1
|
Ok SH, Byon HJ, Jin H, Kim HJ, Kim W, Nam IK, Eun SY, Sohn JT. Dexmedetomidine-induced contraction involves c-Jun NH2 -terminal kinase phosphorylation through activation of the 5-lipoxygenase pathway in the isolated endothelium-denuded rat aorta. Clin Exp Pharmacol Physiol 2015; 41:1014-22. [PMID: 25224579 DOI: 10.1111/1440-1681.12307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/11/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
Abstract
Vasoconstriction induced by dexmedetomidine, a highly selective alpha-2 adrenoceptor agonist, mainly involves c-Jun NH2 -terminal kinase (JNK) phosphorylation in the isolated endothelium-denuded aorta. We carried out an in vitro study to determine the main arachidonic acid metabolic pathway that is involved in dexmedetomidine-induced JNK activation. Cumulative dexmedetomidine concentration-contractile response curves were generated in the endothelium-denuded rat aorta in the presence or absence of the following inhibitors: the JNK inhibitor SP600125, the phospholipase A2 inhibitor quinacrine dihydrochloride, the non-specific lipoxygenase (LOX) inhibitor nordihydroguaiaretic acid, the 5-LOX inhibitor AA-861, the dual 5-LOX and cyclooxygenase (COX) inhibitor phenidone, the non-specific COX inhibitor indomethacin, the cytochrome p450 epoxygenase inhibitor fluconazole, the COX-1 inhibitor SC-560, and the COX-2 inhibitor NS-398. The effect of the alpha-2 adrenoceptor inhibitor rauwolscine and other inhibitors, such as quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone, indomethacin and the protein kinase C inhibitor GF 109203X, on dexmedetomidine-induced JNK phosphorylation was investigated in rat aortic vascular smooth muscle cells with western blotting. The effect of dexmedetomidine on 5-LOX and COX-2 expression was investigated in vascular smooth muscle cells. SP600125, quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone, rauwolscine and chelerythrine attenuated dexmedetomidine-induced contraction. Indomethacin slightly attenuated dexmedetomidine-induced contraction. Fluconazole and SC-560 had no effect on dexmedetomidine-induced contraction, whereas NS-398 attenuated contraction. SP600125, rauwolscine, quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone and GF 109203X attenuated dexmedetomidine-induced JNK phosphorylation. 5-LOX and COX-2 were upregulated by dexmedetomidine. Thus, dexmedetomidine-induced alpha-2 adrenoceptor-mediated contraction is mediated mainly by 5-LOX and partially by COX-2, which leads to JNK phosphorylation.
Collapse
Affiliation(s)
- Seong-Ho Ok
- Department of Anaesthesiology and Pain Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Lee HM, Ok SH, Sung HJ, Eun SY, Kim HJ, Lee SH, Kang S, Shin IW, Lee HK, Chung YK, Choi MJ, Bae SI, Sohn JT. Mepivacaine-induced contraction involves phosphorylation of extracellular signal-regulated kinase through activation of the lipoxygenase pathway in isolated rat aortic smooth muscle. Can J Physiol Pharmacol 2013; 91:285-94. [DOI: 10.1139/cjpp-2012-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mepivacaine is an aminoamide local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. This study investigated the arachidonic acid metabolic pathways involved in mepivacaine-induced contraction, and elucidated the associated cellular mechanism with a particular focus on extracellular signal-regulated kinase (ERK) in endothelium-denuded rat aorta. Isolated rat thoracic aortic rings were suspended for isometric tension recording. Cumulative mepivacaine concentration–response curves were generated in the presence or absence of the following inhibitors: quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, indomethacin, NS-398, SC-560, fluconazole, PD 98059, and verapamil. Mepivacaine-induced ERK phosphorylation, 5-lipoxygenase (5-LOX) expression, and cyclooxygenase (COX)-2 expression in rat aortic smooth muscle cells were detected by Western blot analysis in the presence or absence of inhibitors. Mepivacaine produced tonic contraction in isolated endothelium-denuded rat aorta. Quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, NS-398, PD 98059, and verapamil attenuated mepivacaine-induced contraction in a concentration-dependent manner. However, fluconazole had no effect on mepivacaine-induced contraction. PD 98059, quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone, and indomethacin attenuated mepivacaine-induced ERK phosphorylation. Mepivacaine upregulated 5-LOX and COX-2 expression. These results suggest that mepivacaine-induced contraction involves ERK activation, which is primarily mediated by the 5-LOX pathway and in part by the COX-2 pathway.
Collapse
Affiliation(s)
- Hyo Min Lee
- Department of Anesthesiology and Pain Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Hui-Jin Sung
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - So Young Eun
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-772, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-772, Republic of Korea
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Sebin Kang
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Heon Keun Lee
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Young-Kyun Chung
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| | - Mun-Jeoung Choi
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Sung Il Bae
- Department of Anesthesiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju 660-772, Republic of Korea
| |
Collapse
|
3
|
Hardy G, Boizel R, Bessard J, Cracowski JL, Bessard G, Halimi S, Stanke-Labesque F. Urinary leukotriene E4 excretion is increased in type 1 diabetic patients: a quantification by liquid chromatography-tandem mass spectrometry. Prostaglandins Other Lipid Mediat 2005; 78:291-9. [PMID: 16303623 DOI: 10.1016/j.prostaglandins.2005.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 09/30/2005] [Accepted: 10/02/2005] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Diabetes mellitus is associated with inflammatory state and increased cardiovascular mortality. Leukotrienes are arachidonic acid metabolites derived from the 5-lipoxygenase pathway that possess vasoactive, chemotactic and proinflammatory properties. The aim of this study was to evaluate (1) the urinary excretion of leukotriene E4 (LTE4) in type 1 diabetic subjects and healthy volunteers and (2) the influence of glycemic control attested by HbA(1C) on LTE4 excretion. METHODS AND RESULTS Urinary excretion of LTE(4), measured by liquid chromatography-tandem mass spectrometry, was significantly (P=0.033) increased in diabetic patients (median [10th-90th percentiles]: 42.1 pg/mg creatinine [16.7-71.4], n=34), compared to healthy subjects (25.5 pg/mg creatinine [13.9-54.1], n=28). Subgroup analysis indicated a trend towards increased LTE4 excretion in patients with poor glycemic control [(HbA(1C)> or =9% or plasma glucose >18 mmol/L): 43.3 pg/mg creatinine [21.6-70.5], n=14], whereas no difference was observed between patients with good metabolic control [(HbA(1C)< or =7.5%): 36.4 pg/mg creatinine [15.8-83.4], n=20] and healthy subjects. CONCLUSIONS This study suggested that increased LTE4 excretion in type 1 diabetic state might reflect systemic activation of the 5-lipoxygenase pathway. It could be a determinant of underlying inflammatory state and vascular disease.
Collapse
Affiliation(s)
- Gaëlle Hardy
- Laboratory of Pharmacology, Laboratory HP2 INSERM ESPRI EA3745, University of Medicine, F-38706 La Tronche Cedex, France
| | | | | | | | | | | | | |
Collapse
|