1
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. Lipid metabolism reprogramming in cardiac fibrosis. Trends Endocrinol Metab 2024; 35:164-175. [PMID: 37949734 DOI: 10.1016/j.tem.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Lyu S, Guo Q, Shen W, Han M, Xiong F, Dai X, Liu L, Bu W, Lou B, Yuan J. Comparative analysis of whole-transcriptome RNA expression of lung tissue of Chinese soft-shell turtle infected by Trionyx sinensis Hemorrhagic Syndrome Virus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109236. [PMID: 37992913 DOI: 10.1016/j.fsi.2023.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV), the first aquatic arterivirus identified in China, causes severe mortality to T. sinensis. In this study, we sought to determine the functions of T. sinensis mRNAs and non-coding RNAs (ncRNAs) that were differentially expressed (DE) over different periods of TSHSV infection of T. sinensis lung. We used RT-qPCR to validate the sequencing results of select RNAs, confirming their reliable and referable nature. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict multiple biological functions and signaling pathways in various comparison groups (1-day versus mock, 3-day versus 1-day, and 5-day versus 3-day). Multiple types of differentially expressed RNA, including mRNA, lncRNA, circRNA, and miRNA, were associated with cardiac dysfunction, coagulation abnormalities, and arachidonic acid metabolism at day 1. Pre-inflammatory cytokines and inflammatory factors such as PLA2G4A, cPLA2, γ-GGT1, TNFRSF14, TCP11L2, PTER CYP2J2 and LTC4S, were noticeably regulated at the same time. On day 3, multiple GO terms and KEGG pathways were implicated, including those related to virus defense, apoptosis, pyroptosis, and inflammatory response. Notably, key genes such as RSAD2, TRIM39, STAT4, CASP1, CASP14, MYD88, CXCL3, CARD11, ZBP1, and ROBO4 exhibited significant regulation. The lncRNAs and circRNAs that targeted the genes involved in viral recognition (TLR5), apoptosis (CARD11), pyroptosis (ZBP1), inflammatory processes (NEK7, RASGRP4, and SELE) and angiogenesis (ROBO4) exhibited significant regulation. Significantly regulated miRNAs were primarily linked to genes involved in apoptosis (Let-7f-3p, miR-1260a, miR-455-3p), and inflammation (miR-146a, miR-125a, miR-17a, miR-301b, and miR-30a-3p). The findings could advance our understanding of the host immunological response to TSHSV and offer new ideas for developing effective strategies to prevent infection of T. sinensis.
Collapse
Affiliation(s)
- Sunjian Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Qi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Weifeng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Fulei Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Xiaoling Dai
- College of Life Science, China Jiliang University, 258, Xueyuan Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, 310018, PR China
| | - Li Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China.
| | - Weishao Bu
- Yunhe County Qingjiang Ecological Trionyx sinensis Breeding Cooperative, Shipu Village, Jinshuitan Town, Yunhe County, Zhejiang, 310018, PR China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, 999 South Hangchangqiao Road, Huzhou, Zhejiang, 313001, PR China
| |
Collapse
|
3
|
Zhou Z, Zhang M, Zhao C, Gao X, Wen Z, Wu J, Chen C, Fleming I, Hu J, Wang DW. Epoxyeicosatrienoic Acids Prevent Cardiac Dysfunction in Viral Myocarditis via Interferon Type I Signaling. Circ Res 2023; 133:772-788. [PMID: 37681352 DOI: 10.1161/circresaha.123.322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Myocarditis is a challenging inflammatory disease of the heart, and better understanding of its pathogenesis is needed to develop specific drug therapies. Epoxyeicosatrienoic acids (EETs), active molecules synthesized by CYP (cytochrome P450) enzymes from arachidonic acids and hydrolyzed to less active dihydroxyeicosatrienoic acids by sEH (soluble epoxide hydrolase), have been attributed anti-inflammatory activity. Here, we investigated whether EETs have immunomodulatory activity and exert protective effects on coxsackie B3 virus-induced myocarditis. Viral infection altered eicosanoid epoxide and diol levels in both patients with myocarditis and in the murine heart and correlated with the increased expression and activity of sEH after coxsackie B3 virus infection. Administration of a sEH inhibitor prevented coxsackie B3 virus-induced cardiac dysfunction and inflammatory infiltration. Importantly, EET/sEH inhibitor treatment attenuated viral infection or improved viral resistance by activating type I IFN (interferon) signaling. At the molecular level, EETs enhanced the interaction between GSK3β (glycogen synthase kinase-3 beta) and TBK1 (TANK-binding kinase 1) to promote IFN-β production. Our findings revealed that EETs and sEH inhibitors prevent the progress of coxsackie B3 virus-induced myocarditis, particularly by promoting viral resistance by increasing IFN production.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Chengcheng Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Xu Gao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| | - Ingrid Fleming
- Sino-German Laboratory of CardioPulmonary Science (I.F., J.H., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany (I.F., J.H.)
- German Center of Cardiovascular Research, Partner Site RheinMain, Frankfurt am Main, Germany (I.F., J.H.)
| | - Jiong Hu
- Department of Histology and Embryology, School of Basic Medicine (J.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (I.F., J.H., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany (I.F., J.H.)
- German Center of Cardiovascular Research, Partner Site RheinMain, Frankfurt am Main, Germany (I.F., J.H.)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (I.F., J.H., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (Z.Z., M.Z., C.Z., X.G., Z.W., J.W., C.C., D.W.W.)
| |
Collapse
|
4
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
5
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
6
|
Abstract
INTRODUCTION Cytochrome P450s (CYPs) are a superfamily of monooxygenases with diverse biological roles. CYP2J2 is an isozyme highly expressed in the heart where it metabolizes endogenous substrates such as N-3/N-6 polyunsaturated fatty acids (PUFA) to produce lipid mediators involved in homeostasis and cardioprotective responses. Expanding our knowledge of the role CYP2J2 has within the heart is important for understanding its impact on cardiac health and disease. AREAS COVERED The objective of this review was to assess the state of knowledge regarding cardiac CYP2J2. A literature search was conducted using PubMed-MEDLINE (from 2022 and earlier) to evaluate relevant studies regarding CYP2J2 mediated cardioprotection, small molecule modulators, effects of CYP2J2 substrates toward biologically relevant effects and implications of CYP2J2 polymorphisms and sexual dimorphism in the heart. EXPERT OPINION Cardiac CYP2J2-mediated metabolism of endogenous and exogenous substrates have been shown to impact cardiac function. Identifying individual factors, like sex and age, that affect CYP2J2 require further elucidation to better understand CYP2J2's clinical relevance. Resolving the biological targets and activities of CYP2J2-derived PUFA metabolites will be necessary to safely target CYP2J2 and design novel analogues. Targeting CYP2J2 for therapeutic aims offers a potential novel approach to regulating cardiac homeostasis, drug metabolism and cardioprotection.
Collapse
|
7
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
8
|
Kim JS, Arango AS, Shah S, Arnold WR, Tajkhorshid E, Das A. Anthracycline derivatives inhibit cardiac CYP2J2. J Inorg Biochem 2022; 229:111722. [PMID: 35078036 PMCID: PMC8860876 DOI: 10.1016/j.jinorgbio.2022.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.
Collapse
Affiliation(s)
- Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Swapnil Shah
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
9
|
Zhao Z, Zhang C, Lin J, Zheng L, Li H, Qi X, Huo H, Lou X, Hammock BD, Hwang SH, Bao Y, Luo M. COX-2/sEH Dual Inhibitor PTUPB Alleviates CCl 4 -Induced Liver Fibrosis and Portal Hypertension. Front Med (Lausanne) 2022; 8:761517. [PMID: 35004731 PMCID: PMC8734593 DOI: 10.3389/fmed.2021.761517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023] Open
Abstract
Background: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl) -benzenesulfonamide (PTUPB), a dual cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) inhibitor, was found to alleviate renal, pulmonary fibrosis and liver injury. However, few is known about the effect of PTUPB on liver cirrhosis. In this study, we aimed to explore the role of PTUPB in liver cirrhosis and portal hypertension (PHT). Method: Rat liver cirrhosis model was established via subcutaneous injection of carbon tetrachloride (CCl4) for 16 weeks. The experimental group received oral administration of PTUPB (10 mg/kg) for 4 weeks. We subsequently analyzed portal pressure (PP), liver fibrosis, inflammation, angiogenesis, and intra- or extrahepatic vascular remodeling. Additionally, network pharmacology was used to investigate the possible mechanisms of PTUPB in live fibrosis. Results: CCl4 exposure induced liver fibrosis, inflammation, angiogenesis, vascular remodeling and PHT, and PTUPB alleviated these changes. PTUPB decreased PP from 17.50 ± 4.65 to 6.37 ± 1.40 mmHg, reduced collagen deposition and profibrotic factor. PTUPB alleviated the inflammation and bile duct proliferation, as indicated by decrease in serum interleukin-6 (IL-6), liver cytokeratin 19 (CK-19), transaminase, and macrophage infiltration. PTUPB also restored vessel wall thickness of superior mesenteric arteries (SMA) and inhibited intra- or extrahepatic angiogenesis and vascular remodeling via vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), etc. Moreover, PTUPB induced sinusoidal vasodilation by upregulating endothelial nitric oxide synthase (eNOS) and GTP-cyclohydrolase 1 (GCH1). In enrichment analysis, PTUPB engaged in multiple biological functions related to cirrhosis, including blood pressure, tissue remodeling, immunological inflammation, macrophage activation, and fibroblast proliferation. Additionally, PTUPB suppressed hepatic expression of sEH, COX-2, and transforming growth factor-β (TGF-β). Conclusion: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)- benzenesulfonamide ameliorated liver fibrosis and PHT by inhibiting fibrotic deposition, inflammation, angiogenesis, sinusoidal, and SMA remodeling. The molecular mechanism may be mediated via the downregulation of the sEH/COX-2/TGF-β.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce D Hammock
- Department of Entomology, Nematology and UC Davis Comprehensive Cancer Center, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology, Nematology and UC Davis Comprehensive Cancer Center, Davis, CA, United States
| | - Yongyang Bao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Imig JD, Cervenka L, Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem Pharmacol 2022; 195:114866. [PMID: 34863976 PMCID: PMC8712413 DOI: 10.1016/j.bcp.2021.114866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ludek Cervenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Neckar
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
He Z, Wang DW. The roles of eicosanoids in myocardial diseases. ADVANCES IN PHARMACOLOGY 2022; 97:167-200. [DOI: 10.1016/bs.apha.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:12029. [PMID: 34769460 PMCID: PMC8584625 DOI: 10.3390/ijms222112029] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| |
Collapse
|
13
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
14
|
Yang L, Chen C, Lv B, Gao Y, Li G. Epoxyeicosatrienoic acids prevent cardiomyocytes against sepsis by A 2AR-induced activation of PI3K and PPARγ. Prostaglandins Other Lipid Mediat 2021; 157:106595. [PMID: 34597782 DOI: 10.1016/j.prostaglandins.2021.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/14/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Although epoxyeicosatrienoic acids (EETs) have multiple protective effects against different diseases, whether they can improve the pathogenesis of lipopolysaccharide (LPS)-induced septic cardiac dysfunction remains unknown. We investigated the effects of EETs on the LPS-induced inflammatory response in myocardial dysfunction mice and H9c2 cardiac myocytes. Cardiac-specific CYP2J2 transgenic mice (Tr) showed improved cardiac function and reduced inflammation response after administration with LPS, while the protective effects were not observed in A2A adenosine receptor (A2AR/ADORA2A)-deficient mice (knockout/KO). In vitro, EETs prevented LPS-induced inflammation and apoptosis in the cardiomyocytes via A2AR activation. Moreover, ZM241385 (A2AR inhibitor) attenuated the cardioprotective properties of EETs. Further investigation demonstrated that A2AR signal pathway activation partly regulated phosphatidylinositol 3-kinase (PI3K) and peroxisome proliferator-activated receptor-γ (PPARγ) expression. This is the first report on EETs exerting cardioprotective effects against LPS-induced cardiomyocyte injury via A2AR activation.
Collapse
Affiliation(s)
- Lei Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chen Chen
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bingya Lv
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
15
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 447] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
17
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Role of cardiac mast cells in exercise training-mediated cardiac remodeling in angiotensin II-infused ovariectomized rats. Life Sci 2019; 219:209-218. [PMID: 30658099 DOI: 10.1016/j.lfs.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/03/2023]
Abstract
AIMS Regular exercise is recommended in postmenopausal women to prevent the development of heart disease, but mechanism underlying the protection is not completely understood. Many studies have suggested that exercise training notably mediated whole body immune and inflammatory functions. Whether exercise training prevents cardiac dysfunction after deprivation of female sex hormones by inhibiting cardiac immune activation is therefore interesting. MAIN METHODS Nine-week treadmill running program was introduced in sham-operated and ovariectomized rats. In addition, chronic angiotensin II infusion was further challenged to activate pathological cardiac remodeling. Cardiac remodeling in associated with the density and degranulation of cardiac mast cells was then evaluated. KEY FINDINGS With exogenous angiotensin II-induced hypertension, cardiac hypertrophy with myocardial fibrosis was shown similarly in both sham-operated controls and ovariectomized rats. Although exercise training did not prevent cardiac hypertrophy, myocardial fibrosis was abolished by exercise. While ovariectomy increased both cardiac mast cell density and degranulation percentage, angiotensin II infusion only enhanced mast cell density. Exercise training could not decrease the density of mast cells, but it did normalize the percentage of degranulation in all groups. Correlation analysis suggested that cardiac mast cell activation is inversely associated with cardiomyocyte hypertrophy due to exercise training but is directly correlated to cardiac hypertrophy by angiotensin II infusion. SIGNIFICANCE Exercise training could attenuate cardiac mast cell hyperactivation induced by either deprivation of female sex hormones or excessive angiotensin II. Additionally, cardiac mast cells could be a solution in the distinction between physiological and pathological hypertrophic development.
Collapse
|
19
|
Solanki M, Pointon A, Jones B, Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab Dispos 2018; 46:1053-1065. [DOI: 10.1124/dmd.117.078964] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
|
20
|
Ruan G, Ren H, Zhang C, Zhu X, Xu C, Wang L. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice. Front Physiol 2018; 9:324. [PMID: 29666587 PMCID: PMC5891926 DOI: 10.3389/fphys.2018.00324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis, which is closely related to QSYQ. Thus, QSYQ may be a promising traditional Chinese medicine for the treatment of heart failure induced by pressure overload such as hypertension.
Collapse
Affiliation(s)
- Guoran Ruan
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Haojin Ren
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaogang Zhu
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chao Xu
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Liyue Wang
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther 2017; 183:177-204. [PMID: 29080699 DOI: 10.1016/j.pharmthera.2017.10.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous benefits have been attributed to dietary long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs), including protection against cardiac arrhythmia, triglyceride-lowering, amelioration of inflammatory, and neurodegenerative disorders. This review covers recent findings indicating that a variety of these beneficial effects are mediated by "omega-3 epoxyeicosanoids", a class of novel n-3 LC-PUFA-derived lipid mediators, which are generated via the cytochrome P450 (CYP) epoxygenase pathway. CYP enzymes, previously identified as arachidonic acid (20:4n-6; AA) epoxygenases, accept eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), the major fish oil n-3 LC-PUFAs, as efficient alternative substrates. In humans and rodents, dietary EPA/DHA supplementation causes a profound shift of the endogenous CYP-eicosanoid profile from AA- to EPA- and DHA-derived metabolites, increasing, in particular, the plasma and tissue levels of 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP). Based on preclinical studies, these omega-3 epoxyeicosanoids display cardioprotective, vasodilatory, anti-inflammatory, and anti-allergic properties that contribute to the beneficial effects of n-3 LC-PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain. Increasing evidence also suggests that background nutrition as well as genetic and disease state-related factors could limit the response to EPA/DHA-supplementation by reducing the formation and/or enhancing the degradation of omega-3 epoxyeicosanoids. Recently, metabolically robust synthetic analogs mimicking the biological activities of 17,18-EEQ have been developed. These drug candidates may overcome limitations of dietary EPA/DHA supplementation and provide novel options for the treatment of cardiovascular and inflammatory diseases.
Collapse
|
22
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
He Z, Yang Y, Wen Z, Chen C, Xu X, Zhu Y, Wang Y, Wang DW. CYP2J2 metabolites, epoxyeicosatrienoic acids, attenuate Ang II-induced cardiac fibrotic response by targeting Gα 12/13. J Lipid Res 2017; 58:1338-1353. [PMID: 28554983 DOI: 10.1194/jlr.m074229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
The arachidonic acid-cytochrome P450 2J2-epoxyeicosatrienoic acid (AA-CYP2J2-EET) metabolic pathway has been identified to be protective in the cardiovascular system. This study explored the effects of the AA-CYP2J2-EET metabolic pathway on cardiac fibrosis from the perspective of cardiac fibroblasts and underlying mechanisms. In in vivo studies, 8-week-old male CYP2J2 transgenic mice (aMHC-CYP2J2-Tr) and littermates were infused with angiotensin II (Ang II) or saline for 2 weeks. Results showed that CYP2J2 overexpression increased EET production. Meanwhile, impairment of cardiac function and fibrotic response were attenuated by CYP2J2 overexpression. The effects of CYP2J2 were associated with reduced activation of the α subunits of G12 family G proteins (Gα12/13)/RhoA/Rho kinase (ROCK) cascade and elevation of the NO/cyclic guanosine monophosphate (cGMP) level in cardiac tissue. In in vitro studies, cardiac fibroblast activation, proliferation, migration, and collagen production induced by Ang II were associated with activation of the Gα12/13/RhoA/ROCK pathway, which was inhibited by exogenous 11,12-EET. Moreover, silencing of Gα12/13 or RhoA exerted similar effects as 11,12-EET. Furthermore, inhibitory effects of 11,12-EET on Gα12/13 were blocked by NO/cGMP pathway inhibitors. Our findings indicate that enhancement of the AA-CYP2J2-EET metabolic pathway by CYP2J2 overexpression attenuates Ang II-induced cardiac dysfunction and fibrosis by reducing the fibrotic response of cardiac fibroblasts by targeting the Gα12/13/RhoA/ROCK pathway via NO/cGMP signaling.
Collapse
Affiliation(s)
- Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanfang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
24
|
Inhibition and inactivation of human CYP2J2: Implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol 2017; 135:12-21. [PMID: 28237650 DOI: 10.1016/j.bcp.2017.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Extrahepatic cytochrome P450 enzymes (CYP450) are pivotal in the metabolism of endogenous substrates and xenobiotics. CYP2J2 is a major cardiac CYP450 and primarily metabolizes polyunsaturated fatty acids such as arachidonic acid to cardioactive epoxyeicosatrienoic acids. Due to its role in endobiotic metabolism, CYP2J2 has been actively studied in recent years with the focus on its biological functions in cardiac pathophysiology. Additionally, CYP2J2 metabolizes a number of xenobiotics such as astemizole and terfenadine and is potently inhibited by danazol and telmisartan. Notably, CYP2J2 is found to be upregulated in multiple cancers. Hence a number of specific CYP2J2 inhibitors have been developed and their efficacy in inhibiting tumor progression has been actively studied. CYP2J2 inhibitor such as C26 (1-[4-(vinyl)phenyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone hydrochloride) caused marked reduction in tumor proliferation and migration as well as promoted apoptosis in cancer cells. In this review, we discuss the role of CYP2J2 in cardiac pathophysiology and cancer therapeutics. Additionally, we provide an update on the substrates, reversible inhibitors and irreversible inhibitors of CYP2J2. Finally, we discuss the current gaps and future directions in CYP2J2 research.
Collapse
|
25
|
Li R, Zhang Y, Yan H, Xiao H, Ruan Y, Qiu J, Shi L. CYP2J2 participates in atherogenesis by mediating cell proliferation, migration and foam cell formation. Mol Med Rep 2016; 15:643-648. [PMID: 28000856 PMCID: PMC5364824 DOI: 10.3892/mmr.2016.6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is a common pathological basis for the development of various cardiovascular and cerebrovascular diseases, however, currently, no effective treatment against AS has been established. It has previously been suggested that intravascular cytochrome P450 (CYP) oxidase is involved in the pathogenesis of AS. The present study investigated the role of cytochrome P450, family 2, subfamily J, polypeptide 2 (CYP2J2), the most common subtype of CYP oxidase in the human body, in the occurrence and development of AS. CYP2J2 was overexpressed in human umbilical vein endothelial cells (HUVECs), human arterial smooth muscle cells (HASMCs), and human peripheral monocyte‑derived foam cells by lentiviral infection. The mRNA and protein levels were measured by reverse‑transcription quantitative polymerase chain reaction and western blotting, respectively. Cell proliferation and migration were determined by MTS and Transwell assays, respectively. Furthermore, lipid accumulation was detected with Oil red O staining. The concentrations of total and free cholesterol were measured using a quantitation kit. Following lentiviral infection, CYP2J2 was successfully overexpressed in HUVEC, HASMC and foam cells. CYP2J2 overexpression promoted proliferation and migration in HUVECs and suppressed these actions in HASMCs. In addition, it suppressed oxidized low‑density lipoprotein‑induced foam cell formation. In conclusion, it was hypothesized that CYP2J2 may have a protective role in AS, as proliferation of HASMCs and the formation of foam cells are notable characteristics of AS.
Collapse
Affiliation(s)
- Rui Li
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yuan Zhang
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Huacheng Yan
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hua Xiao
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yunjun Ruan
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Jian Qiu
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Shi
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
26
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
27
|
Pillarisetti S, Khanna I. A multimodal disease modifying approach to treat neuropathic pain--inhibition of soluble epoxide hydrolase (sEH). Drug Discov Today 2015; 20:1382-90. [PMID: 26259523 DOI: 10.1016/j.drudis.2015.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Both neuronal and non-neuronal mechanisms have been proposed to contribute to neuropathic pain (NP). All currently approved treatments for NP modulate neuronal targets and provide only symptomatic relief. Here we review evidence that inhibition of soluble epoxide hydrolase (sEH), the enzyme that degrades epoxyeicosatrienoic acids (EETs), has potential to be a multimodal, disease modifying approach to treat NP: (1) EET actions involve both endogenous opioid system and the GABAergic systems thus provide superior pain relief compared to morphine or gabapentin, (2) EETs are directly anti-inflammatory and inhibit expression of inflammatory cytokines and adhesion molecules thus can prevent continued nerve damage; and (3) EETs promote nerve regeneration in cultured neurons. Thus, an sEH inhibitor will not only provide effective pain relief, but would also block further nerve damage and promote healing.
Collapse
|