1
|
Gibreel M, Perea-Lowery L, Garoushi S, Wada J, Lassila L, Vallittu P. Effect of different surface treatments on shear bond strength of autopolymerizing repair resin to denture base materials processed with different technologies. J Prosthodont Res 2024; 68:549-557. [PMID: 38296526 DOI: 10.2186/jpr.jpr_d_23_00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
PURPOSE To evaluate the effect of chemical, mechanical, and combination surface treatments on the shear bond strength (SBS) of autopolymerizing repair resin to conventional heat-cured, computer aided design (CAD)-computer aided manufacturing (CAM) milled, and three-dimensionally (3D) printed denture base materials. METHODS Specimens were fabricated and divided according to the surface treatment as follows: no surface treatment (control group), monomer treatment (monomer group), resin remover treatment (resin remover group), roughening with 180 FEPA grit abrasive paper followed by monomer treatment (180-grit plus monomer group), and air particle abrasion (air abrasion group). Autopolymerizing resin cylinders were attached before accelerated aging of the specimens in water at 100 °C for 16 h. The SBS was tested using a universal testing machine. Surface roughness was evaluated using a 3D optical profilometer. Scanning electron microscopy (SEM) and stereomicroscopy were used for surface analysis. Data was collected and analyzed using analysis of variance (ANOVA) and Kruskall-Wallis tests (α = 0.05). RESULTS The denture base material and surface treatment significantly affected the SBS. The milled Temp Basic Tissue demonstrated the highest SBS values across all surface treatments, whereas the two 3D-printed denture base materials exhibited the lowest SBS values. CONCLUSIONS The bond strength of CAD-CAM-milled denture base resins to autopolymerizing repair resin is comparable to that of heat-cured resins. Surface roughening using air particle abrasion or 180-grit carbide paper can enhance the bond strength of the autopolymerizing repair resin to 3D-printed denture base materials.
Collapse
Affiliation(s)
- Mona Gibreel
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Leila Perea-Lowery
- Department of Biomaterials Science, Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science, Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Junichiro Wada
- Department of Advanced Prosthodontics, Tokyo Medical and Dental University -TMDU, Tokyo, Japan
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
2
|
Sahin Z, Ozer NE, Akan T, Kılıcarslan MA, Karaagaclıoglu L. The impact of different surface treatments on repair bond strength of conventionally, subtractive-, and additive-manufactured denture bases. J ESTHET RESTOR DENT 2024; 36:1337-1347. [PMID: 38747067 DOI: 10.1111/jerd.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024]
Abstract
OBJECTIVE This study aimed to examine the shear bond strength (SBS) of repair material to conventionally, subtractive-, and additive-manufactured denture bases after different surface treatments. MATERIALS AND METHODS Disk-shaped test specimens (N = 300) were prepared from denture base materials produced by one conventional (Procryla), one subtractive (Yamahachi), and one additive (Curo Denture) method. The test specimens were randomly divided into five groups (n = 10) and exposed to a variety of surface treatments-Group A: no surface treatment; Group B: grinding with silicon carbide paper; Group C: sandblasting; Group D: erbium: yttrium-aluminum-garnet laser; and Group E: plasma. Repair was performed with autopolymerizing acrylic resin (Meliodent). Surface roughness analyses were performed with a profilometer. Scanning electron microscopy was used to examine one specimen from each subgroup. SBS was evaluated on a universal testing machine. Failure types were observed under a stereomicroscope. RESULTS Surface roughness values were significantly higher in all test materials in Group D than in the other groups (p < 0.001). For conventional resin, the SBS values were higher in Group C than in Groups A, D, and E (p < 0.001). For CAD/CAM material, Groups B and C had significantly greater SBS increases compared with Group E (p < 0.001). For 3D material, Group D showed higher SBS than all groups except Group C (p < 0.001). CONCLUSIONS For SBS, sandblasting was most effective in the conventional group, whereas laser treatment was the most effective in the additive-manufactured group. For the subtractive group, surface treatments other than plasma exhibited similar SBS. CLINICAL SIGNIFICANCE In repairing fractured prostheses, any degree of roughening suitable for the material content may provide an SBS benefit.
Collapse
Affiliation(s)
- Zeynep Sahin
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| | - Nazire Esra Ozer
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehmet Ali Kılıcarslan
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Yenimahalle, Ankara, Turkey
| | - Lale Karaagaclıoglu
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| |
Collapse
|
3
|
Chladek G, Adeeb S, Pakieła W, Coto NP. Effect of Different Surface Treatments as Methods of Improving the Mechanical Properties after Repairs of PMMA for Dentures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3254. [PMID: 38998337 PMCID: PMC11242954 DOI: 10.3390/ma17133254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Denture fractures are a common problem in dental practice, and their repair is considered a first option to restore their functional properties. However, the inter-material resistance may become compromised. Typically, the bond between these materials weakens. Therefore, various surface treatment methods may be considered to enhance their mechanical properties. Poly(methyl methacrylate) (PMMA) heat-polymerized resin (HPR) was used as the repaired material, cold-polymerized material (CPR) for the repairs, and different variants of alumina abrasive blasting (AB), methyl methacrylate (M), ethyl acetate (EA), methylene chloride (CH), and isopropyl alcohol (IA) treatments were applied. Finally, combined surface treatments were chosen and analyzed. Surface morphologies after treatments were observed by scanning electron microscopy and the flexural, shear, and impact strengths were tested. AB and chemical treatment with CH, M, and EA was used to improve all mechanical properties, and further improvement of the properties could be achieved by combining both types of treatments. Varied changes in surface morphologies were observed. Treatment with IA yielded less favorable results due to the low impact strength. The best results were achieved for the combination of AB and CH, but during the application of CH it was necessary to strictly control the exposure time.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Sandra Adeeb
- Adeeb Clinic, 73/1 Legionów Polskich Str., 41-300 Dąbrowa Górnicza, Poland
| | - Wojciech Pakieła
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Neide Pena Coto
- Division of Maxillofacial Prosthesis/Sports Dentistry, University of Sao Paulo, Av. Prof. Lineu Prestes 2227, São Paulo 05508-900, Brazil
| |
Collapse
|
4
|
Sahin Z, Ozer NE, Akan T, Kılıcarslan MA, Karaagaclıoglu L. The effect of various surface treatments on the repair bond strength of denture bases produced by digital and conventional methods. Odontology 2024; 112:782-797. [PMID: 38157108 DOI: 10.1007/s10266-023-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
There is limited information on the repairability of prostheses produced with digital technology. This study aims to evaluate various surface treatments on flexural bond strength of repaired dentured base resins produced by digital and conventional methods. A total of 360 samples were prepared from one heat-polymerized, one CAD/CAM milled and one 3D printed denture base materials. All of the test samples were subjected to thermocycling (5-55 °C, 5000 cycles) before and after repair with auto-polymerizing acrylic resin. The test samples were divided into five subgroups according to the surface treatment: grinding with silicon carbide (SC), sandblasting with Al2O3 (SB), Er:YAG laser (L), plasma (P) and negative control (NC) group (no treatment). In addition, the positive control (PC) group consisted of intact samples for the flexural strength test. Surface roughness measurements were performed with a profilometer. After repairing the test samples, a universal test device determined the flexural strength values. Both the surface topography and the fractured surfaces of samples were examined by SEM analysis. The elemental composition of the tested samples was analyzed by EDS. Kruskal-Wallis and Mann-Whitney U tests were performed for statistical analysis of data. SB and L surface treatments statistically significantly increased the surface roughness values of all three materials compared to NC subgroups (p < 0.001). The flexural strength values of the PC groups in all three test materials were significantly higher than those of the other groups (p < 0.001). The repair flexural strength values were statistically different between the SC-SB, L-SB, and NC-SB subgroups for the CAD/CAM groups, and the L-SC and L-NC subgroups for the 3D groups (p < 0.001). The surface treatments applied to the CAD/CAM and heat-polymerized groups did not result in a statistically significant difference in the repair flexural strength values compared to the NC groups (p > 0.05). Laser surface treatment has been the most powerful repair method for 3D printing technique. Surface treatments led to similar repair flexural strengths to untreated groups for CAD/CAM milled and heat-polymerized test samples.
Collapse
Affiliation(s)
- Zeynep Sahin
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., Çankaya, 06510, Ankara, Turkey.
| | - Nazire Esra Ozer
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., Çankaya, 06510, Ankara, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehmet Ali Kılıcarslan
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Yenimahalle, Ankara, Turkey
| | - Lale Karaagaclıoglu
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., Çankaya, 06510, Ankara, Turkey
| |
Collapse
|
5
|
Gad MM, Abualsaud R. Effect of repair and surface treatments on the strength of digitally fabricated resin-based dental prostheses: A systematic review of in vitro studies. J Dent 2024; 141:104806. [PMID: 38154701 DOI: 10.1016/j.jdent.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVE This review investigated the current literature pertaining to the repairability of computer-aided design-computer-aided manufacturing (CAD-CAM) milled and three-dimensional (3D) printed resin-based dental prostheses (RBDPs) as well as the appropriate surface treatment for each repair material that will produce adequate repair bond strength. DATA/SOURCES PubMed, Web of Science, and Scopus databases were searched for published articles involving repair of CAD-CAM RBDPs between January 2010 and June 2023. Data were collected and analyzed to reveal the surface treatment effects, suggested repair materials, and strength of repaired RBDPs. STUDY SELECTION Out of 164 retrieved titles, 11 studies were included, of which five investigated the repair of 3D-printed RBDPs, three investigated the repair of CAD-CAM milled resins, and three investigated both materials. Additionally, of the included studies, seven investigated denture base resins, three studied provisional restoration resins, and one evaluated 3D-printed intraoral splints. Various surface treatments were suggested, with air-abrasive methods being the most commonly used. Different materials for resin repair were proposed and used, including auto-polymerized, reline, and composite resins. For 3D-printed resins, repair with Bis-acrylic/Bis-GMA composites improved repair strength. CONCLUSION Surface treatments positively affected the repair strength of conventional and milled RBDPs. However, challenges remain relevant to the repair of 3D-printed resins owing to composition mismatches and fabrication techniques. Therefore, further investigation is required to develop new 3D-printed resins. CLINICAL SIGNIFICANCE CAD-CAM milled resins have satisfactory repair strength, which increases with surface treatment. The repair of 3D-printed resins has proven challenging even with surface treatments. However, composite resins are the materials of choice.
Collapse
Affiliation(s)
- Mohammed M Gad
- Lecturer, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Reem Abualsaud
- Associate Professor, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
6
|
Effect of Particle Sizes and Contents of Surface Pre-Reacted Glass Ionomer Filler on Mechanical Properties of Auto-Polymerizing Resin. Dent J (Basel) 2023; 11:dj11030072. [PMID: 36975569 PMCID: PMC10047318 DOI: 10.3390/dj11030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Herein, the mechanical properties of an auto-polymerizing resin incorporated with a surface pre-reacted glass ionomer (S-PRG) filler were evaluated. For this, S-PRG fillers with particle sizes of 1 μm (S-PRG-1) and 3 μm (S-PRG-3) were mixed at 10, 20, 30, and 40 wt% to prepare experimental resin powders. The powders and a liquid (powder/liquid ratio = 1.0 g/0.5 mL) were kneaded and filled into a silicone mold to obtain rectangular specimens. The flexural strength and modulus (n = 12) were recorded via a three-point bending test. The flexural strengths of S-PRG-1 at 10 wt% (62.14 MPa) and S-PRG-3 at 10 and 20 wt% (68.68 and 62.70 MPa, respectively) were adequate (>60 MPa). The flexural modulus of the S-PRG-3-containing specimen was significantly higher than that of the S-PRG-1-containing specimen. Scanning electron microscopy observations of the specimen fracture surfaces after bending revealed that the S-PRG fillers were tightly embedded and scattered in the resin matrix. The Vickers hardness increased with an increasing filler content and size. The Vickers hardness of S-PRG-3 (14.86–15.48 HV) was higher than that of S-PRG-1 (13.48–14.97 HV). Thus, the particle size and content of the S-PRG filler affect the mechanical properties of the experimental auto-polymerizing resin.
Collapse
|
7
|
Mishra S, Chaturvedi S, Ali M, Pandey KK, Alqahtani NM, Alfarsi MA, Addas MK, Vaddamanu SK, Al Ahmari NM, Alqahtani SM, Yaqoob A, Alqahtani WMS. Dimensional Stability of Light-Activated Urethane Dimethacrylate Denture Base Resins. Polymers (Basel) 2023; 15:polym15030744. [PMID: 36772044 PMCID: PMC9921156 DOI: 10.3390/polym15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
An accurate and dimensionally stable trial denture base is required for a successful denture. The aim of this in vitro study was to assess the dimensional stability of a light-activated urethane dimethacrylate (UDMA) visible light cure (VLC) denture base with three fabrication techniques and different curing cycles. Forty-five VLC denture base samples were divided evenly into three groups. Group A used a conventional fabrication technique with a curing cycle of 5 min. Group B used a modified fabrication technique with two 4-min curing cycles. Group C used a multi-step fabrication technique with three curing cycles (4 min, plus 4 min, plus 2 min). The samples were sectioned and observed under a stereomicroscope to measure the discrepancy between the sample and the master cast. The mean dimensional discrepancy (mm) at the molar region at mid-palate, after 24 h in Group A, B and C was 0.790 mm, 0.741 mm and 0.379 mm, respectively; at the right ridge crest, it was 0.567, 0.408 and 0.185, while at the left ridge crest it was 0.475, 0.331 and 0.125, respectively. Statistical analysis showed significantly different dimensional discrepancies among the groups at all three sites; right ridge crest (F = 93.54, p < 0.001), left ridge crest (F = 105.96, p < 0.001) and mid-palate (F = 125.53, p < 0.001). Within the limitations of this laboratory study, it can be concluded that the denture base using a multi-step fabrication technique with three curing cycles provides better adaptation than the conventional technique. The significance of the study is that clinicians should consider performing denture base fabrication using a multi-step technique to enhance adaptation and hence the stability of the dentures for patients.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Prosthodontics, Career Postgraduate Institute of Dental Sciences, Lucknow 226008, India
| | - Saurabh Chaturvedi
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
- Correspondence:
| | - Mariyam Ali
- Department of Prosthodontics, Career Postgraduate Institute of Dental Sciences, Lucknow 226008, India
| | - Kaushik Kumar Pandey
- Department of Prosthodontics, Career Postgraduate Institute of Dental Sciences, Lucknow 226008, India
| | - Nasser M. Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed A. Alfarsi
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Khaled Addas
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Sunil Kumar Vaddamanu
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Nasser M. Al Ahmari
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Ashfaq Yaqoob
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Waleed M. S. Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
8
|
Gad MM, Albazroun Z, Aldajani F, Elakel AM, El Zayat M, Akhtar S, Khan SQ, Ali S, Rahoma AM. Repair Bond Strength of Conventionally and Digitally Fabricated Denture Base Resins to Auto-Polymerized Acrylic Resin: Surface Treatment Effects In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9062. [PMID: 36556867 PMCID: PMC9785635 DOI: 10.3390/ma15249062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Denture base fracture is one of the most annoying problems for both prosthodontists and patients. Denture repair is considered to be an appropriate solution rather than fabricating a new denture. Digital denture fabrication is widely spreading nowadays. However, the repair strength of CAD-CAM milled and 3D-printed resins is lacking. This study aimed to evaluate the effect of surface treatment on the shear bond strength (SBS) of conventionally and digitally fabricated denture base resins. One l heat-polymerized (Major base20), two milled (IvoCad, AvaDent), and three 3D-printed (ASIGA, NextDent, FormLabs) denture base resins were used to fabricate 10 × 10 × 3.3 acrylic specimens (N = 180, 30/resin, n = 10). Specimens were divided into three groups according to surface treatment; no treatment (control), monomer application (MMA), or sandblasting (SB) surface treatments were performed. Repair resin was bonded to the resin surface followed by thermocycling (5000 cycles). SBS was tested using a universal testing machine where a load was applied at the resin interface (0.5 mm/min). Data were collected and analyzed using ANOVA and a post hoc Tukey test (α = 0.05). SEM was used for failure type and topography of fractured surfaces analysis. The heat-polymerized and CAD-CAM milled groups showed close SBS values without significance (p > 0.05), while the 3D-printed resin groups showed a significant decrease in SBS (p < 0.0001). SBS increased significantly with monomer application (p < 0.0001) except for the ASIGA and NextDent groups, which showed no significant difference compared to the control groups (p > 0.05). All materials with SB surface treatment showed a significant increase in SBS when compared with the controls and MMA application (p < 0.0001). Adhesive failure type was observed in the control groups, which dramatically changed to cohesive or mixed in groups with surface treatment. The SBS of 3D-printed resin was decreased when compared with the conventional and CAD-CAM milled resin. Regardless of the material type, SB and MMA applications increased the SBS of the repaired resin and SB showed high performance.
Collapse
Affiliation(s)
- Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zainab Albazroun
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatimah Aldajani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ahmed M. Elakel
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mai El Zayat
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ahmed M. Rahoma
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Jo YH, Lee WJ, Lee JH, Yoon HI. Antifungal activity, mechanical properties, and accuracy of three-dimensionally printed denture base with microencapsulated phytochemicals on varying post-polymerization time. BMC Oral Health 2022; 22:611. [PMID: 36522725 PMCID: PMC9756466 DOI: 10.1186/s12903-022-02654-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Studies on the antifungal activity, flexural strength, Vickers hardness, and intaglio surface trueness of three-dimensionally printed (3DP) denture bases with microencapsulated phytochemicals with respect to changes in post-polymerization time (PPT) are lacking. METHODS Specimens of various shapes and dimensions were fabricated with a 3DP denture base resin mixed with 5 wt% phytoncide-filled microcapsules. Each specimen was subjected to different PPT protocols of 5, 10, 20, and 30 min. Specimens without microcapsules with 5-min PPT were used as the negative control group. Cell colonies were counted to evaluate antifungal activity. Three-point bending and Vickers hardness tests were performed to measure the flexural strengths and hardness of the specimens. Fourier-transform infrared spectrometry was used to inspect the degree of conversion (DC). The intaglio surface trueness was measured using root-mean-square estimates calculated by superimposition analysis. A non-parametric Kruskal-Wallis test or one-way analysis of variance was performed (α = 0.05). RESULTS The specimens with microcapsules and 10-min PPT showed the highest antifungal activity among the tested groups. Compared with the positive control group (5-min PPT), the specimens with PPTs of 10 min or longer showed significantly higher mean flexural strength, higher DC, greater hardness, and better trueness (all, P < 0.05). Except for the difference in antifungal activity, no statistically significant differences were detected between the specimens subjected to 10-, 20-, and 30-min PPT. CONCLUSION The 3DP denture base filled with microencapsulated phytoncide showed different antifungal activity and physical properties on changing PPT. The 3DP denture base containing phytoncide-filled microcapsules at 5 wt% concentration and subjected to 10-min PPT exhibited sufficient antifungal activity as well as mechanical properties and accuracy within clinical acceptance.
Collapse
Affiliation(s)
- Ye-Hyeon Jo
- grid.31501.360000 0004 0470 5905Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Won-Jun Lee
- grid.31501.360000 0004 0470 5905Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Ji-Hyun Lee
- grid.31501.360000 0004 0470 5905Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hyung-In Yoon
- grid.31501.360000 0004 0470 5905Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
10
|
Viotto HEDC, Silva MDD, Nunes TSBS, Coelho SRG, Pero AC. Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin. J Adv Prosthodont 2022; 14:305-314. [PMID: 36452364 PMCID: PMC9672696 DOI: 10.4047/jap.2022.14.5.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 10/06/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.
Collapse
Affiliation(s)
- Hamile Emanuella do Carmo Viotto
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Marcela Dantas Dias Silva
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Thaís Soares Bezerra Santos Nunes
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Sabrina Romão Gonçalves Coelho
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Ana Carolina Pero
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Ceraulo S, Caccianiga P, Casto C, Baldoni M, Caccianiga G. COVID-19 and Prosthetic Emergencies, Home Care in Fragile Patients: A Case Report. Healthcare (Basel) 2022; 10:healthcare10081407. [PMID: 36011064 PMCID: PMC9408361 DOI: 10.3390/healthcare10081407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
A case of home care is proposed on a frail non-ambulatory patient who presents an old lower total prosthesis in resin broken in several parts. The various pieces of the prosthesis were joined by the patient, as if it were a puzzle, using a glue for plastics and wood. The union of the parts attached with glue was the consequence of the lockdown in the COVID-19 period and of the economic hardship experienced by the elderly disabled patient during the pandemic period. The procedure for preserving the glued parts was carried out carefully, trying not to modify the edges of the glued pieces, to join them correctly, thereby restoring the correct occlusion to subsequently perform the relining. The old lower total prosthesis obtained after the repair and relining operations allowed for the restoration of the patient’s chewing and smile. The procedure presented is easily repeatable, risk-free and achievable even in a short time, satisfying elderly non-self-sufficient patients who need interventions for prosthetic emergencies during a period of confinement.
Collapse
Affiliation(s)
- Saverio Ceraulo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (M.B.); (G.C.)
| | - Paolo Caccianiga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (M.B.); (G.C.)
- Correspondence:
| | | | - Marco Baldoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (M.B.); (G.C.)
| | - Gianluigi Caccianiga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (M.B.); (G.C.)
| |
Collapse
|
12
|
Gad MM, Al-Thobity AM. The impact of nanoparticles-modified repair resin on denture repairs: a systematic review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:46-53. [PMID: 33936326 PMCID: PMC8079279 DOI: 10.1016/j.jdsr.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
This study aimed to evaluate the effect of nanoparticles on the mechanical properties of acrylic denture repairs. The review was designed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Database search was conducted involving articles published from 2000 to 2020 using the following keywords: PMMA/nanoparticles, denture repair/nanoparticles, and repair strength/nanoparticles. PubMed/MEDLINE, Embase, Google Scholar, Scopus, and EBSCOhost were used to find only those studies used repair resin reinforced with nanoparticles for denture repairs. Due to variations between nanoparticles types, sizes, and testing properties, the quantitative statistical meta-analysis couldn't be conducted. Therefore, a descriptive data analysis was applied. Out of 379 articles, 8 articles were included; three nanoparticles, zirconium oxide (nano-ZrO2), silicon oxide (nano-SiO2), and aluminum oxide (nano-Al2O3) nanoparticles were used as reinforcements to repair resin. Seven studies investigated the effects of 0.25-7.5 wt.% nano-ZrO2 on the mechanical properties of repaired denture bases and reported positive effects with high concentrations. Two studies study investigated 0.25-0.75 wt% nano-SiO2 and found that low % nano-SiO2 concentrations improved repair strength while, one study showed that 1 and 1.5 wt.% nano-Al2O3 increased the flexural strength. Although nanoparticles offer positive effects on the properties of denture repair, inadequate studies exist. Therefore, further investigations are required. Scientific field of dental Science: Prosthodontics.
Collapse
Affiliation(s)
- Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Ahmad M. Al-Thobity
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Neshandar Asli H, Rahimabadi S, Babaee Hemmati Y, Falahchai M. Effect of different surface treatments on surface roughness and flexural strength of repaired 3D-printed denture base: An in vitro study. J Prosthet Dent 2021; 126:595.e1-595.e8. [PMID: 34366117 DOI: 10.1016/j.prosdent.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
STATEMENT OF PROBLEM Information regarding three-dimensional-printed (3D-printed) dentures, especially when using the additive manufacturing technique, and the repair strength of this type of denture is sparse. PURPOSE The purpose of this in vitro study was to assess the effect of different surface treatments on the surface roughness and flexural strength of repaired 3D-printed denture base. MATERIAL AND METHODS One hundred and twenty 3D-printed bar-shaped specimens were fabricated from acrylic resin and divided into 6 groups (n=20). The positive control group consisted of intact specimens. The other specimens were sectioned in half with a 1-mm gap. Except for the specimens in the negative control group, the remaining specimens were treated with erbium: yttrium-aluminum-garnet (Er:YAG) laser, airborne-particle abrasion, a combination of laser and airborne-particle abrasion, and bur grinding. All sectioned specimens were repaired by autopolymerizing acrylic resin and thermocycled after measuring their surface roughness with a profilometer. The flexural strength test was performed with a universal testing machine. One specimen of each group was inspected under a scanning electron microscope. The data were analyzed with ANOVA, followed by the Games-Howell post hoc test or the Kruskal-Wallis test followed by the Mann-Whitney test with Bonferroni adjustment. RESULTS The mean flexural strength of the PC group was significantly higher than that of all repaired groups (P<.001). All surface-treated groups showed significantly higher flexural strength (P<.05) and surface roughness (P<.004) than the negative control group. Bur grinding provided significantly higher flexural strength than other surface treatments (P<.001) and higher surface roughness than laser and airborne-particle abrasion plus laser (P<.001). CONCLUSIONS All surface treatments significantly increased the surface roughness and flexural strength, but none of them yielded a strength comparable with that of the intact group. Bur grinding provided the highest flexural strength.
Collapse
Affiliation(s)
- Hamid Neshandar Asli
- Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Samiye Rahimabadi
- General Practitioner, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasamin Babaee Hemmati
- Assistant Professor, Department of Orthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Falahchai
- Assistant Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Kuscu E, Klink A, Spintzyk S, Kraemer Fernandez P, Huettig F. Bonding Interface and Repairability of 3D-Printed Intraoral Splints: Shear Bond Strength to Current Polymers, with and without Ageing. MATERIALS 2021; 14:ma14143935. [PMID: 34300854 PMCID: PMC8307865 DOI: 10.3390/ma14143935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
This in-vitro study investigates the bonding interfaces reached by the conditioning of a splint material additively manufactured by digital light processing (AM base) as well as the shear bond strength (SBS) of resins bonded to these surfaces (repair material). Therefore, the AM base was either stored in dry for 12 h or wet environment for 14 days to simulate ageing by intraoral wear. The dry and wet group was bonded after physical and/or chemical conditioning to cylinders made from polymethylmethacrylate or four novel polymers allowing splint modifications. Blasted and methylmethacrylate (MMA)-conditioned Polymethylmethacrylate (PMMA) bonded to PMMA acted as the gold standard. The surface profiles revealed highest differences of Ra towards the gold standard in AM base conditioned with other than MMA after sandblasting. The adhesively bonded repair materials of the wet AM base were further aged in wet environment for 14 days. The SBS of the gold standard (25.2 MPa and 25.6 MPa) was only reached by PMMA bonded to blasted and MMA-conditioned AM base after dry (22.7 MPa) and non-conditioned after wet storage (23 MPa). Four repair materials failed to reach the threshold of 5 MPa after dry storage and three after wet storage, respectively. Non-conditioned AM base revealed the highest risk for adhesive fractures when using other resins than PMMA.
Collapse
Affiliation(s)
- Ebru Kuscu
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
- Correspondence:
| | - Andrea Klink
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
| | - Sebastian Spintzyk
- Section Medical Materials Science and Technology, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany;
| | - Pablo Kraemer Fernandez
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
| | - Fabian Huettig
- Department of Prosthodontics, University Clinic of Dentistry, Oral Medicine, and Maxillofacial Surgery with Dental School, Tuebingen University Hospital, Osianderstr. 2–8, 72076 Tübingen, Germany; (A.K.); (P.K.F.); (F.H.)
| |
Collapse
|
15
|
Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel) 2020; 12:E2299. [PMID: 33049984 PMCID: PMC7599472 DOI: 10.3390/polym12102299] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
A wide range of polymers are commonly used for various applications in prosthodontics. Polymethyl methacrylate (PMMA) is commonly used for prosthetic dental applications, including the fabrication of artificial teeth, denture bases, dentures, obturators, orthodontic retainers, temporary or provisional crowns, and for the repair of dental prostheses. Additional dental applications of PMMA include occlusal splints, printed or milled casts, dies for treatment planning, and the embedding of tooth specimens for research purposes. The unique properties of PMMA, such as its low density, aesthetics, cost-effectiveness, ease of manipulation, and tailorable physical and mechanical properties, make it a suitable and popular biomaterial for these dental applications. To further improve the properties (thermal properties, water sorption, solubility, impact strength, flexural strength) of PMMA, several chemical modifications and mechanical reinforcement techniques using various types of fibers, nanoparticles, and nanotubes have been reported recently. The present article comprehensively reviews various aspects and properties of PMMA biomaterials, mainly for prosthodontic applications. In addition, recent updates and modifications to enhance the physical and mechanical properties of PMMA are also discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
16
|
Gad MMA, Abualsaud R, Al-Thobity AM, Almaskin DF, AlZaher ZA, Abushowmi TH, Qaw MS, Akhtar S, Al-Harbi FA. Effect of SiO2 Nanoparticles Addition on the Flexural Strength of Repaired Acrylic Denture Base. Eur J Dent 2020; 14:19-23. [PMID: 31955401 PMCID: PMC7069758 DOI: 10.1055/s-0039-1701076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective
The objective of this study was to evaluate the effect of nano-SiO
2
addition on the flexural strength (FS) of repaired acrylic denture base.
Materials and Methods
Heat-polymerized acrylic resin specimens were fabricated in dimensions of (65 × 10 × 2.5 ± 0.1 mm
3
) and then sectioned and prepared, creating repair gap with butt (90 degrees) and bevel (45 degrees) repair surface designs forming two main groups according to joint design. Further subdivision was done into four groups (
n
= 10) according to nano-SiO
2
concentration: one unmodified group and three modified groups (0.25, 0.5, and 0.75 wt %) in the autopolymerized repair resin. Each pair of a specimen was assembled in a mold and repaired according to manufacturer’s recommendations.
Statistical Analysis
Three-point bending test was done to measure FS, followed by scanning electron microscope (SEM) examination for fracture surface analysis. Data were analyzed using ANOVA and Tukey’s post hoc test (α = 0.05).
Results
The addition of nano-SiO
2
significantly improved FS of repaired acrylic resin in comparison to the unmodified group (
p
˂ 0.05). For butt joint, significant differences between nano-SiO
2
reinforced groups were noticed (
p
˂ 0.05), while reinforced beveled groups did not differ significantly (
p
˃ 0.05). Bevel design remarkably increased FS compared with butt design per respective filler concentration. From the SEM images, improved FS was presented with a homogeneous distribution of nano-SiO
2
within polymethyl methacrylate.
Conclusion
Nano-SiO
2
addition to repair resin and 45 degree-beveled repair surface increased FS of repaired acrylic resin.
Collapse
Affiliation(s)
- Mohammed Moustafa Ahmed Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Abualsaud
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmad M Al-Thobity
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Danah F Almaskin
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zahra A AlZaher
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tahani H Abushowmi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Masoumah S Qaw
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fahad A Al-Harbi
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
17
|
Prosthodontics dental materials: From conventional to unconventional. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110167. [DOI: 10.1016/j.msec.2019.110167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/19/2022]
|
18
|
Abushowmi TH, AlZaher ZA, Almaskin DF, Qaw MS, Abualsaud R, Akhtar S, Al-Thobity AM, Al-Harbi FA, Gad MM, Baba NZ. Comparative Effect of Glass Fiber and Nano-Filler Addition on Denture Repair Strength. J Prosthodont 2019; 29:261-268. [PMID: 31696582 DOI: 10.1111/jopr.13124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To evaluate and compare the effects of glass fiber (GF), Zirconium oxide nanoparticles (nano-ZrO2 ), and silicon dioxide nanoparticles (nano-SiO2 ) addition on the flexural strength and impact strength of repaired denture base material. MATERIALS AND METHODS Heat-polymerized acrylic resin specimens were fabricated. All specimens were sectioned centrally and beveled creating 2.5 mm repair gap except for 10 controls. Specimen grouping (n = 10/group) was done according to filler concentration of 0%, 0.25%, 0.5%, and 0.75% of auto-polymerized acrylic powder. Modified resin was mixed, packed in the repair gap, polymerized, finished and polished. Three-point bending test and Charpy type impact testing were done. Data were analyzed using one-way-ANOVA and Post-Hoc Tukey test (α = 0.05). RESULTS All additives significantly increased flexural strength and impact strength (p < 0.05). Within the modified subgroups, no significant differences were found for GF. Significant increase for nano-ZrO2 and significant decrease for nano-SiO2 as the concentration of additive increased were noted for both flexural strength and impact strength. Highest flexural strength was found with 0.75%-nano-ZrO2 (69.59 ± 2.52MPa) and the lowest was found with 0.75%-nano-SiO2 (53.82 ± 3.10MPa). The 0.25%-nano-SiO2 showed the highest impact strength value (2.54 ± 0.21 kJ/m2 ) while the lowest impact strength value was seen with 0.75%-nano-SiO2 (1.54 ± 0.17 kJ/m2 ). CONCLUSION Nano-filler effect was concentration dependent and its addition to repair resin increased the flexural and impact strengths. The incorporation of 0.75%-ZrO2 or 0.25%-SiO2 into repair resin proved to be a promising technique to enhance repair strength and avoid repeated fractures.
Collapse
Affiliation(s)
- Tahani H Abushowmi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zahra A AlZaher
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Danah F Almaskin
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Masoumah S Qaw
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Abualsaud
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31411, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31411, Saudi Arabia
| | - Ahmad M Al-Thobity
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31411, Saudi Arabia
| | - Fahad A Al-Harbi
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31411, Saudi Arabia
| | - Mohammed M Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31411, Saudi Arabia
| | - Nadim Z Baba
- Advanced Specialty Education Program in Prosthodontics, Loma Linda University, School of Dentistry, CA
| |
Collapse
|
19
|
Gad MM, Rahoma A, Abualsaud R, Al‐Thobity AM, Fouda SM. Effect of Repair Gap Width on the Strength of Denture Repair: An In Vitro Comparative Study. J Prosthodont 2019; 28:684-691. [DOI: 10.1111/jopr.13091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Ahmed Rahoma
- Department of Restorative Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Reem Abualsaud
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Ahmad M. Al‐Thobity
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Shaimaa M. Fouda
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| |
Collapse
|
20
|
Hamid SK, Al-Dubayan AH, Al-Awami H, Khan SQ, Gad MM. In vitro assessment of the antifungal effects of neem powder added to polymethyl methacrylate denture base material. J Clin Exp Dent 2019; 11:e170-e178. [PMID: 30805122 PMCID: PMC6383901 DOI: 10.4317/jced.55458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background Denture with antimicrobial activities is desirable to prevent Candida albican adhesion subsequently decreasing the susceptibility of denture stomatitis incidence. Azadirachta Indica, commonly known as Neem powder has antimicrobial effect but the effect of its addition to acrylic denture base on C. albicans adhesion has not been investigated. The aim of this study was determine whether adding neem powder to acrylic denture base materials could reduce Candida albicansadhesion. Material and Methods One hundred and twenty acrylic resin denture specimens were fabricated and divided into heat-polymerized (n=60) and auto-polymerized (n=60) groups. Each group was further divided into 6 groups (n=10) based on the neem concentration: 0, 0.5, 1, 1.5, 2 and 2.5 wt% of the polymer. After polymerization, the specimens were polished, stored in distilled water, sonicated, sterilized, submerged in artificial saliva containing C. albicans, and finally, placed in an incubator at 37°C. Slide counting and direct culture methods were used to assess the antifungal effects of the neem addition. An analysis of variance and post hoc Tukey’s test were performed for the data analysis (p≤0.05 was statistically significant). Results Based on the results, the neem addition significantly decreased the C. albicans count when compared to the control group (p≤0.05). Moreover, the count decreased as the neem concentration increased (lowest count with 2.5 wt%). Conclusions The results suggest that adding neem powder to acrylic resin denture base materials reduces the adhesion of C. albicans; therefore, the incorporation of neem could be a possible denture stomatitis prevention method. Key words:Denture stomatitis, Candida albicans, Azadirachta indica, neem powder, denture base.
Collapse
Affiliation(s)
- Shorouq-Khalid Hamid
- Undergraduate student, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - AlAnoud-Hamad Al-Dubayan
- Undergraduate student, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - Heba Al-Awami
- Undergraduate student, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - Soban-Qadir Khan
- MSC, Lecturer of Biostatistics, Department of Clinical Affairs, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - Mohammed-Moustafa Gad
- BDS, MSc, Lecturer, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| |
Collapse
|
21
|
Qaw MS, Abushowmi TH, Almaskin DF, AlZaher ZA, Gad MM, Al‐Harbi FA, Abualsaud R, Ammar MM. A Novel Approach to Improve Repair Bond Strength of Repaired Acrylic Resin: An in Vitro Study on the Shear Bond Strength. J Prosthodont 2018; 29:323-333. [DOI: 10.1111/jopr.12970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Masoumah S. Qaw
- College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Tahani H. Abushowmi
- College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Danah F. Almaskin
- College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Zahra A. AlZaher
- College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Fahad A. Al‐Harbi
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Reem Abualsaud
- Department of Substitutive Dental Sciences, College of DentistryImam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Mahmoud M. Ammar
- Department of Removable Prosthodontics, Faculty of Dental MedicineAl‐Azhar University Assiut Branch Egypt
| |
Collapse
|
22
|
Gad MM, Al-Thobity AM, Fouda SM, Näpänkangas R, Raustia A. Flexural and Surface Properties of PMMA Denture Base Material Modified with Thymoquinone as an Antifungal Agent. J Prosthodont 2018; 29:243-250. [PMID: 30178899 DOI: 10.1111/jopr.12967] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To evaluate the effect of addition of different concentrations of thymoquinone (TQ) on the flexural strength, elastic modulus, surface roughness, and hardness of PMMA denture base material. MATERIALS AND METHODS A total of 160 rectangular specimens were prepared from heat-polymerized acrylic resin, with dimensions of 65 × 10 × 2.5 mm3 for flexural strength testing and 10 × 20 × 3 mm3 for surface property testing. The specimens were divided into eight groups of 20 specimens: one control group without addition of TQ and seven test groups prepared by adding TQ to acrylic powder in concentrations of 0.5, 1, 1.5, 2, 2.5, 3, and 5 wt%. The polymer was added to the monomer before being mixed, packed, and processed using the conventional water bath method. A universal testing machine was used to measure flexural strength and elastic modulus. A profilometer and a Vickers hardness tester were used to measure surface roughness and hardness, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for statistical analysis, with statistical significance at p ≤ 0.05. RESULTS Addition of TQ to PMMA denture base material significantly decreased flexural strength and elastic modulus at high concentrations (p < 0.01), while no significant differences were observed at low concentrations (0.5%, 1% TQ) in comparison with the control group. At high TQ concentrations, surface roughness increased while hardness decreased (p < 0.0001), and no significant differences were observed at low concentrations (0.5%, 1% TQ) in comparison with the control group. The most favorable addition values were 0.5% and 1% TQ in all TQ groups. CONCLUSIONS Addition of TQ did not affect the flexural and surface properties of PMMA denture base material at low concentrations (0.5%, 1% TQ) and could be incorporated into PMMA denture base material as an antifungal agent.
Collapse
Affiliation(s)
- Mohammed M Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmad M Al-Thobity
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shaimaa M Fouda
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ritva Näpänkangas
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Aune Raustia
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
Tamore SH, Jyothi KS, Muttagi S, Gaikwad AM. Flexural Strength of Surface-Treated Heat-Polymerized Acrylic Resin after Repair with Aluminum Oxide-Reinforced Autopolymerizing Acrylic Resin. Contemp Clin Dent 2018; 9:S347-S353. [PMID: 30294170 PMCID: PMC6169287 DOI: 10.4103/ccd.ccd_483_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: A fracture of denture base in situ often occurs through a fatigue mechanism, which over a period of time leads to the formation of small cracks, resulting in fracture. Aim and Objective: To evaluate the flexural strength of repaired heat-polymerized acrylic resin, with different percentage of aluminum oxide (Al2O3) added to the repair resin and effect of two different surface treatments on the flexural strength of repaired heat-polymerized acrylic resin and also to evaluate quantification of filler particles using scanning electron microscopy. Materials and Methodology: Fifty specimens of heat-polymerized acrylic resin were prepared according to the American Dental Association specification no. 12 (65 mm × 10 mm × 2.5 mm). Al2O3<50 nm particle size was silanized using metal alloy primer before incorporation in polymer. Two different percentages of Al2O3 nanoparticles, that is, 1% and 1.5% were added to autopolymerizing acrylic resin which was used as repairing material. Results: The study showed that repair resin incorporated with 1.5% Al2O3 in the group surface treated with silicon carbide paper improved the flexural strength of denture base resin. A proper filler distribution and deep penetration within the polymer matrix were observed by scanning electron microscope in the same group.
Collapse
Affiliation(s)
- Shraddha Hareshwar Tamore
- Department of Prosthodontics and Crown and Bridge, MGM Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - K S Jyothi
- Department of Prosthodontics and Crown and Bridge, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
| | - Seshagiri Muttagi
- Department of Biochemistry, Royal Dental College, Palakkad, Kerala, India
| | - Amit M Gaikwad
- Department of Prosthodontics and Crown and Bridge, MGM Dental College and Hospital, Navi Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Hafezeqoran A, Koodaryan R. Double-Layer Surface Modification of Polyamide Denture Base Material by Functionalized Sol-Gel Based Silica for Adhesion Improvement. J Prosthodont 2017; 28:701-708. [PMID: 28940932 DOI: 10.1111/jopr.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). MATERIALS AND METHODS The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). RESULTS FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TST and TSG groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of APT were statistically significant compared to controls (p = 0.017). CONCLUSION Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. CLINICAL IMPLICATIONS Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer.
Collapse
Affiliation(s)
- Ali Hafezeqoran
- Department of Prosthodontics, Faculty of Dentistry, University of Medical Sciences, Tabriz, Iran
| | - Roodabeh Koodaryan
- Department of Prosthodontics, Faculty of Dentistry, University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali AA. Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. Int J Nanomedicine 2017; 12:5409-5419. [PMID: 28814859 PMCID: PMC5546774 DOI: 10.2147/ijn.s142857] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite drawbacks, cold-cured acrylic resin is still the most common material used in denture repair. Zirconia nanoparticles were among the reinforcements added to increase the strength of the resin. The effect on Candida due to the addition of zirconia nanoparticles to the resin has not been investigated. PURPOSE The aim of this study was to evaluate the effect of zirconia nanoparticles added to cold-cured acrylic resin on Candida albicans adhesion. MATERIALS AND METHODS A total of 120 acrylic resin specimens with dimensions measuring 22×10×2.5 mm3 were prepared and divided into two equal groups. One group (repair) comprised heat-polymerized specimens that were sectioned at the center and prepared to create a 2 mm repair area that was repaired with cold-cured resin reinforced with 0% wt, 2.5% wt, 5% wt, and 7.5% wt zirconia nanoparticles. The second group contained intact cold-cured acrylic resin specimens reinforced with 0% wt, 2.5% wt, 5% wt, and 7.5% wt zirconia nanoparticles. Specimens were incubated at 37°C in artificial saliva containing C. albicans, and the effect of zirconia nanoparticles on C. albicans was assessed using two methods: 1) a slide count method and 2) a direct culture test. Variations in the number of living Candida were observed in relation to the different concentrations of zirconia nanoparticles. Analysis of variance (ANOVA) and post hoc Tukey's tests were performed for data analysis. If the P-value was ≤0.05, then the difference was considered as statistically significant. RESULTS It was found that C. albicans adhesion to repaired specimens was significantly decreased by the addition of zirconia nanoparticles (P<0.00001) in comparison with the control group. Intact cold-cured groups and groups repaired with cold-cured resin reinforced with 7.5% wt zirconia nanoparticles showed the lowest Candida count. Tukey's test showed a significant difference between the repaired group and the intact cold-cured group, while the later demonstrated a lower Candida count. CONCLUSION The addition of zirconia nanoparticles to cold-cured acrylic resin is an effective method for reducing Candida adhesion to repaired polymethyl methacrylate (PMMA) denture bases and cold-cured removable prosthesis. CLINICAL SIGNIFICANCE Based on the results of the current study, zirconia nanoparticles have an antifungal effect, which could be incorporated in the repair material for repairing denture bases and in PMMA removable prostheses as a possible approach for denture stomatitis prevention.
Collapse
Affiliation(s)
| | | | | | | | - Aiman A Ali
- Department of Biomedical Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia
- Oral Pathology and Medicine, College of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Koodaryan R, Hafezeqoran A. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer. J Adv Prosthodont 2016; 8:504-510. [PMID: 28018569 PMCID: PMC5179490 DOI: 10.4047/jap.2016.8.6.504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). RESULTS The bond strength values of A and S were significantly higher than those of N (P<.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG (P<.001). CONCLUSION The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.
Collapse
Affiliation(s)
- Roodabeh Koodaryan
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hafezeqoran
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS. Influence of incorporation of ZrO 2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine 2016; 11:5633-5643. [PMID: 27822041 PMCID: PMC5089829 DOI: 10.2147/ijn.s120054] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists. AIM OF THE STUDY This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2) on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA) denture bases. MATERIALS AND METHODS One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test) and divided into three main groups: one control group (intact specimens) and two groups divided according to surface design (45° bevels and butt joints), in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant. RESULTS Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05). The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano-ZrO2. The impact strength values of all repaired groups were significantly lower than those of the control group (P<0.05). Among repaired groups, the higher impact strength value was seen in the butt group reinforced with 2.5% nano-ZrO2. The bevel joint demonstrated mainly cohesive failure, whereas the butt joint demonstrated mainly adhesive failure. CONCLUSION Incorporation of nano-ZrO2 into the repair resin improved the flexural strength of repaired denture bases, whereas it decreased impact strength, especially with high nano-ZrO2 concentrations.
Collapse
Affiliation(s)
| | - Ahmed Rahoma
- Department of Restorative Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia; Department of Dental Materials, College of Dentistry, Al-Azhar University, Assiut, Egypt
| | | | - Aws S ArRejaie
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base. Int J Dent 2016; 2016:7094056. [PMID: 27366150 PMCID: PMC4913022 DOI: 10.1155/2016/7094056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers.
Collapse
|
29
|
Sekinishi T, Inukai S, Murakami N, Wakabayashi N. Influence of denture tooth thickness on fracture mode of thin acrylic resin bases: An experimental and finite element analysis. J Prosthet Dent 2015; 114:122-9. [PMID: 25791505 DOI: 10.1016/j.prosdent.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022]
Abstract
STATEMENT OF PROBLEM The optimum selection of denture teeth for patients with a reduced interarch distance has not been established. PURPOSE The purpose of this in vitro study was to investigate the influence of denture tooth material and thickness on the fracture resistance of thin acrylic resin denture bases. MATERIAL AND METHODS Acrylic resin (AC), composite resin (CO), or ceramic (CE) molar denture teeth were embedded in denture base blocks (2.0 mm thick). The distance from the central fossa to the tooth base was 0.5, 1.0, 2.0, or 2.5 mm for AC and CO, and 1.0 mm for CE (n=7), with a total thickness of 2.5 mm for all specimens. Each specimen was placed on a 3-point flexural setup with a shorter (8 mm) or longer (12 mm) support span than the tooth width and vertically loaded. A finite element analysis was performed to assess the stress distributions. The effects of tooth thickness and support span were statistically tested with ANOVA, followed by the Tukey honestly significant difference post hoc test (α= .05). RESULTS With the shorter support, the mean fracture load was higher in CO than AC, regardless of the tooth thickness. Under the longer support, the mean fracture load with the CO decreased significantly as the tooth thickness increased, with increased maximum stress. Some CO tooth specimens of 2.0 mm or 2.5 mm thickness failed at the tooth-denture base interface at significantly lower loads than those exhibited by tooth fractures. CE showed minor cracks before bulk fracture. CONCLUSIONS Higher fracture resistance was indicated with CO; however, the resistance decreased as the thickness of the CO tooth increased.
Collapse
Affiliation(s)
- Takashi Sekinishi
- Clinical Resident, Removable Partial Prosthodontics, Division of Oral Health Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shusuke Inukai
- Assistant Professor, Removable Partial Prosthodontics, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Natsuko Murakami
- Assistant Professor, Removable Partial Prosthodontics, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriyuki Wakabayashi
- Professor, Removable Partial Prosthodontics, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|