1
|
Hiraba H, Nishio K, Takeuchi Y, Ito T, Yamamori T, Kamimoto A. Application of one-piece endodontic crowns fabricated with CAD-CAM system to molars. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:81-94. [PMID: 38303746 PMCID: PMC10830429 DOI: 10.1016/j.jdsr.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Computer-aided design-computer-aided manufacturing (CAD-CAM) systems have been widely used as a fabrication method for restorations because of their high efficiency and accuracy, which significantly reduces fabrication time. However, molars with insufficient clearance or short clinical crown lengths require retention holes or grooves on the preparation, making it difficult to replicate the shapes with the CAM milling system. In these cases, restorations using the lost-wax method are selected. This article focuses on one-piece endodontic crowns (endocrowns) fabricated with a CAD-CAM system (CAD-CAM endocrowns), in which their posts and crowns are integrated. Articles from July 2012 to August 2023 were searched in PubMed with the keyword "endocrown". This review discusses the application of CAD-CAM endocrowns to molars from the viewpoint of model experiment (fracture resistance, adaptation) and clinical research. This technique, which allows margins and internal gaps to be set within the clinically acceptable range, is reported to be an effective way of restoring molars with high survival rates in clinical research.
Collapse
Affiliation(s)
- Haruto Hiraba
- Department of Dental Materials, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
- Division of Biomaterials Science, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshimasa Takeuchi
- Department of Comprehensive Dentistry and Clinical Education, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Takashi Ito
- Center of Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tetsuo Yamamori
- Department of Prosthetic Dentistry, School of Dentistry, Ohu University School of Dentistry, 31-1 Misumido, Tomita, Koriyama, Fukushima 963-8611, Japan
| | - Atsushi Kamimoto
- Department of Comprehensive Dentistry and Clinical Education, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
2
|
Sayed Ahmed A, Lawson NC, Fu CC, Bora PV, Kee E, Nejat AH. The Effect of Die Material on the Crown Fracture Strength of Zirconia Crowns. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1096. [PMID: 38473568 DOI: 10.3390/ma17051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Determination of the eligibility of several tooth analog materials for use in crown fracture testing. METHODS A standardized premolar crown preparation was replicated into three types of resin dies (C&B, low modulus 3D printed resin; OnX, high modulus 3D printed resin composite; and highest modulus milled resin composite). 0.8 mm zirconia crowns were bonded to the dies and the maximum fracture load of the crowns was tested. Twelve extracted human premolars were prepared to a standardized crown preparation, and duplicate dies of the prepared teeth were 3D printed out of C&B. Zirconia crowns were bonded to both the dies and natural teeth, and their fracture load was tested. RESULTS There was no statistical difference between the fracture load of zirconia crowns bonded to standardized dies of C&B (1084.5 ± 134.2 N), OnX (1112.7 ± 109.8 N) or Lava Ultimate (1137.5 ± 88.7 N) (p = 0.580). There was no statistical difference between the fracture load of crowns bonded to dentin dies (1313 ± 240 N) and a 3D-printed resin die (C&B, 1156 ± 163 N) (p = 0.618). CONCLUSIONS There was no difference in the static fracture load of zirconia crowns bonded to standardized resin dies with different moduli or between a low modulus resin die and natural dentin die.
Collapse
Affiliation(s)
- Akram Sayed Ahmed
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta 6624033, Egypt
- Division of Biomaterials, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35209, USA
| | - Nathaniel C Lawson
- Division of Biomaterials, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35209, USA
| | - Chin-Chuan Fu
- Division of Prosthodontics, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35209, USA
| | - Pranit V Bora
- Division of Biomaterials, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35209, USA
| | - Edwin Kee
- Division of Prosthodontics, LSU School of Dentistry, New Orleans, LA 70119, USA
| | - Amir H Nejat
- Division of Prosthodontics, LSU School of Dentistry, New Orleans, LA 70119, USA
| |
Collapse
|
3
|
Ouldyerou A, Mehboob H, Mehboob A, Merdji A, Aminallah L, Mukdadi OM, Barsoum I, Junaedi H. Biomechanical performance of resin composite on dental tissue restoration: A finite element analysis. PLoS One 2023; 18:e0295582. [PMID: 38128035 PMCID: PMC10734934 DOI: 10.1371/journal.pone.0295582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
This study investigates the biomechanical performance of various dental materials when filled in different cavity designs and their effects on surrounding dental tissues. Finite element models of three infected teeth with different cavity designs, Class I (occlusal), Class II mesial-occlusal (MO), and Class II mesio-occluso-distal (MOD) were constructed. These cavities were filled with amalgam, composites (Young's moduli of 10, 14, 18, 22, and 26 GPa), and glass carbomer cement (GCC). An occlusal load of 600 N was distributed on the top surface of the teeth to carry out simulations. The findings revealed that von Mises stress was higher in GCC material, with cavity Class I (46.01 MPa in the enamel, 23.61 MPa in the dentin), and for cavity Class II MO von Mises stress was 43.64 MPa, 39.18 MPa in enamel and dentin respectively, while in case of cavity Class II MOD von Mises stress was 44.67 MPa in enamel, 27.5 in the dentin. The results showed that higher stresses were generated in the non-restored tooth compared to the restored one, and increasing Young's modulus of restorative composite material decreases stresses in enamel and dentin. The use of composite material showed excellent performance which can be a good viable option for restorative material compared to other restorative materials.
Collapse
Affiliation(s)
- Abdelhak Ouldyerou
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia
| | - Ali Mehboob
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali Merdji
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria
| | - Laid Aminallah
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria
| | - Osama M. Mukdadi
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States of America
| | - Imad Barsoum
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Engineering Mechanics, Royal Institute of Technology – KTH, Teknikringen, Stockholm, Sweden
| | - Harri Junaedi
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mathur VP, Duggal I, Atif M, Tewari N, Rahul M, Duggal R, Chawla A. Development and validation of risk of bias tool for the use of finite element analysis in dentistry (ROBFEAD). Comput Methods Biomech Biomed Engin 2023; 26:1822-1833. [PMID: 36475384 DOI: 10.1080/10255842.2022.2148465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
There has been a systematic review of studies that used FEA in dental sciences, but no adequate risk of bias (RoB) analysis technique has been developed. Therefore, the development and validation process of RoB in studies using the finite element analysis in dentistry (ROBFEAD) tool is described. In the first phase of development, the scope of the tool and possible modifications were covered, and validation was done in the second phase. The developed tool comprised 6 domains and a total of 22 guiding questions in these domains. This article proposes the development and validation of ROBFEAD, a tool for measuring RoB in finite element research in dentistry.
Collapse
Affiliation(s)
- Vijay Prakash Mathur
- Pediatrics & Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Isha Duggal
- Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Atif
- Pediatrics & Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitesh Tewari
- Pediatrics & Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Morankar Rahul
- Pediatrics & Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Duggal
- Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Chawla
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi
| |
Collapse
|
5
|
Sakhabutdinova L, Kamenskikh AA, Kuchumov AG, Nosov Y, Baradina I. Numerical Study of the Mechanical Behaviour of Wedge-Shaped Defect Filling Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207387. [PMID: 36295452 PMCID: PMC9611093 DOI: 10.3390/ma15207387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with direct restorations of teeth with non-carious cervical lesions (NCCL). NCCL defects are capable of gradual growth and are accompanied by the degradation of the surrounding tissue. Direct restorative treatment, in which the cavity is filled with a cementing agent, is considered to be an accessible and common treatment option. The study included simulations of the teeth without lesions, the teeth with V and U lesions and the tooth-restorative system. Parameterised numerical tooth models were constructed. Two cases with defect depths of 0.8 mm and ~1.7 mm and three variants with fillet radii of the defect end of 0.1, 0.2 and 0.3 mm were considered. The effect of two biomaterials for restorations was studied, namely Herculite XRV (Kerr Corp, Orange, CA, USA) and Charisma (Heraeus Kulzer GmbH, Hanau, Germany). The models were deformed with a vertical load of 100 to 1000 N from the antagonist tooth. The tooth-restorative system was considered, taking into consideration the contact interaction in the interface areas with the tooth tissues. Within the limits of the research, the character of the distribution of the deformation characteristics and their dependence on the level of loading, the depth of the defect and the radius of the curvature of the "wedge" were established.
Collapse
Affiliation(s)
- Lyaysan Sakhabutdinova
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Anna A. Kamenskikh
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Alex G. Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Yuriy Nosov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | | |
Collapse
|