1
|
Lou Y, Jiang F, Guan J. The effect of lipidomes on the risk of endometrioid endometrial cancer: a Mendelian randomization study. Front Oncol 2024; 14:1436955. [PMID: 39493450 PMCID: PMC11527595 DOI: 10.3389/fonc.2024.1436955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Objective This study aimed to explore the potential effects between various human plasma lipidomes and endometrioid endometrial cancer (EEC) by using Mendelian randomization (MR) methods. Methods This study designated a total of 179 human plasma lipidomes from the genome-wide association study (GWAS) database as the exposure variable. An EEC-related dataset from the GWAS (GCST006465) served as the outcome variable. MR analyses used the inverse variance-weighted method (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods for regression calculations, accounting for possible biases induced by linkage disequilibrium and weak instrument variables. Any lipidomes failing to pass heterogeneity and horizontal pleiotropy tests were deemed to lack significant causal impact on the outcome. Results The results of IVW analysis disclosed that a variety of human plasma lipidomes (n = 15) exhibited a significant causal effect on EEC (p < 0.05). A subset of these lipidomes (n = 13) passed heterogeneity and horizontal pleiotropy tests, which demonstrated consistent and viable causal effects (p < 0.05) including glycerophospholipids, glycerolipids, and sterols. Specifically, phosphatidylcholine (odds ratio [OR]: 1.065-1.129, p < 0.05) exhibited a significant positive causal effect on the occurrence of EEC. Conversely, sterol ester (OR = 0.936, p = 0.007), diacylglycerol (OR = 0.914, p = 0.036), phosphatidylcholine (OR: 0.903-0.927, p < 0.05), phosphatidylethanolamine (OR = 0.907, p = 0.046) and triacylglycerol (OR: 0.880-0.924, p < 0.05) showed a notable negative causal association with EEC, suggesting their inhibitory effects on the EEC occurrence. Conclusions The study revealed that human plasma lipidomes have complex impacts on EEC through Mendelian randomization. This indicated that the diversity of structural changes in lipidomes could show different effects on subtypes and then affect EEC occurrence. Although these lipids had the potential to be promising biomarkers, they needed to be further clinically validated nevertheless.
Collapse
Affiliation(s)
- Yaochen Lou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jun Guan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li M, Huang X, Huang M, Jin W, Hong Z, Zhang Y, Fang H, Chen W. Effects of fatty acid-ethanol amine (FA-EA) derivatives on lipid accumulation and inflammation. Lipids 2023; 58:117-127. [PMID: 36942837 DOI: 10.1002/lipd.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
This study aimed to investigate the effect of fatty acid-ethanol amine (FA-EA) derivatives (L1-L10) on the mitigation of intracellular lipid accumulation and downregulation of pro-inflammatory cytokines in vitro. First, the series of FA-EA derivatives were synthesized and characterized. Then, their cytotoxic, intracellular lipid accumulation and inhibition of pro-inflammatory cytokines were evaluated. The oil red O staining experiment showed that the tested compounds L4, L6, L8, L9, and L10 could reduce intracellular lipid accumulation induced by palmitic acid (PA). Moreover, ω-3/ω-6 PUFA-EA derivatives showed inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS) -stimulated RAW 264.7 cells. ω-3/ω-6 PUFA-EA derivatives at a concentrations of 10 μM could significantly decrease mRNA levels of IL-6, IL-1β, and TNF-α, inhibit NO production, and alleviate the protein expression of IL-1β in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These data suggest that ω-3 PUFA-EA derivatives can be beneficial for further pharmaceutical development to treat chronic low-grade inflammation diseases such as obesity.
Collapse
Affiliation(s)
- Mengyu Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaoqing Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Mengxian Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wenhui Jin
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Zhuan Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hua Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Weizhu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| |
Collapse
|
3
|
Mirabile A, Rivoltini L, Daveri E, Vernieri C, Mele R, Porcu L, Lazzari C, Bulotta A, Viganò MG, Cascinu S, Gregorc V. Metabolism and Immune Modulation in Patients with Solid Tumors: Systematic Review of Preclinical and Clinical Evidence. Cancers (Basel) 2020; 12:E1153. [PMID: 32375310 PMCID: PMC7281426 DOI: 10.3390/cancers12051153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Several immunotherapy agents are the standard of care of many solid malignancies. Nevertheless, the majority of patients do not benefit from the currently available immunotherapies. It is therefore of paramount importance to identify the prognostic and predictive factors of tumor response/resistance and to design effective therapeutic strategies to overcome primary resistance and improve the efficacy of immunotherapy. The aim of this review is to underline the influence of the tumor and host metabolism on the antitumor immune response and to discuss possible strategies to improve the efficacy of available treatments by targeting the specific metabolic pathways in tumors or immune cells and by modifying patients' nutritional statuses. A systematic search of the Medline and EMBASE databases was carried out to identify scientific papers published until February 2020, which reported original research articles on the influence of tumor or host metabolism on antitumor immune response. The literature data showed the key role of glycolysis and mitochondrial oxidative phosphorylation, arginine, tryptophan, glutamine, lipid metabolism and microbiome on immune cell function. Moreover, specific nutritional behaviors, such as a low dietary intake of vitamin C, low glycemic index and alpha-linolenic acid, eicosapentenoic acid, docosahexaenoic acid, ornithine ketoglutarate, tryptophan and probiotic supplementation were associated with the potential clinical benefits from the currently available immunotherapies.
Collapse
Affiliation(s)
- Aurora Mirabile
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Licia Rivoltini
- Immunotherapy of Human Tumors, IRCCS National Cancer Institute (INT) and University of Milan, Via Venezian 1, 20133 Milan, Italy; (L.R.); (E.D.)
| | - Elena Daveri
- Immunotherapy of Human Tumors, IRCCS National Cancer Institute (INT) and University of Milan, Via Venezian 1, 20133 Milan, Italy; (L.R.); (E.D.)
| | - Claudio Vernieri
- Medical Oncology Department, IRCCS IRCCS National Cancer Institute (INT) and University of Milan, Via Venezian 1, 20133 Milan, Italy;
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Roberto Mele
- Nutritionist biologist, Hospital Health Direction, Scientific Institute San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy;
| | - Luca Porcu
- Methodological Research Unit, Institute of Pharmacological Research Mario Negri, Via Mario Negri 2, 20156 Milan, Italy;
| | - Chiara Lazzari
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Alessandra Bulotta
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Maria Grazia Viganò
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Stefano Cascinu
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Vanesa Gregorc
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| |
Collapse
|
4
|
Abstract
OBJECTIVE To compare the dietary habits of children living in northern villages and in the capital of Greenland, given the reported transition from traditional to westernised diet in adults over recent decades, and to explore the association between consumption of marine mammals and fish (MMF) and the children's metabolic profile and vitamin D status. DESIGN Children answered an FFQ encompassing sixty-four individual food types pooled into six food categories. Their pubertal stage, body fat, fitness level, metabolic profile (non-HDL-cholesterol, glycated Hb, insulin, glucose, high-sensitivity C-reactive protein) as well as serum 25-hydroxyvitamin D (25(OH)D) concentration were evaluated. SETTING Siorapaluk and Qaanaaq (north of Greenland) and Nuuk (west). PARTICIPANTS Children aged 6-18 years (n 177). RESULTS MMF were most frequently eaten by children from Siorapaluk (mean (sd): 73·4 (14·1) times/month), followed by children from Qaanaaq (37·0 (25·0) times/month), and least often eaten by children from Nuuk (23·7 (24·6) times/month; P < 0·001). Children from Qaanaaq consumed 'junk food' more frequently (P < 0·001) and fruits and vegetables less frequently (P < 0·01) than children from Nuuk. MMF consumption was positively associated with serum 25(OH)D concentration (P < 0·05), but the overall prevalence of vitamin D deficiency was high (18 %). No association was found between MMF consumption and metabolic parameters. CONCLUSIONS The dietary transition and influence of western diets have spread to the north of Greenland and only the most remote place consumed a traditional diet highly based on MMF. We found no strong associations of MMF consumption with metabolic health, but a positive association with vitamin D status.
Collapse
|
5
|
Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation. Carbohydr Polym 2019; 208:431-440. [DOI: 10.1016/j.carbpol.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 01/01/2019] [Indexed: 12/23/2022]
|
6
|
Flores-Pérez JA, de la Rosa Oliva F, Argenes Y, Meneses-Garcia A. Nutrition, Cancer and Personalized Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1168:157-168. [PMID: 31713171 DOI: 10.1007/978-3-030-24100-1_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a complex group of diseases where different signaling pathways have been found to be deregulated, mainly related to cell proliferation, angiogenesis, metastasis, evasion of apoptosis and insensitivity to anti-growth sings among others. Diet plays a fundamental role in the treatment of the oncological patients, we must be aware that food can interact with certain types of cancer therapy. On the other hand, cancer therapies sometimes affect the patient's sense of smell, taste, appetite, gastric capacity or nutrient absorption, which often results in malnutrition due to the lack of essential nutriments. In this chapter we will review the effect of different metabolic disorders in cancer and mechanisms of action of some phytochemicals found in different foods like resveratrol, EGCG, curcumin and lycopene.
Collapse
Affiliation(s)
| | - Fabiola de la Rosa Oliva
- Unidad Academica de la Medicina Humana y Odontologia, Universidad Autonoma de Zacatecas, Mexico City, Mexico
| | - Yacab Argenes
- Translational Medicine Laboratory, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | |
Collapse
|
7
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
8
|
Mejia-Montilla J, Reyna-Villasmil E, Domínguez-Brito L, Naranjo-Rodríguez C, Noriega-Verdugo D, Padilla-Samaniego M, Vargas-Olalla V. Supplementation with omega-3 fatty acids and plasma adiponectin in women with polycystic ovary syndrome. ENDOCRINOL DIAB NUTR 2018. [DOI: 10.1016/j.endien.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Mejia-Montilla J, Reyna-Villasmil E, Domínguez-Brito L, Naranjo-Rodríguez C, Noriega-Verdugo D, Padilla-Samaniego M, Vargas-Olalla V. Supplementation with omega-3 fatty acids and plasma adiponectin in women with polycystic ovary syndrome. ACTA ACUST UNITED AC 2018; 65:192-199. [PMID: 29452758 DOI: 10.1016/j.endinu.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To study plasma adiponectin levels in women diagnosed with polycystic ovary syndrome given omega-3 fatty acid supplements. PATIENTS AND METHODS A study was conducted in 195 women diagnosed with polycystic ovary syndrome treated with omega-3 fatty acids for 12weeks (n=97; groupA) and control women given placebo (n=98, groupB). General characteristics, metabolism, lipid profile, and hormone and adiponectin levels were compared. RESULTS There were no significant differences between the two groups in general characteristics. No significant differences were also found in hormone, blood glucose, and HOMA levels between the groups. Women in study groupsA andB showed no statistically significant differences in total calorie, carbohydrate, protein, and total fat intake between the baseline and final values. Decreased total cholesterol, low-density lipoprotein, and triglyceride levels were found in groupA women (P<.0001). Mean of adiponectin levels also showed a statistically significant increase after treatment (P<.0001). There were no statistically significant differences in the mean values of the different variables in groupB women. CONCLUSION Omega-3 fatty acid supplementation for 12weeks caused a significant increase in plasma adiponectin levels in women with polycystic ovary syndrome.
Collapse
|
10
|
Ilex latifolia Thunb protects mice from HFD-induced body weight gain. Sci Rep 2017; 7:14660. [PMID: 29116160 PMCID: PMC5676986 DOI: 10.1038/s41598-017-15292-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022] Open
Abstract
Kuding tea is implicated in alleviating metabolic disorders in traditional Chinese medicine. However, the role of Ilex latifolia Thunb (kuding tea), one of the large leaf kuding tea species, in the prevention of the development of obesity remains to be determined. We show here that 7-week-old male mice treated with an Ilex latifolia Thunb supplement for 14 weeks were resistant to HFD-induced body weight gain and hepatic steatosis, accompanied by improved insulin sensitivity. Ilex latifolia Thunb supplementation dramatically reduced the systemic and tissue inflammation levels of mice via reducing pro-inflammatory cytokine levels, increasing anti-inflammatory cytokine levels in the circulation and inhibiting p38 MAPK and p65 NF-κB signaling in adipose tissue. Together, these results indicate that Ilex latifolia Thunb protects mice from the development of obesity and is a potential compound pool for the development of novel anti-obesity drugs.
Collapse
|