC10153477 DOI: 10.1039/d3na00108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
Zinc oxide nanoparticles, with a hexagonal flake structure, are of significant interest across a range of applications including photocatalysis and biomedicine. Simonkolleite (Zn5(OH)8Cl2·H2O), a layered double hydroxide, is a precursor for ZnO. Most simonkolleite synthesis routes require precise pH adjustment of Zn-containing salts in alkaline solution, and still produce some undesired morphologies along with the hexagonal one. Additionally, liquid-phase synthesis routes, based on conventional solvents, are environmentally burdensome. Herein aqueous ionic liquid, betaine hydrochloride (betaine·HCl), solutions are used to directly oxidise metallic Zn, producing pure simonkolleite nano/microcrystals (X-ray diffraction analysis, thermogravimetric analysis). Imaging (scanning electron microscopy) showed regular and uniform hexagonal simonkolleite flakes. Morphological control, as a function of reaction conditions (betaine·HCl concentration, reaction time, and reaction temperature), was achieved. Different growth mechanisms were observed as a function of the concentration of betaine·HCl solution, both traditional classical growth of individual crystals and non-traditional growth patterns; the latter included examples of Ostwald ripening and oriented attachment. After calcination, simonkolleite's transformation into ZnO retains its hexagonal skeleton; this produces a nano/micro-ZnO with a relatively uniform shape and size through a convenient reaction route.
Collapse
Affiliation(s)
- Shaoqing Qu
- The University of Sheffield, Department of Chemical and Biological Engineering Sheffield UK
| | - Eftychios Hadjittofis
- The University of Sheffield, Department of Chemical and Biological Engineering Sheffield UK
- UCB Pharma SA Belgium Brussels Belgium
| | - Francisco Malaret
- Imperial College London, Department of Chemical Engineering London UK
- Nanomox Ltd. London UK
| | - Jason Hallett
- Imperial College London, Department of Chemical Engineering London UK
| | - Rachel Smith
- The University of Sheffield, Department of Chemical and Biological Engineering Sheffield UK
| | - Kyra Sedransk Campbell
- The University of Sheffield, Department of Chemical and Biological Engineering Sheffield UK
| |
Collapse
|
8
|
Song H, Peng Y, Li K, Shu L, Zhu C, Yang W. Room-temperature in situ fabrication of ultrathin undulating layered hydroxide salt membranes for efficient H2/CO2 separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
da Silva Junior RM, dos Santos EH, Nakagaki S. Metalloporphyrin-based multifunctional catalysts for one-pot assisted Tandem reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Deng H, Chen Z, Chen Y, Mei J, Xu W, Wang L, Peng DL. Nickel submicron particles synthesized via solvothermal approach in the presence of organic bases: formation mechanism and magnetic properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Shinagawa T, Kotobuki N, Ohtaka A. Oriented growth of stacking α-cobalt hydroxide salt continuous films and their topotactic-like transformation to oriented mesoporous films of Co 3O 4 and CoO. NANOSCALE ADVANCES 2022; 5:96-105. [PMID: 36605813 PMCID: PMC9765712 DOI: 10.1039/d2na00594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Mesoporous metal oxide films composed of nanocrystal assemblies with an aligned crystallographic orientation are key nanostructures for efficient interfacial reactions; however, the development of a simple and versatile method for their formation on substrates still constitutes a challenge. Here we report the template-free centimetre-scale formation of novel cobalt oxide films of Co3O4 and CoO with a [111]-oriented mesoporous structure starting from stacking cobalt hydroxide continuous films. The cobalt hydroxide precursor is formed electrochemically on conductive substrates from a Co(NO3)2 aqueous solution at room temperature. A thorough characterization by means of scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis-NIR spectroscopy, IR spectroscopy and Raman spectroscopy analyses reveals that the precursor film is an α-type layered cobalt hydroxide salt (α-Co-LHS) containing interlayer nitrate and hydrated water, i.e., α-Co(OH) x (NO3) y ·nH2O, with a [001]-oriented stacking film structure. Heat treatment of the [001]-α-Co-LHS films using different conditions, i.e., under air at 550 °C or under vacuum at 500 °C, results in the selective formation of Co3O4 or CoO mesoporous films, respectively. A plausible explanation for the observed centimetre-scale topotactic-like transformation from α-Co-LHS[001] to Co3O4[111] or CoO[111] is given according to the atomic framework similarity between the hydroxide precursor and the final oxides.
Collapse
Affiliation(s)
- Tsutomu Shinagawa
- Electronic Materials Research Division, Morinomiya Center, Osaka Research Institute of Industrial Science and Technology (ORIST) 1-6-50 Morinomiya, Joto Osaka 536-8553 Japan
| | - Natsuko Kotobuki
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology 5-16-1 Ohmiya, Asahi Osaka 535-8585 Japan
| | - Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology 5-16-1 Ohmiya, Asahi Osaka 535-8585 Japan
| |
Collapse
|
12
|
Evaluation and Characterization of Ultrathin Poly(3-hydroxibutirate) Fibers Loaded with Tetraphenylporphyrin and Its Complexes with Fe(III) and Sn(IV). Polymers (Basel) 2022; 14:polym14030610. [PMID: 35160599 PMCID: PMC8838757 DOI: 10.3390/polym14030610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of small additions (1–5 wt.%) of tetraphenylporphyrin (TPP) and its complexes with Fe (III) and Sn (IV) on the structure and properties of ultrathin fibers based on poly (3-hydroxybutyrate) (PHB) has been studied. A comprehensive study of biopolymer compositions included X-ray diffraction (XRD), differential scanning calorimetry (DSC), spin probe electron paramagnetic resonance method (EPR), and scanning electron microscopy (SEM). It was demonstrated that the addition of these dopants to the PHB fibers modifies their morphology, crystallinity and segmental dynamics in the amorphous regions. The annealing at 140 °C affects crystallinity and molecular mobility in the amorphous regions of the fibers, however the observed changes exhibit multidirectional behavior, depending on the type of porphyrin and its concentration in the fiber. Fibers exposure to an aqueous medium at 70 °C causes a nonlinear change in the enthalpy of melting and challenging nature of a change of the molecular dynamics.
Collapse
|
13
|
Adsorption and Reduction of Aqueous Cr by FeS-Modified Fe-Al Layered Double Hydroxide. SUSTAINABILITY 2021. [DOI: 10.3390/su14010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To remedy the widespread chromium (Cr) pollution in the environment, this study mainly used the ultrasonic-assisted co-precipitation and precipitation methods to prepare FeS-modified Fe-Al-layered double hydroxide (FeS/LDH) composite material. The experimental results showed that FeS/LDH has higher removal efficiency of Cr in aqueous solution and stronger anti-interference ability than unmodified LDH. Under the same reaction conditions, the removal efficiency of total Cr(Cr(T)) using LDH was 34.85%, and the removal efficiency of Cr(VI) was 46.76%. For FeS/LDH, the removal efficiency of Cr(T) and Cr(VI) reached 99.57% and 100%, respectively. The restoration of Cr(T) and Cr(VI) by FeS/LDH satisfied the Langmuir adsorption isotherm. The maximum adsorption capacity of Cr(T) and Cr(VI) achieved 102.9 mg/g and 147.7 mg/g. The efficient removal of Cr by FeS/LDH was mainly based on the triple synergistic effect of anion exchange between Cr(VI) and interlayer anions, redox of Cr(VI) with Fe2+ and S2−, and co-precipitation of Fe3+ and Cr3+.
Collapse
|