1
|
Recinella L, Libero ML, Brunetti L, Acquaviva A, Chiavaroli A, Orlando G, Granata R, Salvatori R, Leone S. Effects of growth hormone-releasing hormone deficiency in mice beyond growth. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09936-3. [PMID: 39695049 DOI: 10.1007/s11154-024-09936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
This paper provides a critical overview on GHRH and its deficiency, discussing its multiple roles in both central and peripheral tissues. Genetically engineered mice have been instrumental in elucidating the multifaceted roles of GHRH and GH, each offering unique insights into the physiological and pathological roles of these hormones, although in many of these models dissecting the direct effect of GHRH from the effect of GH is not possible. Key findings highlight the effects of GHRH deficiency on emotional behavior, including anxiety and depression, its impact on memory and learning capabilities, as well as on adipose tissue, immune system, inflammation and pain.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2024:10.1038/s41574-024-01052-1. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
3
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates neonatal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605393. [PMID: 39211258 PMCID: PMC11361094 DOI: 10.1101/2024.07.26.605393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (MCP1) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving cytokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
|
4
|
Recinella L, Libero ML, Veschi S, Piro A, Marconi GD, Diomede F, Chiavaroli A, Orlando G, Ferrante C, Florio R, Lamolinara A, Cai R, Sha W, Schally AV, Salvatori R, Brunetti L, Leone S. Effects of GHRH Deficiency and GHRH Antagonism on Emotional Disorders in Mice. Cells 2023; 12:2615. [PMID: 37998350 PMCID: PMC10670114 DOI: 10.3390/cells12222615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Anna Piro
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Rosalba Florio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Alessia Lamolinara
- Department of Neuroscience Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| |
Collapse
|
5
|
Recinella L, De Filippis B, Libero ML, Ammazzalorso A, Chiavaroli A, Orlando G, Ferrante C, Giampietro L, Veschi S, Cama A, Mannino F, Gasparo I, Bitto A, Amoroso R, Brunetti L, Leone S. Anti-Inflammatory, Antioxidant, and WAT/BAT-Conversion Stimulation Induced by Novel PPAR Ligands: Results from Ex Vivo and In Vitro Studies. Pharmaceuticals (Basel) 2023; 16:346. [PMID: 36986448 PMCID: PMC10056895 DOI: 10.3390/ph16030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Activation of peroxisome proliferator-activated receptors (PPARs) not only regulates multiple metabolic pathways, but mediates various biological effects related to inflammation and oxidative stress. We investigated the effects of four new PPAR ligands containing a fibrate scaffold-the PPAR agonists (1a (αEC50 1.0 μM) and 1b (γEC50 0.012 μM)) and antagonists (2a (αIC50 6.5 μM) and 2b (αIC50 0.98 μM, with a weak antagonist activity on γ isoform))-on proinflammatory and oxidative stress biomarkers. The PPAR ligands 1a-b and 2a-b (0.1-10 μM) were tested on isolated liver specimens treated with lipopolysaccharide (LPS), and the levels of lactate dehydrogenase (LDH), prostaglandin (PG) E2, and 8-iso-PGF2α were measured. The effects of these compounds on the gene expression of the adipose tissue markers of browning, PPARα, and PPARγ, in white adipocytes, were evaluated as well. We found a significant reduction in LPS-induced LDH, PGE2, and 8-iso-PGF2α levels after 1a treatment. On the other hand, 1b decreased LPS-induced LDH activity. Compared to the control, 1a stimulated uncoupling protein 1 (UCP1), PR-(PRD1-BF1-RIZ1 homologous) domain containing 16 (PRDM16), deiodinase type II (DIO2), and PPARα and PPARγ gene expression, in 3T3-L1 cells. Similarly, 1b increased UCP1, DIO2, and PPARγ gene expression. 2a-b caused a reduction in the gene expression of UCP1, PRDM16, and DIO2 when tested at 10 μM. In addition, 2a-b significantly decreased PPARα gene expression. A significant reduction in PPARγ gene expression was also found after 2b treatment. The novel PPARα agonist 1a might be a promising lead compound and represents a valuable pharmacological tool for further assessment. The PPARγ agonist 1b could play a minor role in the regulation of inflammatory pathways.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | | | | | | | | | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | | | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Irene Gasparo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| |
Collapse
|
6
|
Recinella L, Chiavaroli A, Veschi S, Di Valerio V, Lattanzio R, Orlando G, Ferrante C, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Antagonist of growth hormone-releasing hormone MIA-690 attenuates the progression and inhibits growth of colorectal cancer in mice. Biomed Pharmacother 2022; 146:112554. [PMID: 34923341 DOI: 10.1016/j.biopha.2021.112554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive tumor in which new treatment options deliver negative results on cure rates and long-term survival. The anticancer effects of growth hormone-releasing hormone (GHRH) antagonists have been reported in various experimental tumors, but their activity in CRC is unknown. In the present study, we demonstrated that chronic treatment with GHRH antagonist of MIAMI class, MIA-690, promoted survival and gradually blunted tumor progression in experimentally induced colitis-associated cancer in mice, paralleled by reduced inflammation in colon tissue. In particular, MIA-690 improved disease activity index score, and reduced loss of weight and mortality, by improving the survival rates, compared with vehicle-treated group. MIA-690 was also found to reduce various inflammatory and oxidative markers, such as serotonin, prostaglandin (PG)E2 and 8-iso-PGF2α levels, as well as COX-2, iNOS, TNF-α, IL-6 and NF-kB gene expression. Moreover, MIA-690 inhibited the protein expression of c-Myc, P-AKT and Bcl-2 and upregulated p53 protein expression. In conclusion, we showed that MIA-690 suppresses CRC progression and growth by reducing inflammatory and oxidative markers and modulating apoptotic and oncogenic pathways. Further investigations are required for translating these findings into the clinics.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Valentina Di Valerio
- Department of Medicine and Ageing Sciences, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL 33125, USA; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL 33125, USA; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL 33125, USA; Division of Endocrinology, Diabetes and Metabolism, and Division of Medical Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy.
| |
Collapse
|
7
|
Hovhannisyan AH, Son H, Mecklenburg J, Barba-Escobedo PA, Tram M, Gomez R, Shannonhouse J, Zou Y, Weldon K, Ruparel S, Lai Z, Tumanov AV, Kim YS, Akopian AN. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci Rep 2021; 11:17813. [PMID: 34497285 PMCID: PMC8426369 DOI: 10.1038/s41598-021-97084-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Hyeonwi Son
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Priscilla Ann Barba-Escobedo
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Ruben Gomez
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - John Shannonhouse
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology and Molecular Genetics, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yu Shin Kim
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Early Life Nociception is Influenced by Peripheral Growth Hormone Signaling. J Neurosci 2021; 41:4410-4427. [PMID: 33888610 DOI: 10.1523/jneurosci.3081-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
A number of cellular systems work in concert to modulate nociceptive processing in the periphery, but the mechanisms that regulate neonatal nociception may be distinct compared with adults. Our previous work indicated a relationship between neonatal hypersensitivity and growth hormone (GH) signaling. Here, we explored the peripheral mechanisms by which GH modulated neonatal nociception under normal and injury conditions (incision) in male and female mice. We found that GH receptor (GHr) signaling in primary afferents maintains a tonic inhibition of peripheral hypersensitivity. After injury, a macrophage dependent displacement of injury-site GH was found to modulate neuronal transcription at least in part via serum response factor (SRF) regulation. A single GH injection into the injured hindpaw muscle effectively restored available GH signaling to neurons and prevented acute pain-like behaviors, primary afferent sensitization, and neuronal gene expression changes. GH treatment also inhibited long-term somatosensory changes observed after repeated peripheral insult. Results may indicate a novel mechanism of neonatal nociception.SIGNIFICANCE STATEMENT Although it is noted that mechanisms of pain development in early life are unique compared with adults, little research focuses on neonatal-specific peripheral mechanisms of nociception. This gap is evident in the lack of specialized care for infants following an injury including surgeries. This report evaluates how distinct cellular systems in the periphery including the endocrine, immune and nervous systems work together to modulate neonatal-specific nociception. We uncovered a novel mechanism by which muscle injury induces a macrophage-dependent sequestration of peripheral growth hormone (GH) that effectively removes its normal tonic inhibition of neonatal nociceptors to promote acute pain-like behaviors. Results indicate a possible new strategy for treatment of neonatal postsurgical pain.
Collapse
|
9
|
Bartke A, Hascup E, Hascup K, Masternak MM. Growth Hormone and Aging: New Findings. World J Mens Health 2021; 39:454-465. [PMID: 33663025 PMCID: PMC8255405 DOI: 10.5534/wjmh.200201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
Complex relationships between growth hormone (GH) signaling and mammalian aging continue to attract attention of many investigators. Recent results include evidence that the impact of GH on genome maintenance (DNA damage and repair) is drastically different in normal as compared to cancer cells, consistent with GH promoting aging and cancer progression. Impact of GH on DNA methylation was studied as a possible mechanism linking actions of GH during early life to the trajectory of aging. Animals with reduced or enhanced GH signaling and novel animals with adipocyte-specific deletion of GH receptors were used to elucidate the effects of GH on white and brown adipose tissue, including the impact of this hormone on lipolysis, fibrosis, and thermogenesis. Effects of GH on adipose tissue related to lipid and energy metabolism emerge as mechanistic links between GH, healthspan, and lifespan. Treatment of healthy men with a combination of GH, dehydroepiandrosterone, and metformin was reported to restore thymus function and reduce epigenetic age. Studies of human subjects with deficiency of GH or GH receptors and studies of mice with the same endocrine syndromes identified several phenotypic changes related (positively or negatively) to the previously reported predisposition to healthy aging. Results of these and other recent studies advance present understanding of the mechanisms by which GH influences aging and longevity and of the trade-offs involved.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Protective effects of growth hormone-releasing hormone analogs in DSS-induced colitis in mice. Sci Rep 2021; 11:2530. [PMID: 33510215 PMCID: PMC7844299 DOI: 10.1038/s41598-021-81778-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Besides its metabolic and endocrine effects, growth hormone (GH)-releasing hormone (GHRH) is involved in the modulation of inflammation. Recently synthetized GHRH antagonist MIA-690 and MR-409, GHRH agonist, developed by us have shown potent pharmacological effects in various experimental paradigms. However, whether their administration modify resistance to chronic inflammatory stimuli in colon is still unknown. Ex vivo results demonstrated that MIA-690 and MR-409 inhibited production of pro-inflammatory and oxidative markers induced by lipopolysaccharide on isolated mouse colon specimens. In vivo, both MIA-690 and MR-409 have also been able to decrease the responsiveness to nociceptive stimulus, in hot plate test. Additionally, both peptides also induced a decreased sensitivity to acute and persistent inflammatory stimuli in male mice, in formalin test and dextran sodium sulfate (DSS)-induced colitis model, respectively. MIA-690 and MR-409 attenuate DSS-induced colitis with particular regard to clinical manifestations, histopathological damage and release of pro-inflammatory and oxidative markers in colon specimens. Respect to MR-409, MIA-690 showed higher efficacy in inhibiting prostaglandin (PG)E2, 8-iso-PGF2α and serotonin (5-HT) levels, as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide synthase gene expression in colon specimens of DSS-induced colitis. Furthermore, MIA-690 decreased serum insulin-like growth factor (IGF)-1 levels in mice DSS-treated, respect to MR-409. Thus, our findings highlight the protective effects of MIA-690 and MR-409 on inflammation stimuli. The higher antinflammatory and antioxidant activities observed with MIA-690 could be related to decreased serum IGF-1 levels.
Collapse
|
11
|
Leone S, Chiavaroli A, Recinella L, Di Valerio V, Veschi S, Gasparo I, Bitto A, Ferrante C, Orlando G, Salvatori R, Brunetti L. Growth hormone-releasing hormone (GHRH) deficiency promotes inflammation-associated carcinogenesis. Pharmacol Res 2019; 152:104614. [PMID: 31874252 DOI: 10.1016/j.phrs.2019.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/25/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
The somatotropic axis, in addition to its well-known metabolic and endocrine effects, plays a pivotal role in modulation of inflammation. Moreover, growth hormone (GH)-releasing hormone (GHRH) has been involved in the development of various human tumors. In this work we aimed to investigate the consequences of GHRH deficiency on the development of inflammation-associated colon carcinogenesis in a mouse model of isolated GH deficiency due to generalized ablation of the GHRH gene [GHRH knock out (GHRHKO)]. Homozygous GHRHKO (-/-) male mice and wild type (C57/BL6, +/+) male mice as control group, were used. After azoxymetane (AOM)/dextran sodium sulfate (DSS) treatment -/- mice displayed higher Disease Activity Index (DAI) score, and more marked weight loss compared to +/+ animals. Additionally, -/- mice showed a significant increase in total tumors, in particular of large size predominantly localized in distal colon. In colonic tissue of AOM/DSS-treated -/- mice we found the presence of invasive adenocarcinomas, dysplasia and colitis with mucosal ulceration. Conversely, AOM/DSS-treated +/+ mice showed only presence of adenomas, without invasion of sub-mucosa. Treatment with AOM/DSS significantly increased prostaglandin (PG)E2 and 8-iso-PGF2α levels along with cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-kB) and inducible nitric oxide synthase (iNOS) gene expression, in colon specimens. The degree of increase of all these parameters was more markedly in -/- than +/+ mice. In conclusion, generalized GHRH ablation increases colon carcinogenesis responsiveness in male mice. Whether this results from lack of GH or GHRH remains to be established.
Collapse
Affiliation(s)
- Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Valentina Di Valerio
- Department of Medicine and Ageing Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Irene Gasparo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Roberto Salvatori
- Division of Endocrinology Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|