1
|
Xue H, Wang Y, Mei C, Han L, Lu M, Li X, Chen T, Wang F, Tang X. Gut microbiome and serum metabolome alterations associated with lactose intolerance (LI): a case‒control study and paired-sample study based on the American Gut Project (AGP). mSystems 2024; 9:e0083924. [PMID: 39320101 PMCID: PMC11494873 DOI: 10.1128/msystems.00839-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 09/26/2024] Open
Abstract
Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms that arise following lactose consumption. Recent evidence suggests that the gut microbiome may influence lactose levels in the gut. However, there is limited understanding regarding the alterations in microbiota and metabolism between individuals with LI and non-LI. This study conducted a paired-sample investigation utilizing data from the American Gut Project (AGP) and performed metagenomic and untargeted metabolomic analyses in a Chinese cohort to explore the interaction between the gut microbiome and serum metabolites. In addition, fecal microbiota transplantation (FMT) experiments were conducted to further examine the impact of the LI-associated gut microbiome on inflammatory outcomes. We identified 14 microbial genera that significantly differed between LI and controls from AGP data. Using a machine learning approach, group separation was predicted based on seven species and nine metabolites in the Chinese cohort. Notably, increased levels of Escherichia coli in the LI group were negatively correlated with several metabolites, including PC (22:6/0:0), indole, and Lyso PC, while reduced levels of Faecalibacterium prausnitzii and Eubacterium rectale were positively correlated with indole and furazolidone. FMT-LI rats displayed visceral hypersensitivity and an altered gut microbiota composition compared to FMT-HC rats. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI, which was confirmed by FMT-LI rats showing higher expression of ERK and RAS, along with increased concentrations of proinflammatory cytokines. This study provides valuable insights into the disrupted microbial and metabolic traits associated with LI, emphasizing potential microbiome-based approaches for its prevention and treatment. IMPORTANCE Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms after lactose consumption due to a deficiency of lactase. There is limited understanding regarding the microbiota and metabolic alterations between individuals with LI and non-LI. This study represents the first exploration to investigate metagenomic and metabolomic signatures among subjects with lactose intolerance as far as our knowledge. We identified 14 microbial genera in the Western cohort and 7 microbial species, along with 9 circulating metabolites in the Chinese cohort, which significantly differed in LI patients. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI patients. This finding was confirmed by FMT-LI rats, exhibiting increased expression of ERK and RAS, along with higher concentrations of pro-inflammatory cytokines. Our study provides insights into the disrupted functional and metabolic traits of the gut microbiome in LI, highlighting potential microbiome-based approaches for preventing and treating LI.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yitian Wang
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunfeng Mei
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Han
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengxiong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- Department of Gastrointestinal Medicine, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
| | - Xuan Li
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Integrated Traditional Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- Department of Gastrointestinal Medicine, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
| |
Collapse
|
2
|
Ochiai T, Honsawa T, Yamaguchi K, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Prostacyclin synthase deficiency exacerbates systemic inflammatory responses in lipopolysaccharide-induced septic shock in mice. Inflamm Res 2024; 73:1349-1358. [PMID: 38832966 DOI: 10.1007/s00011-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES Sepsis is a systemic inflammatory disorder characterized by life-threateningorgan dysfunction resulting from a dysregulated host response to infection. Prostacyclin (PGI2) is a bioactive lipid produced by PGI synthase (PGIS) and is known to play important roles in inflammatory reactions as well as cardiovascular regulation. However, little is known about the roles of PGIS and PGI2 in systemic inflammatory responses such as septic shock. METHODOLOGY Systemic inflammation was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS) in wild type (WT) or PGIS knockout (KO) mice. Selexipag, a selective PGI2 receptor (IP) agonist, was administered 2 h before LPS injection and again given every 12 h for 3 days. RESULTS Intraperitoneal injection of LPS induced diarrhea, shivering and hypothermia. These symptoms were more severe in PGIS KO mice than in WT micqe. The expression of Tnf and Il6 genes was notably increased in PGIS KO mice. In contrast, over 95% of WT mice survived 72 h after the administration of LPS, whereas all of the PGIS KO mice had succumbed by that time. The mortality rate of LPS-administrated PGIS KO mice was improved by selexipag administration. CONCLUSION Our study suggests that PGIS-derived PGI2 negatively regulates LPS-induced symptoms via the IP receptor. PGIS-derived PGI2-IP signaling axis may be a new drug target for systemic inflammation in septic shock.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Keishi Yamaguchi
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | | | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
3
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
4
|
Liu Y, Zhang T, Jia F, Li H, Sun M, Fu Z, Zhou H, Guo W, Gao Y. Effects of ferulic acid on growth performance and intestinal oxidation indexes of Jilin white geese under lipopolysaccharide-induced oxidative stress. PLoS One 2023; 18:e0291955. [PMID: 37824519 PMCID: PMC10569607 DOI: 10.1371/journal.pone.0291955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
In geese breeding, due to the frequent influence of drugs and environmental and other factors, geese are extremely prone to oxidative stress, which adversely affects growth and development, geese meat quality, down production, and severely affects the development of the geese industry. Ferulic acid from plant extracts can be used as a feed additive, which is safe and non-toxic, and it can exert certain therapeutic effects on oxidative stress in geese. This experiment investigated the effect of ferulic acid on the growth performance, organs indices, and intestinal oxidative indices of Jilin white geese under lipopolysaccharide-induced oxidative stress. Geese were randomly divided into six groups: C (blank control), L (lipopolysaccharide control), F1 (60 mg/kg ferulic acid), F2 (120 mg/kg ferulic acid), F3 (180 mg/kg ferulic acid), and F4 (240 mg/kg ferulic acid). Groups L and F1-F4 were injected intraperitoneally with 0.5 mg/kg lipopolysaccharide and group C with an equivalent volume of normal saline on days 14,17 and 20, and 10 animals from each group were randomly selected for slaughter on day 21. The results showed that: 1) On day 14, the final body weight and average daily feed intake were significantly higher in group F3 than in group L, and on day 21, the final body weight was significantly higher in group F3 than in group L. 2) The thymus index was significantly higher in group F4 than in group L. 4) In the duodenum, MDA activity was reduced in group C compared with that in group L. 5) In the jejunum and ileum, MDA was significantly lower in group F3 than in group L. These results show that the addition of 180 mg/kg of ferulic acid to the diet can promote the growth of geese and alleviate the damage caused by oxidative stress in all intestinal segments.
Collapse
Affiliation(s)
- Yingkun Liu
- Jilin Agricultural University, Changchun, Jilin, China
| | - Tao Zhang
- Jilin Provincial Science and Technology Innovation Platform Management Center, Changchun, Jilin, China
| | - Fangyuan Jia
- Jilin Agricultural University, Changchun, Jilin, China
| | - Haojia Li
- Jilin Agricultural University, Changchun, Jilin, China
| | - Meng Sun
- Jilin Agricultural University, Changchun, Jilin, China
| | - Zengyu Fu
- Jilin Agricultural University, Changchun, Jilin, China
| | - Haizhu Zhou
- Jilin Agricultural University, Changchun, Jilin, China
| | - Wei Guo
- Jilin Animal Husbandry Station, Changchun, Jilin, China
| | - Yunhang Gao
- Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
5
|
Nan FY, Wu CJ, Su JH, Ma LQ. Potential mouse models of coronavirus-related immune injury. Front Immunol 2022; 13:943783. [PMID: 36119040 PMCID: PMC9478437 DOI: 10.3389/fimmu.2022.943783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Basic research for prevention and treatment of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues worldwide. In particular, multiple newly reported cases of autoimmune-related diseases after COVID-19 require further research on coronavirus-related immune injury. However, owing to the strong infectivity of SARS-CoV-2 and the high mortality rate, it is difficult to perform relevant research in humans. Here, we reviewed animal models, specifically mice with coronavirus-related immune disorders and immune damage, considering aspects of coronavirus replacement, viral modification, spike protein, and gene fragments. The evaluation of mouse models of coronavirus-related immune injury may help establish a standardised animal model that could be employed in various areas of research, such as disease occurrence and development processes, vaccine effectiveness assessment, and treatments for coronavirus-related immune disorders. COVID-19 is a complex disease and animal models cannot comprehensively summarise the disease process. The application of genetic technology may change this status.
Collapse
Affiliation(s)
- Fu-Yao Nan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cai-Jun Wu
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Sepsis, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Hui Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Qin Ma
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Sepsis, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
TAKENOUCHI S, KOBAYASHI Y, SHINOZAKI T, KOBAYASHI K, NAKAMURA T, YONEZAWA T, MURATA T. The urinary lipid profile in cats with idiopathic cystitis. J Vet Med Sci 2022; 84:689-693. [PMID: 35387958 PMCID: PMC9177401 DOI: 10.1292/jvms.22-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Although feline idiopathic cystitis (FIC) distresses of many cats, its pathogenesis is unknown and the diagnosis is challenging. Polyunsaturated fatty acids (PUFAs) are metabolized into various lipid mediators. Lipid mediators such as prostaglandins (PGs) modulate inflammation and many of them are excreted into the urine. Thus, the investigation of the urinary lipid profile may reveal pathogenesis and help diagnosis of FIC. We collected urine samples from five FIC cats by spontaneous urination and analyzed 158 types of lipid mediators in urines using liquid chromatography-mass spectrometry. The urinary levels of PUFAs were higher in FIC compared to those of the healthy group. The excretions of a major inflammatory mediator, PGD2, were less in FIC. Other well-known inflammatory mediators such as PGE2, PGI2, and their metabolites did not show a difference. In contrast, the levels of PGF2α and its 2 metabolites and PGF3α were higher in FIC. These results may provide new insights into the future management of cat FIC.
Collapse
Affiliation(s)
- Shinya TAKENOUCHI
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yui KOBAYASHI
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Koji KOBAYASHI
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuro NAKAMURA
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro YONEZAWA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahisa MURATA
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Puk O, Nowacka A, Smulewicz K, Mocna K, Bursiewicz W, Kęsy N, Kwiecień J, Wiciński M. Pulmonary artery targeted therapy in treatment of COVID-19 related ARDS. Literature review. Biomed Pharmacother 2022; 146:112592. [PMID: 35062063 PMCID: PMC8709827 DOI: 10.1016/j.biopha.2021.112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The most grievous complication of the COVID-19 is the acute respiratory distress syndrome. A specific, rescue treatment for rapidly deteriorating patients should emerge to improve respiratory function and help patients to survive the most challenging period. Drugs used in targeted therapy of pulmonary arterial hypertension (PAH) appears to be suitable for this task and this article describes their potential for treatment of severe cases of COVID-19. METHODS The authors reviewed the following databases for randomized controlled trials, reviews and meta-analyses published up to July 2020: Pubmed, Scopus, Google Scholar, Cochrane Database and ClinicalKey. The authors included every study contributory to the assessment of the potential of drugs used in targeted PAH therapy in treatment of COVID-19. RESULTS Endothelin receptor antagonists, phosphodiesterase 5 inhibitors, riociguat and prostacyclin have proven ani-inflammatory effect and reduce pulmonary artery blood pressure, lung oedema and remodelling. Bosentan shows antiviral properties and sildenafil, as well as epoprostenol, inhibits apoptosis of lung epithelial cells. Among patients with lung lesions the decrease of pulmonary blood pressure can lead to increase of ventilation/perfusion mismatch and decrease of blood oxygenation. CONCLUSIONS Among all assessed drugs bosentan, sildenafil and epoprostenol appear to be most promising and a combination of these drugs should be considered due to synergism. The targeted PAH therapy in treatment of COVID-19 associated ARDS could be a useful tool saving lives of patients with severe SARS-CoV-2 infection, however, its introduction should be investigated and monitored very carefully as it can lead to transient deterioration of patient condition.
Collapse
Affiliation(s)
- Oskar Puk
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, K. Ujejskiego 75, 85-168 Bydgoszcz, Poland; Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland.
| | - Aleksandra Nowacka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Klaudia Smulewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Katarzyna Mocna
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Wiktor Bursiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Natalia Kęsy
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Justyna Kwiecień
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
8
|
Chen H, Shen Y, Liang Y, Qiu Y, Xu M, Li C. Selexipag improves Lipopolysaccharide-induced ARDS on C57BL/6 mice by modulating the cAMP/PKA and cAMP/Epac1 signaling pathways. Biol Pharm Bull 2022; 45:1043-1052. [DOI: 10.1248/bpb.b21-01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongliu Chen
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University
| | - Ying Shen
- General Practice School, Guangxi Medical University
| | - Yi Liang
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University
| | - Ying Qiu
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University
| | - Meili Xu
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University
| | - Chaoqian Li
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
9
|
Vu SH, Bernardo Reyes AW, Ngoc Huy TX, Min W, Lee HJ, Kim HJ, Lee JH, Kim S. Prostaglandin I2 (PGI 2) inhibits Brucella abortus internalization in macrophages via PGI 2 receptor signaling, and its analogue affects immune response and disease outcome in mice. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103902. [PMID: 33091457 DOI: 10.1016/j.dci.2020.103902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
To date, the implications of prostaglandin I2 (PGI2), a prominent lipid mediator for modulation of immune responses, has not been clearly understood in Brucella infection. In this study, we found that cyclooxygenase-2 (COX-2) was significantly expressed in both infected bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. Prostaglandin I2 synthase (PTGIS) expression was not significantly changed, and PGI2receptor (PTGIR) expression was downregulated in BMMs but upregulated in RAW 264.7 macrophages at late infection. Here, we presented that PGI2, a COX-derived metabolite, was produced by macrophages during Brucella infection and its production was regulated by COX-2 and IL-10. We suggested that PGI2 and selexipag, a potent PGI2 analogue, inhibited Brucella internalization through IP signaling which led to down-regulation of F-actin polymerization and p38α MAPK activity. Administration with selexipag suppressed immune responses and resulted in a notable reduction in bacterial burden in spleen of Brucella-challenged mice. Taken together, our study is the first to characterize PGI2 synthesis and its effect in evasion strategy of macrophages against Brucella infection.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam; Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
10
|
Ahmed S, Al Baki MA, Lee J, Seo DY, Lee D, Kim Y. The first report of prostacyclin and its physiological roles in insects. Gen Comp Endocrinol 2021; 301:113659. [PMID: 33166533 DOI: 10.1016/j.ygcen.2020.113659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Prostaglandins (PGs) mediate physiological processes of insects as well as mammals. Prostaglandin I2 (PGI2) is a relatively well-known eicosanoid with potent hormone-like actions on various tissues of vertebrates, however, its presence and biosynthetic pathway have not been described in insects. This study demonstrated that fat bodies of the lepidopteran species, Spodoptera exigua, contained ~ 3.6 pg/g PGI2. To identify its biosynthetic pathway, a PGI2 synthase gene of S. exigua (Se-PGIS) was predicted from a transcriptome of S. exigua; 25.6% homology with human PGIS was demonstrated. Furthermore, a predicted three-dimensional structure of Se-PGIS was demonstrated to be 38.3% similar to the human PGIS ortholog, including catalytic residues. Se-PGIS was expressed in all developmental stages of S. exigua and most abundant larval and adult stages; immune challenging of larvae significantly up-regulated these expression levels. The inducible expression of Se-PGIS expression was followed by a greater than four-fold increase in the concentration of PGI2 in fat bodies 10 h after immune challenge. RNA interference (RNAi) against Se-PGIS was performed by injecting double-stranded RNA (dsRNA). Under these RNAi conditions, cellular immune responses (e.g., hemocyte-spreading behavior, nodulation, phenoloxidase activity) were not affected by bacterial challenge. The addition of PGI2 to larvae treated with an eicosanoid biosynthesis inhibitor did not rescue the immunosuppression. Interestingly, PGI2 injection significantly suppressed nodule formation in response to bacterial challenge. In addition to the negative effect of PGI2 against immunity, the Se-PGIS-RNAi treatment significantly interfered with immature development and severely impaired oocyte development in female adults; the addition of PGI2 to RNAi-treated females significantly recovered oocyte development. Se-PGIS RNAi treatment also impaired male fertility by reducing fecundity after mating with untreated females. These results suggest that PGI2 acts as a negative regulator of immune responses initiated by other factors and mediates S. exigua development and reproduction.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Md Abdullah Al Baki
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan 48434, Republic of Korea
| | - Dong Yeon Seo
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan 48434, Republic of Korea
| | - Daeweon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan 48434, Republic of Korea; Department of Biology, Kyungsung University, Busan 48434, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
11
|
Lv X, Lu X, Zhu J, Wang Q. Lipopolysaccharide-Induced Acute Lung Injury Is Associated with Increased Ran-Binding Protein in Microtubule-Organizing Center (RanBPM) Molecule Expression and Mitochondria-Mediated Apoptosis Signaling Pathway in a Mouse Model. Med Sci Monit 2020; 26:e923172. [PMID: 32680981 PMCID: PMC7386048 DOI: 10.12659/msm.923172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Acute lung injury (ALI) is a severe and life-threatening disorder treated in intensive care units. This study aimed to determine molecules or associated signaling pathways that are involved in lipopolysaccharide (LPS)-induced inflammation in an ALI model. Material/Methods An ALI mouse model was established by administering LPS (25 mg/kg via intratracheal instillation). Thirty-two ALI mice were divided into Model-4 h, Model-8 h, Model-12 h, and Model-24 h groups, while another 8 mice without LPS treatment were assigned as the Control group. Hematoxylin-eosin (HE) staining was used to evaluate inflammation of lung tissues. Wet weight/dry weight (W/D) ratio and myeloperoxidase (MPO) activity of lung tissue in ALI mice were evaluated. Expressions of Bcl-2, Bcl-XL, Bak, Bax, cleaved caspase-3 (C-caspase-3), and Ran-binding protein in microtubule-organizing center (RanBPM) were determined using Western blot analysis. Results LPS administration caused obvious inflammatory cell infiltration of lung tissues in ALI mice. The W/D ratio of ALI mouse lung tissues was significantly higher in Model groups than in the Control group (p<0.05). MPO activity of ALI mice was remarkably higher in Model groups compared to the Control group (p<0.05). LPS-induced ALI model mice exhibited significantly higher levels of C-caspase 3 lung tissues compared to the Control group (p<0.05). LPS-induced ALI model mice had significantly lower Bcl-XL/Bcl-2 and remarkably higher Bak/Bax expression compared with the Control group (p<0.05). LPS-induced ALI model mice displayed obviously higher RanBPM expression than in the Control group (p<0.05). Conclusions Lipopolysaccharide-induced acute lung injury is associated with increased RanBPM molecule expression and with mitochondria-mediated apoptosis signaling pathway in a mouse model.
Collapse
Affiliation(s)
- Xiaojing Lv
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xiaomin Lu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Jiping Zhu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qian Wang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
12
|
Kim T, Lee SI, Kim S, Shim SY, Ryu DH. Total synthesis of PGF2α and 6,15-diketo-PGF1α and formal synthesis of 6-keto-PGF1α via three-component coupling. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Arctigenin Ameliorates Inflammation by Regulating Accumulation and Functional Activity of MDSCs in Endotoxin Shock. Inflammation 2018; 41:2090-2100. [DOI: 10.1007/s10753-018-0852-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|