1
|
Oliveira ML, Mello BP, Gonella-Diaza AM, Scolari SC, Pugliesi G, Martins T, Feltrin IR, Sartori R, Canavessi AMO, Binelli M, Membrive CMB. Unravelling the role of 17β-estradiol on advancing uterine luteolytic cascade in cattle. Domest Anim Endocrinol 2022; 78:106653. [PMID: 34455235 DOI: 10.1016/j.domaniend.2021.106653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023]
Abstract
In cattle, 17β-estradiol (E2) stimulates prostaglandin F2α (PGF2α) synthesis, which causes luteolysis. Except for the well-established upregulation of oxytocin receptor gene (OXTR), molecular mechanisms of E2-induced PGF2α release in vivo remain unknown. We hypothesized that E2-induced PGF2α release requires de novo transcription of components of the PGF2α synthesis machinery. Beef cows (n = 52) were assigned to remain untreated (Control; n = 10), to receive 50% ethanol infusion intravenously (Placebo; n = 21), or 3 mg E2 in 50% ethanol infusion intravenously (Estradiol; n = 21) on day 15 (D15) after estrus. We collected a single endometrial biopsy per animal at the time of the treatment (0h; Control B0h group), 4 hours (4h; Placebo B4h group and Estradiol B4h group), or 7 hours (7h; Placebo B7h group and Estradiol B7h group) post-treatment. Compared to the Placebo group, the Estradiol group presented significantly greater 13,14-dihydro-15-keto-PGF2α concentrations between 4h and 7h and underwent earlier luteolysis. At 4h, the qPCR analysis showed a lower abundance of ESR1, ESR2 and aldo-keto reductase family 1 member B1 (AKR1B1) genes in the Estradiol B4h group, and a greater abundance of OXTR compared to the Placebo B4h group. Similarly, the E2 treatment significantly reduced the abundance of AKR1B1, and AKR1C4 in the Estradiol B7h group, compared to the placebo group. Overall, E2-induced PGF2α release and luteolysis involved an unexpected and transient downregulation of components of the PGF2α-synthesis cascade, except for OXTR, which was upregulated. Collectively, our data suggest that E2 connects newly-synthesized OXTR to pre-existing cellular machinery to synthesize PGF2α and cause luteal regression.
Collapse
Affiliation(s)
- M L Oliveira
- Agrarian Sciences Center, State University of Maranhão Tocantine Region, 1300 Godofredo Viana St, Center, Imperatriz - MA, 65900-000, Brazil..
| | - B P Mello
- Department of Animal Reproduction, University of São Paulo, 225 Duque de Caxias Norte Ave, Pirassununga - SP, 13635900, Brazil
| | - A M Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3925 FL-71, Greenwood, FL 32443, USA
| | - S C Scolari
- Department of Animal Reproduction, University of São Paulo, 225 Duque de Caxias Norte Ave, Pirassununga - SP, 13635900, Brazil
| | - G Pugliesi
- Department of Animal Reproduction, University of São Paulo, 225 Duque de Caxias Norte Ave, Pirassununga - SP, 13635900, Brazil
| | - T Martins
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32611, USA
| | - I R Feltrin
- Department of Pharmacology and Biotechnology, São Paulo State University, Rubião Júnior District no number, Botucatu-SP, 18618-970, Brazil
| | - R Sartori
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, 11, Pádua Dias Ave, Piracicaba-SP, 13418900, Brazil
| | - A M O Canavessi
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, 11, Pádua Dias Ave, Piracicaba-SP, 13418900, Brazil
| | - M Binelli
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32611, USA
| | - C M B Membrive
- Department of Animal Sciences, São Paulo State University, 294-SP Commander João Ribeiro de Barros, 651 Road, Dracena-SP, 17900000, Brazil
| |
Collapse
|
2
|
Anamthathmakula P, Winuthayanon W. Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology 2021; 162:6128831. [PMID: 33539521 PMCID: PMC7901659 DOI: 10.1210/endocr/bqab025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/19/2022]
Abstract
The mammalian oviduct is a dynamic organ where important events such as final maturation of oocytes, transport of gametes, sperm capacitation, fertilization, embryo development, and transport take place. Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), is the rate-limiting enzyme in the production of prostaglandins (PGs) and plays an essential role during early pregnancy, including ovulation, fertilization, implantation, and decidualization. Even though the maternal-embryo communication originates in the oviduct, not many studies have systemically investigated PTGS2 signaling during early development. Most of the studies investigating implantation and decidualization processes in Ptgs2-/- mice employed embryo transfer into the uterus, thereby bypassing the mammalian oviduct. Consequently, an understanding of the mechanistic action as well as the regulation of PTGS2 and derived PGs in oviductal functions is far from complete. In this review, we aim to focus on the importance of PTGS2 and associated PGs signaling in the oviduct particularly in humans, farm animals, and laboratory rodents to provide a broad perspective to guide further research in this field. Specifically, we review the role of PTGS2-derived PGs in fertilization, embryo development, and transport. We focus on the actions of ovarian steroid hormones on PTGS2 regulation in the oviduct. Understanding of cellular PTGS2 function during early embryo development and transport in the oviduct will be an important step toward a better understanding of reproduction and may have potential implication in the assisted reproductive technology.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| |
Collapse
|
3
|
Palomino J, Flores J, Ramirez G, Parraguez VH, De los Reyes M. Expression Profiles of the Progesterone Receptor, Cyclooxygenase-2, Growth Differentiation Factor 9, and Bone Morphogenetic Protein 15 Transcripts in the Canine Oviducts during the Oestrous Cycle. Animals (Basel) 2021; 11:454. [PMID: 33572466 PMCID: PMC7916196 DOI: 10.3390/ani11020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
The gene expression in the canine oviduct, where oocyte maturation, fertilization, and early embryonic development occur, is still elusive. This study determined the oviductal expression of (PR), cyclooxygenase-2 (COX-2), growth differentiation factor 9 (GDF-9), and bone morphogenetic protein 15 (BMP-15) during the canine oestrous cycle. Samples were collected from bitches at anoestrus (9), proestrus (7), oestrus (8), and dioestrus (11), after routine ovariohysterectomy and the ovarian surface structures and plasma progesterone concentration evaluated the physiological status of each donor. The oviductal cells were isolated and pooled. Total RNA was isolated, and gene expression was assessed by qPCR followed by analysis using the t-test and ANOVA. The PR mRNA increased (P < 0.05) from the anoestrus to dioestrus with the plasma progesterone concentration (r = 0.8). COX-2 mRNA expression was low in the anoestrus and proestrus, and negligible in the oestrus, while it was around 10-fold higher (P < 0.05) in the dioestrus. The GDF-9 mRNA was expressed during all phases of the oestrous cycle and was most abundant (P < 0.05) during oestrus phase. The BMP-15 mRNA decreased (P < 0.05) in the anoestrus and proestrus phases. Thus, the transcripts were differentially expressed in a stage-dependent manner, suggesting the importance of oestrous cycle regulation for successful reproduction in dogs.
Collapse
Affiliation(s)
- Jaime Palomino
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile; (J.P.); (J.F.); (G.R.)
| | - Javiera Flores
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile; (J.P.); (J.F.); (G.R.)
| | - Georges Ramirez
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile; (J.P.); (J.F.); (G.R.)
| | - Victor H. Parraguez
- Laboratory of Animal Physiology, Department of Biological Sciences, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| | - Monica De los Reyes
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile; (J.P.); (J.F.); (G.R.)
| |
Collapse
|
4
|
Aguirre-Martínez GV, André C, Gagné F, Martín-Díaz LM. The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:652-663. [PMID: 29156432 DOI: 10.1016/j.ecoenv.2017.09.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The constant release of pharmaceuticals products to aquatic environment even at low concentrations (ng L-1 to µg L-1) could lead to unknown chronic effects to non-target organisms. The aim of this study was to evaluate neurotoxic responses, inflammation, gametogenic activity and energy status on the fresh water clam C. fluminea after exposure to different concentrations of caffeine (CAF), ibuprofen (IBU), carbamazepine (CBZ), novobiocin (NOV) and tamoxifen (TMX) for 21 days under laboratory conditions. During the assay, water was spiked every two days with CAF (0; 0.1; 5; 15; 50µgL-1), IBU (0; 0.1; 5; 10; 50µgL-1), CBZ, NOV, and TMX (0.1, 1, 10, 50µgL-1). After the exposure period, dopamine levels (DOP), monoamine oxidase activity (MAO), arachidonic acid cyclooxygenase activity (COX), vitellogenin-like proteins (VTG), mitochondrial electron transport (MET), total lipids (TLP), and energy expenditure (MET/TLP) were determined in gonad tissues, and acetyl cholinesterase activity (AChE) was determined in digestive gland tissues. Results showed a concentration-dependence response on biomarkers tested, except for MAO. Environmental concentrations of pharmaceuticals induced significant changes (p < 0.05) in the neurotoxic responses analyzed (CAF, CBZ and NOV increased DOP levels and CBZ inhibited AChE activity), inflammation (CAF induced COX), and energy status (MET and TLP increased after exposure to CBZ, NOV and TMX). Responses of clams were related to the mechanism of action (MoA) of pharmaceuticals. Biomarkers applied and the model organism C. fluminea constituted a suitable tool for environmental risk assessment of pharmaceutical in aquatic environment.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Facultad Ciencias del Mar y Ambientales. Universidad de Cádiz, Campus Excelencia Internacional del Mar (CEI-Mar), Polígono Río San Pedro s/n, P. Real, Cádiz, Spain; Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121,1110939 Iquique, Chile; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
| | - C André
- Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - F Gagné
- Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - L M Martín-Díaz
- Facultad Ciencias del Mar y Ambientales. Universidad de Cádiz, Campus Excelencia Internacional del Mar (CEI-Mar), Polígono Río San Pedro s/n, P. Real, Cádiz, Spain; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
5
|
Pinto-Bravo P, Galvão A, Rebordão MR, Amaral A, Ramilo D, Silva E, Szóstek-Mioduchowska A, Alexandre-Pires G, Roberto da Costa R, Skarzynski DJ, Ferreira-Dias G. Ovarian steroids, oxytocin, and tumor necrosis factor modulate equine oviduct function. Domest Anim Endocrinol 2017; 61:84-99. [PMID: 28753494 DOI: 10.1016/j.domaniend.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023]
Abstract
The oviduct plays important roles in the early reproductive process. The aim of this study was to evaluate gene transcription and protein expression of progesterone receptor (PGR), estrogen receptors 1 (ESR1) and 2 (ESR2); oxytocin receptor (OXTR); prostaglandin F2α synthase (AKR1C3), and prostaglandin E2 synthase (Ptges) in mare oviduct in different estrous cycle stages. Estradiol (E2), progesterone (P4), oxytocin (OXT), and tumor necrosis factor α (TNF) effect on in vitro PGE2 and prostaglandin F2α (PGF2α) secretion by equine oviduct explants or by oviductal epithelial cells (OECs) were also assessed. During the breeding season, oviduct tissue was obtained post mortem from cyclic mares. Protein of ESR1, ESR2, PGR, AKR1C3, and Ptges was present in OECs, whereas OXTR was shown in oviduct stroma. In follicular phase, protein expression of ESR1, ESR2, PGR, and OXTR increased in oviduct explants (P < 0.05), whereas no estrous cycle effect was noted for AKR1C3 or Ptges. In follicular phase, mRNA transcription was upregulated for Pgr but downregulated for Oxtr, Ptges, and Akr1c3 (P < 0.05). Nevertheless, Esr1 and Esr2 mRNA levels did not change with the estrous cycle. In the ampulla, Esr1, Esr2, and Oxtr mRNA transcription increased, but not for Pgr or Ptges. In contrast, Akr1c3 mRNA level was upregulated in the infundibulum (P < 0.05). In follicular phase, E2, P4, and OXT downregulated PGE2 production by OEC (P < 0.05), but no difference was observed in mid-luteal phase. Explants production of PGE2 rose when treated with OXT in follicular phase; with TNF or OXT in early luteal phase; or with TNF, OXT, or P4 in mid-luteal phase. PGF2α production by OEC was downregulated by all treatments in follicular phase but upregulated in mid-luteal phase (P < 0.05). Oviduct explants PGF2α production was stimulated by TNF or OXT in all estrous cycle phases. In conclusion, this work has shown that ESR1, ESR2, OXTR, Ptges, and AKRLC3 gene transcription and/or translation is estrous cycle dependent and varies with oviduct portion (infundibulum vs ampulla) and cell type. Ovarian steroid hormones, OXT and TNF stimulation of PGF2α and/or PGE2 production is also estrous cycle dependent and varies in the different portions of mare oviduct. Differential transcription level and protein localization in various portions of the oviduct throughout the estrous cycle, as well as PG production, suggest coordinated physiologic actions and mechanisms of steroid hormones, OXT, and TNF in the equine oviduct.
Collapse
Affiliation(s)
- P Pinto-Bravo
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal; Coimbra School of Agriculture, Coimbra, Portugal
| | - A Galvão
- Coimbra School of Agriculture, Coimbra, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - M R Rebordão
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal; Coimbra School of Agriculture, Coimbra, Portugal
| | - A Amaral
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - D Ramilo
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - E Silva
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - G Alexandre-Pires
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - D J Skarzynski
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - G Ferreira-Dias
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal.
| |
Collapse
|
6
|
Pournaderi PS, Yaghmaei P, Khodaei H, Noormohammadi Z, Hejazi SH. The effects of 6-Gingerol on reproductive improvement, liver functioning and Cyclooxygenase-2 gene expression in estradiol valerate - Induced polycystic ovary syndrome in Wistar rats. Biochem Biophys Res Commun 2017; 484:461-466. [PMID: 28093231 DOI: 10.1016/j.bbrc.2017.01.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
6-Gingerol is the major pungent ingredient of ginger with anti-inflammatory and antioxidant properties. In this study, we evaluate the effects of 6-gingerol on the biochemical parameters and ovarian histological improvements in estradiol valerate (EV) induced PCOS rats. Thirty six female Wistar rats were divided into 4 groups: control, received normal diet, PCOS control, received 4 mg/kg EV injection for 28 days and two experimental groups, received an EV injection for 28 days and followed by 6-gingerol (200 μg/kg and 400 μg/kg) for 14 days. The administration of EV led to increase body and ovarian weights, abnormality in serum sex steroid profile, decrease in antioxidant activity and increase in COX-2 gene expression. 6-gingerol treatments, particularly the 400 μg/kg dose, markedly attenuated these alterations. 6-gingerol showed beneficial effects in the EV induced PCOS rats via decreased expression of COX-2, restored biochemical parameters to normal and decreased of cysts in the ovaries.
Collapse
Affiliation(s)
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamidreza Khodaei
- Department of Animal Sciences, Islamic Azad University, Golpayegan Branch, Isfahan, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Hossein Hejazi
- Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Hu R, Xi L, Cao Q, Yang R, Liu Y, Sheng X, Han Y, Yuan Z, Guo Y, Weng Q, Xu M. The expression of prostaglandin-E2 and its receptor in the oviduct of Chinese brown frog (Rana dybowskii). Prostaglandins Other Lipid Mediat 2016; 124:9-15. [PMID: 27246901 DOI: 10.1016/j.prostaglandins.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
The Chinese brown frog (Rana dybowskii) has one special physiological phenomenon, which is that its oviduct expands prior to hibernation rather than in the breeding period. In this study, we investigated the immunolocalization and expression levels of prostaglandin-E2 (PGE2), cyclooxygenase (COX)-1 and COX-2, as well as one of its receptor subtypes 4 (EP4) in the oviduct of Rana dybowskii during the pre-hibernation and breeding period. PGE2, COX-1, COX-2 and EP4 have been observed in glandular and epithelial cells in the breeding period, whereas only in the epithelial cells during the pre-hibernation. Consistently, the protein levels of COX-2 and EP4 were higher in the pre-hibernation as compared to the breeding period, but the diversity of COX-1 was not obvious. In addition, oviductal PGE2 concentration was also significantly higher in the pre-hibernation. These results suggested that prostaglandin-E2 may play an important autocrine or paracrine role in oviductal cell proliferation and differentiation of Rana dybowskii during pre-hibernation.
Collapse
Affiliation(s)
- Ruiqi Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Liqin Xi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qing Cao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Rui Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xia Sheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Guo
- College of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, PR China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
8
|
Cerny KL, Ribeiro RAC, Jeoung M, Ko C, Bridges PJ. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome. PLoS One 2016; 11:e0147685. [PMID: 26808832 PMCID: PMC4725743 DOI: 10.1371/journal.pone.0147685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430–2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG’s, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG’s in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expression and related bioinformatic analysis is presented to increase our understanding of how estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as important regulators of fertility in the future.
Collapse
Affiliation(s)
- Katheryn L. Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
| | - Rosanne A. C. Ribeiro
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
| | - Myoungkun Jeoung
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of America
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States of America
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of America
- * E-mail:
| |
Collapse
|
9
|
Popli P, Sirohi VK, Manohar M, Shukla V, Kaushal JB, Gupta K, Dwivedi A. Regulation of cyclooxygenase-2 expression in rat oviductal epithelial cells: Evidence for involvement of GPR30/Src kinase-mediated EGFR signaling. J Steroid Biochem Mol Biol 2015; 154:130-41. [PMID: 26241029 DOI: 10.1016/j.jsbmb.2015.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
The oviduct plays a crucial role in female reproduction by regulating gamete transport, providing a specific microenvironment for fertilization and early embryonic development. Cyclooxygenase (COX)-derived prostaglandins play essential role in carrying out these oviduct-specific functions. Estrogen upregulates COX-2 expression in rat oviduct; however, the mechanisms responsible for regulation of COX-2 expression in rat oviductal epithelial cells (OECs) remain unclear. In the present study, we proposed that estrogen induces COX-2 expression via G-protein coupled receptor i.e., GPR30 in OECs. To investigate this hypothesis, we examined the effects of E2-BSA, ICI 182,780, GPR30 agonist and GPR30 antagonist on COX-2 expression and explored potential signaling pathway leading to COX-2 expression. Co-localization experiments revealed GPR30 to be primarily located in the peri-nuclear space, which was also the site of E2-BSA-fluorescein isothiocyanate (E2-BSA-FITC) binding. The E2-BSA induced-COX-2 and prostaglandin release were subjected to regulation by both EGFR and PI3K signaling as inhibitors of c-Src kinase (PP2), EGFR (EGFR inhibitor) and PI-3 kinase (LY294002) attenuated E2-BSA mediated effect. These results suggest that EGFR transactivation leading to activation of PI-3K/Akt pathway participates in COX-2 expression in rat OECs. Interestingly, E2-BSA induced COX-2 expression and subsequent prostaglandin release were abolished by NF-κB inhibitor. In addition, E2-BSA induced the nuclear translocation of p65-NF-κB and up-regulated the NF-κB promoter activity in rat OECs. Taken together, results demonstrated that E2-BSA induced the COX-2 expression and consequent PGE2 and PGF2α release in rat OECs. These effects are mediated through GPR30-derived EGFR transactivation and PI-3K/Akt cascade leading to NF-κB activation.
Collapse
Affiliation(s)
- Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Vijay Kumar Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| |
Collapse
|
10
|
Prostanoid receptors EP2, EP4, and FP are regulated by estradiol in bovine oviductal smooth muscle. Prostaglandins Other Lipid Mediat 2015; 121:170-5. [DOI: 10.1016/j.prostaglandins.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/16/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
|
11
|
Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13:84. [PMID: 26242217 PMCID: PMC4524109 DOI: 10.1186/s12958-015-0077-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reproductive success depends on a functional oviduct for gamete storage, maturation, fertilization, and early embryonic development. The ovarian-derived steroids estrogen and progesterone are key regulators of oviductal function. The objective of this study was to investigate luteal and follicular phase-specific oviductal epithelial cell function by using microarray-based transcriptional profiling, to increase our understanding of mRNAs regulating epithelial cell processes, and to identify novel genes and biochemical pathways that may be found to affect fertility in the future. METHODS Six normally cycling Angus heifers were assigned to either luteal phase (LP, n = 3) or follicular phase (FP, n = 3) treatment groups. Heifers in the LP group were killed between day 11 and 12 after estrus. Heifers in the FP group were treated with 25 mg PGF2α (Lutalyse, Pfizer, NY) at 8 pm on day 6 after estrus and killed 36 h later. Transcriptional profiling by microarray and confirmation of selected mRNAs by real-time RT-PCR analyses was performed using total RNA from epithelial cells isolated from sections of the ampulla and isthmus collected from LP and FP treatment groups. Differentially expressed genes were subjected to gene ontology classification and bioinformatic pathway analyses. RESULTS Statistical one-way ANOVA using Benjamini-hochberg multiple testing correction for false discovery rate (FDR) and pairwise comparison of epithelial cells in the ampulla of FP versus LP groups revealed 972 and 597 transcripts up- and down-regulated, respectively (P < 0.05). Within epithelial cells of the isthmus in FP versus LP groups, 946 and 817 transcripts were up- and down-regulated, respectively (P < 0.05). Up-regulated genes from both ampulla and isthmus were found to be largely involved in cholesterol biosynthesis and cell cycle pathways, while down-regulated genes were found in numerous inflammatory response pathways. CONCLUSIONS Microarray-based transcriptional profiling revealed phase of the cycle-dependent changes in the expression of mRNA within the epithelium of the oviducts' ampulla and isthmus.
Collapse
Affiliation(s)
- K L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - E Garrett
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - A J Walton
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - L H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| |
Collapse
|
12
|
Parada-Bustamante A, Orihuela PA, Ríos M, Cuevas CA, Oróstica ML, Velásquez LA, Villalón MJ, Croxatto HB. A non-genomic signaling pathway shut down by mating changes the estradiol-induced gene expression profile in the rat oviduct. Reproduction 2009; 139:631-44. [PMID: 20032209 DOI: 10.1530/rep-09-0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estradiol (E(2)) accelerates oviductal egg transport through intraoviductal non-genomic pathways in unmated rats and through genomic pathways in mated rats. This shift in pathways has been designated as intracellular path shifting (IPS), and represents a novel and hitherto unrecognized effect of mating on the female reproductive tract. We had reported previously that IPS involves shutting down the E(2) non-genomic pathway up- and downstream of 2-methoxyestradiol. Here, we evaluated whether IPS involves changes in the genomic pathway too. Using microarray analysis, we found that a common group of genes changed its expression in response to E(2) in unmated and mated rats, indicating that an E(2) genomic signaling pathway is present before and after mating; however, a group of genes decreased its expression only in mated rats and another group of genes increased its expression only in unmated rats. We evaluated the possibility that this difference is a consequence of an E(2) non-genomic signaling pathway present in unmated rats, but not in mated rats. Mating shuts down this E(2) non-genomic signaling pathway up- and downstream of cAMP production. The Star level is increased by E(2) in unmated rats, but not in mated rats. This is blocked by the antagonist of estrogen receptor ICI 182 780, the adenylyl cyclase inhibitor SQ 22536, and the catechol-O-methyltransferase inhibitor, OR 486. These results indicate that the E(2)-induced gene expression profile in the rat oviduct differs before and after mating, and this difference is probably mediated by an E(2) non-genomic signaling pathway operating on gene expression only in unmated rats.
Collapse
Affiliation(s)
- Alexis Parada-Bustamante
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|