1
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
2
|
Wang Y, Zhang C, Jin Y, Wang, He Q, Liu Z, Ai Q, Lei Y, Li Y, Song F, Bu Y. Alkaline ceramidase 2 is a novel direct target of p53 and induces autophagy and apoptosis through ROS generation. Sci Rep 2017; 7:44573. [PMID: 28294157 PMCID: PMC5353723 DOI: 10.1038/srep44573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
ACER2 is a critical sphingolipid metabolizing enzyme, and has been shown to be remarkably up-regulated following various stimuli such as DNA damage. However, the transcriptional regulatory mechanism of ACER2 gene and its potential role in the regulation of autophagy remain unknown. In this study, we have for the first time identified the human ACER2 gene promoter, and found that human ACER2 transcription is directly regulated by p53 and ACER2 is implicated in the induction of autophagy as well as apoptosis. A series of luciferase reporter assay demonstrated that ACER2 major promoter is located within its first intron where the consensus p53-binding sites exist. Consistently, forced expression of p53 significantly stimulated ACER2 transcription. Notably, p53-mediated autophagy and apoptosis were markedly enhanced by ACER2. Depletion of the essential autophagy gene ATG5 revealed that ACER2-induced autophagy facilitates its effect on apoptosis. Further studies clearly showed that ACER2-mediated autophagy and apoptosis are accompanied by ROS generation. In summary, our present study strongly suggests that ACER2 plays a pivotal role in p53-induced autophagy and apoptosis, and thus might serve as a novel and attractive molecular target for cancer treatment.
Collapse
Affiliation(s)
- Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chunxue Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuelei Jin
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing He
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhu Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Ai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Xu R, Wang K, Mileva I, Hannun YA, Obeid LM, Mao C. Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response. Oncotarget 2017; 7:18440-57. [PMID: 26943039 PMCID: PMC4951300 DOI: 10.18632/oncotarget.7825] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production.
Collapse
Affiliation(s)
- Ruijuan Xu
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Kai Wang
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Izolda Mileva
- Lipidomics Core Facility, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Ralph H. Johnson Veterans Administration Hospital, Stony Brook, NY 11794, USA
| | - Cungui Mao
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Rives A, Baudoin-Dehoux C, Saffon N, Andrieu-Abadie N, Génisson Y. Asymmetric synthesis and cytotoxic activity of isomeric phytosphingosine derivatives. Org Biomol Chem 2011; 9:8163-70. [DOI: 10.1039/c1ob06195j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Ghosh SC, Auzenne E, Khodadadian M, Farquhar D, Klostergaard J. N,N-Dimethylsphingosine conjugates of poly-l-glutamic acid: Synthesis, characterization, and initial biological evaluation. Bioorg Med Chem Lett 2009; 19:1012-7. [DOI: 10.1016/j.bmcl.2008.11.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|