1
|
Friston DA, Cuddihy J, Souza Luiz J, Truong AH, Ho L, Basra M, Santha P, Oszlacs O, de Sousa Valente J, Marczylo T, Junttila S, Laycock H, Collins D, Vizcaychipi M, Gyenesei A, Takats Z, Jancso G, Want E, Nagy I. Elevated 18:0 lysophosphatidylcholine contributes to the development of pain in tissue injury. Pain 2023; 164:e103-e115. [PMID: 36638307 PMCID: PMC9833116 DOI: 10.1097/j.pain.0000000000002709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.
Collapse
Affiliation(s)
- Dominic Anthony Friston
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Joshua Cuddihy
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Jessica Souza Luiz
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - An Hoai Truong
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Laptin Ho
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Meirvaan Basra
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Peter Santha
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Orsolya Oszlacs
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Joao de Sousa Valente
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Research, BHF Cardiovascular Centre of Research Excellence, King's College London, London, United Kingdom
| | - Tim Marczylo
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Didcot, United Kingdom
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku, Turku, Finland
| | - Helen Laycock
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Declan Collins
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Marcela Vizcaychipi
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Attila Gyenesei
- Szentagothai Research Centre, University of Pecs, Pécs, Hungary
| | - Zoltan Takats
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Gabor Jancso
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Elizabeth Want
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Istvan Nagy
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
3
|
Lam SM, Tong L, Duan X, Acharya UR, Tan JH, Petznick A, Wenk MR, Shui G. Longitudinal changes in tear fluid lipidome brought about by eyelid-warming treatment in a cohort of meibomian gland dysfunction. J Lipid Res 2014; 55:1959-69. [PMID: 24994912 DOI: 10.1194/jlr.p051185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meibomian gland dysfunction (MGD) is a leading cause of evaporative dry eye and ocular discomfort characterized by an unstable tear film principally attributed to afflicted delivery of lipids to the ocular surface. Herein, we elucidated longitudinal tear lipid alterations associated with disease alleviation and symptom improvement in a cohort of MGD patients undergoing eyelid-warming treatment for 12 weeks. Remarkably, eyelid-warming resulted in stark reductions in lysophospholipids (P < 0.001 for lyso-plasmalogen phosphatidylethanolamine, lysophosphatidylcholine, and lysophosphatidylinositol), as well as numerous PUFA-containing diacylglyceride species in tears, accompanied by significant increases in several PUFA-containing phospholipids. These changes in tear lipidomes suggest that eyelid-warming leads to diminished activity of tear phospholipases that preferentially target PUFA-containing phospholipids. In addition, treatment led to appreciable increases (P < 0.001) in O-acyl-ω-hydroxy-FAs (OAHFAs), which are lipid amphiphiles critical to the maintenance of tear film stability. Longitudinal changes in the tear lipids aforementioned also significantly (P < 0.05) correlated with reduced rate of ocular evaporation and improvement in ocular symptoms. The foregoing data thus indicate that excess ocular surface phospholipase activity detrimental to tear film stability could be alleviated by eyelid warming alone without application of steroids and identify tear OAHFAs as suitable markers to monitor treatment response in MGD.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China Department of Biological Sciences, National University of Singapore, Singapore
| | - Louis Tong
- Singapore Eye Research Institute, Singapore Singapore National Eye Centre, Singapore Duke-National University of Singapore Graduate Medical School, Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xinrui Duan
- Life Sciences Institute, National University of Singapore, Singapore
| | | | - Jen Hong Tan
- Biomedical Engineering Department, Ngee Ann Polytechnic, Singapore
| | | | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
5
|
Rao PV. Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. J Ocul Pharmacol Ther 2014; 30:181-90. [PMID: 24283588 PMCID: PMC3991961 DOI: 10.1089/jop.2013.0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023] Open
Abstract
Homeostasis of aqueous humor (AH) outflow and intraocular pressure (IOP) is essential for normal vision. Impaired AH outflow through the trabecular meshwork (TM) and a resultant elevation in IOP are common changes in primary open-angle glaucoma (POAG), which is the most prevalent form of glaucoma. Although elevated IOP has been recognized as a definitive risk factor for POAG and lowering elevated IOP remains a mainstay for glaucoma treatment, little is known about the molecular mechanisms, especially external cues and intracellular pathways, involved in the regulation of AH outflow in both normal and glaucomatous eyes. In addition, despite the recognition that increased resistance to AH outflow via the conventional pathway consisting of TM and Schlemm's canal is the main cause for elevated IOP, there are no clinically approved drugs that target the conventional pathway to lower IOP in glaucoma patients. The aim of this article is to briefly review published work on the importance of bioactive lysophospholipids (eg, lysophosphatidic acid and sphingosine-1-phosphate), their receptors, metabolism, signaling, and role in the regulation of AH outflow via the TM and IOP, and to discuss pharmacological targeting of key proteins in the lysophospholipid signaling pathways to lower IOP in glaucoma patients.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
6
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
7
|
Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res 2013; 115:1-12. [PMID: 23792172 DOI: 10.1016/j.exer.2013.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
Abstract
Cells in vivo are exposed to a complex signaling environment. Biochemical signaling modalities, such as secreted proteins, specific extracellular matrix domains and ion fluxes certainly compose an important set of regulatory signals to cells. However, these signals are not exerted in isolation, but rather in concert with biophysical cues of the surrounding tissue, such as stiffness and topography. In this review, we attempt to highlight the biophysical attributes of ocular tissues and their influence on cellular behavior. Additionally, we introduce the proteins YAP and TAZ as targets of biophysical and biochemical signaling and important agonists and antagonists of numerous signaling pathways, including TGFβ and Wnt. We frame the discussion around this extensive signaling crosstalk, which allows YAP and TAZ to act as orchestrating molecules, capable of integrating biophysical and biochemical cues into a broad cellular response. Finally, while we draw on research from various fields to provide a full picture of YAP and TAZ, we attempt to highlight the intersections with vision science and the exciting work that has already been performed.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
8
|
Luna C, Li G, Huang J, Qiu J, Wu J, Yuan F, Epstein DL, Gonzalez P. Regulation of trabecular meshwork cell contraction and intraocular pressure by miR-200c. PLoS One 2012; 7:e51688. [PMID: 23272142 PMCID: PMC3522713 DOI: 10.1371/journal.pone.0051688] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/05/2012] [Indexed: 01/20/2023] Open
Abstract
Lowering intraocular pressure (IOP) delays or prevents the loss of vision in primary open-angle glaucoma (POAG) patients with high IOP and in those with normal tension glaucoma showing progression. Abundant evidence demonstrates that inhibition of contractile machinery of the trabecular meshwork cells is an effective method to lower IOP. However, the mechanisms involved in the regulation of trabecular contraction are not well understood. Although microRNAs have been shown to play important roles in the regulation of multiple cellular functions, little is known about their potential involvement in the regulation of IOP. Here, we showed that miR-200c is a direct postranscriptional inhibitor of genes relevant to the physiologic regulation of TM cell contraction including the validated targets Zinc finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2), and formin homology 2 domain containing 1 (FHOD1), as well as three novel targets: lysophosphatidic acid receptor 1 (LPAR1/EDG2), endothelin A receptor (ETAR), and RhoA kinase (RHOA). Consistently, transfection of TM cells with miR-200c resulted in strong inhibition of contraction in collagen populated gels as well as decreased cell traction forces exerted by individual TM cells. Finally, delivery of miR-200c to the anterior chamber of living rat eyes resulted in a significant decrease in IOP, while inhibition of miR-200c using an adenoviral vector expressing a molecular sponge led to a significant increase in IOP. These results demonstrate for the first time the ability of a miRNA to regulate trabecular contraction and modulate IOP in vivo, making miR-200c a worthy candidate for exploring ways to alter trabecular contractility with therapeutic purposes in glaucoma.
Collapse
Affiliation(s)
- Coralia Luna
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Jianyong Huang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jianming Qiu
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Jing Wu
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - David L. Epstein
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|