1
|
Saldaeva NM, Babeshko KV, Chernyshov VA, Esaulov AS, Komarov AA, Kriuchkov NR, Mazei NG, Saldaev DA, Stojko TG, Tsyganov AN, Mazei YA. Biodiversity of testate amoebae in Sphagnum bogs: the dataset from forest-steppe ecotone (Middle Volga Territory, Russia). Biodivers Data J 2024; 12:e125582. [PMID: 38903961 PMCID: PMC11187575 DOI: 10.3897/bdj.12.e125582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Background Testate amoebae are a polyphyletic group of unicellular eukaryotic organisms that are characterised by a rigid shell and inhabit mostly freshwater and terrestrial ecosystems. They are particularly abundant in peatlands, especially in Sphagnum-dominated biotopes. Peatland hydrology is the most important influence on testate amoebae communities. The good preservation of the shells in peat deposits and their response to hydrological regime changes are the principles for palaeohydrological reconstructions. Any changes in the water balance of mires should be expected to have far-reaching effects on biogeochemical cycles, productivity, carbon dioxide and methane exchange. New information This paper presents a dataset (Darwin Core Archive - DwC-A) on the distribution of Sphagnum-dwelling testate amoebae in nine mires located in the forest-steppe subzone of the East European Plane. The dataset includes information about 86 taxa belonging to 29 genera and contains 3,123 occurrences of 49,874 individuals. The following environmental variables are provided: microtopography, oxidising and reducing potential, total mineralisation, substrate temperature, acidity, substrate wetness and water table depth. These data might be used for biogeographical and palaeoecological studies, including quantitative reconstructions.
Collapse
Affiliation(s)
- Nailia M. Saldaeva
- Shenzhen MSU-BIT University, Shenzhen, ChinaShenzhen MSU-BIT UniversityShenzhenChina
- Lomonosov Moscow State University, Moscow, RussiaLomonosov Moscow State UniversityMoscowRussia
| | - Kirill V. Babeshko
- Shenzhen MSU-BIT University, Shenzhen, ChinaShenzhen MSU-BIT UniversityShenzhenChina
- Lomonosov Moscow State University, Moscow, RussiaLomonosov Moscow State UniversityMoscowRussia
| | | | - Anton S. Esaulov
- Shenzhen MSU-BIT University, Shenzhen, ChinaShenzhen MSU-BIT UniversityShenzhenChina
- Penza State University, Penza, RussiaPenza State UniversityPenzaRussia
| | | | - Nikita R. Kriuchkov
- Shenzhen MSU-BIT University, Shenzhen, ChinaShenzhen MSU-BIT UniversityShenzhenChina
- Lomonosov Moscow State University, Moscow, RussiaLomonosov Moscow State UniversityMoscowRussia
| | - Natalia G. Mazei
- Lomonosov Moscow State University, Moscow, RussiaLomonosov Moscow State UniversityMoscowRussia
| | - Damir A. Saldaev
- Shenzhen MSU-BIT University, Shenzhen, ChinaShenzhen MSU-BIT UniversityShenzhenChina
| | - Tamara G. Stojko
- Penza State University, Penza, RussiaPenza State UniversityPenzaRussia
| | - Andrey N. Tsyganov
- Lomonosov Moscow State University, Moscow, RussiaLomonosov Moscow State UniversityMoscowRussia
| | - Yuri A. Mazei
- Shenzhen MSU-BIT University, Shenzhen, ChinaShenzhen MSU-BIT UniversityShenzhenChina
- Lomonosov Moscow State University, Moscow, RussiaLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
2
|
Weger HG, Polasek AK, Wright DM, Damodaran A, Stavrinides J. Grazing preferences of three species of amoebae on cyanobacteria and green algae. J Eukaryot Microbiol 2024; 71:e13018. [PMID: 38197812 DOI: 10.1111/jeu.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Twenty species/isolates of cyanobacteria and green algae were isolated from cyanobacterial bloom samples in lakes associated with the upper Qu'Appelle River drainage system in southern Saskatchewan, Canada. Three amoebae species (Cochliopodium sp., Vannella sp. and Vermamoeba vermiformis) were also isolated from one of these samples, and were subjected to grazing assays to determine which species of cyanobacteria or algae could potentially serve as a food source. Amoeba grazing rates were quantified based on the diameter of the plaque after 12 days on agar plate assays, and by estimation of the amoeba population growth rate from the rate of increase of plaque area. The common cyanobacterial bloom-formers Dolichospermum sp. and Aphanizomenon flos-aquae supported high growth rates for all three amoebae, while green algae, with the exception of one green alga/amoeba combination, did not support growth of the tested amoebae. Many of the cyanobacterial and algal isolates that did not support amoebae growth were ingested, suggesting that ingestion did not determine grazing success. Overall, while the cyanobacteria Dolichospermum sp. and Aphanizomenon flos-aquae were suitable food sources for the amoebae, the other cyanobacteria were grazed in an unpredictable manner, with some species/strains grazed by some amoebae and some species not grazed at all.
Collapse
Affiliation(s)
- Harold G Weger
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - April K Polasek
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Derek M Wright
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Arun Damodaran
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
3
|
Marzouk AM, Mashaly MI, Reda ES, El-Naggar MM. The record of Vannella species (Vannellidae, Discosea, Amoebozoa) from freshwater sources in Dakahlyia Governorate, Egypt. Arch Microbiol 2024; 206:113. [PMID: 38376635 PMCID: PMC10879259 DOI: 10.1007/s00203-024-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
The River Nile is the main source of fresh water in Egypt, where its water is used for irrigation, drinking, fisheries, industrial uses, and recreation. For sustainable utilization of the River Nile and its branches in the Nile Delta region, it is necessary to monitor regular investigation for the biodiversity of protozoan fauna in the Damietta branch and other freshwater canals in Dakahlyia Governorate. Water samples were collected monthly from different water sources, for 1 year, and examined for protozoans, using phase-contrast microscopy and recorded video films, The genus Vannella Bovee 1965 is recorded for the first time in four freshwater localities: Demietta branch of the River Nile, Mansouria Canal, Bouhia Canal, and Bahr El-Saghir Canal. A detailed morphological description with a brief report of their locomotion has been given for four morphologically different Vannella species. The locomotive form of Vannella sp.1 has a long pointed posterior tail and 2 lateral posterior processes. Such a tail was absent in other Vannella species. Vannella sp.2 is unique among other recorded species, where its locomotive form possesses a long posterior rounded tail region and a frontal hyaloplasm provided with a wavy surface that forms several lobes and finger-like processes during locomotion. In addition, the hyaloplasm produces several transverse waves that vary in thickness and density. The floating form of Vannella sp.2 is of a radial type and has comparatively long hyaline pointed and spiral pseudopodia. The process of transformation of locomotive form to floating form in Vannella sp.2 has been followed up using several recorded video films. The locomotive form of Vannella sp.3 is bear-shaped, while that of Vannella sp.4 has variable shapes from semicircular to rectangular and sometimes fan-shaped. During movement in vivo, locomotive cells of all Vannella species, except Vannella sp.1, move in nearly a straight line, but there were variations in their rate of locomotion. Vannella sp.4 recorded the highest rate (6.8 µm/s), followed by Vannella sp.2 (4.5 µm/s), Vannella sp.3 (2.4 µm/s), and finally Vannella sp.1 (1.0 µm/s). Molecular studies and transmission electron microscope examinations are still needed to confirm the precise identity of each Vannella species.
Collapse
Affiliation(s)
- Asmaa M Marzouk
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed I Mashaly
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Enayat S Reda
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed M El-Naggar
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Lei X, Chen X, Chen J, Liang C. A New Mayorella Species Isolated from the Mariana Trench Area (Pacific Ocean). Protist 2023; 174:125958. [PMID: 37119544 DOI: 10.1016/j.protis.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
In this paper, we describe a new naked amoeba species, Mayorella marianaensis sp. n., order Dermamoebida, isolated from the bottom of the Pacific Ocean (>3,000 m depth) in the vicinity of the Mariana Trench, based on morphological and molecular data. The newly discovered species was identified based on morphological and molecular data. This is the first time that a Mayorella species was discovered in the deep sea (>1,000 m). Mayorella marianaensis is an irregularly rectangular naked amoeba (30-120 × 11-60 µm), with a narrow frontal hyaline area. Four to 15 conical sub-pseudopodia, and three kinds of floating forms are identified. Trophozoites have a thick cell coat consisting of two distinct layers. The small subunit ribosomal RNA gene phylogeny showed that M. marianaensis is classified into Dermamoebida, and is a sister clade to other Mayorella species whose sequences are available. BLAST analysis revealed that M. marianaensis is most similar to Coronamoeba villafranca and Mayorella sp. JJP-2003, with sequence identities of 92.43% and 88.30%, respectively.
Collapse
Affiliation(s)
- Xiaoli Lei
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China
| | - Xiaojuan Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fujian, China
| | - Chen Liang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fujian, China.
| |
Collapse
|
5
|
Blindheim S, Andersen L, Trösse C, Karlsbakk E, Nylund A. Growth characteristics and morphology of Paramoeba perurans from Atlantic salmon Salmo salar L. and ballan wrasse Labrus bergylta in Norway. Parasit Vectors 2023; 16:112. [PMID: 36959596 PMCID: PMC10037839 DOI: 10.1186/s13071-023-05715-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Paramoeba perurans is the causative agent of amoebic gill disease (AGD) in Atlantic salmon Salmo salar L. and many other farmed marine fish species worldwide. The first cases of AGD in Norway were reported in 2006, and it has subsequently become established as a significant gill disease that affects the country's salmonid aquaculture industry. Despite several decades of research on AGD, there is still a lack of knowledge of the biology of P. perurans and its interactions with its hosts and the environment. METHODS The growth and morphology of 10 clonal isolates of P. perurans were studied. The isolates were from farmed Atlantic salmon and ballan wrasse that had been obtained from different sites along the Norwegian coast between 2013 and 2015. The morphology and population growth patterns of these clonal amoeba isolates were examined in vitro using light microscopy and real-time reverse transcription polymerase chain reaction under a range of temperatures (4, 12, 15 and 21 °C) and salinities (20, 25, 30 and 34 ‰). RESULTS We found distinct morphological differences between both locomotive and floating forms of the amoeba isolates. The locomotive amoebae of the clonal isolates varied in size (area) from 453 µm2 to 802 µm2. There were differences in the growth patterns of the clonal amoeba isolates under similar conditions, and in their responses to variations in temperature and salinity. While most of the isolates grew well at salinities of 25-34 ‰, a significant reduction in growth was seen at 20 ‰. Most of the amoeba isolates grew well at 12 °C and 15 °C. At 4 °C, amoebae grew slower and, in contrast to the other temperatures, no extended pseudopodia could be seen in their floating form. The isolates seemed to reach a plateau phase faster at 21 °C, with a higher number of smaller, rounded amoebae. CONCLUSIONS The differences observed here between clonal isolates of P. perurans should be further examined in experimental in vivo challenge studies, as they may be of relevance to the virulence and proliferation potential of this amoeba on gills. Potential differences in virulence within P. perurans could have implications for management strategies for AGD.
Collapse
Affiliation(s)
- Steffen Blindheim
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
- The Industrial and Aquatic Laboratory, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Linda Andersen
- The Industrial and Aquatic Laboratory, Thormøhlensgate 55, 5006, Bergen, Norway.
| | - Christiane Trösse
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
| | - Egil Karlsbakk
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
| | - Are Nylund
- Department of Biological Sciences, University of Bergen, 7803, 5020, Bergen, Norway
| |
Collapse
|
6
|
Zurita-Artaloitia JM, Rivera J, Vinuesa P. Extensive Cryptic Diversity and Ecological Associations Uncovered among Mexican and Global Collections of Naegleria and Vermamoeba Species by 18S Ribosomal DNA, Internal Transcribed Spacer, and Cytochrome Oxidase Subunit I Sequence Analysis. Microbiol Spectr 2023; 11:e0379522. [PMID: 36943092 PMCID: PMC10100766 DOI: 10.1128/spectrum.03795-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/26/2023] [Indexed: 03/23/2023] Open
Abstract
Free-living amoebae (FLA) are phagocytic protists that play crucial roles in microbial communities as significant microbial grazers. However, our current knowledge of their diversity, ecology, and population genetic structures is marginal due to the shallow and biased sampling of ecosystems and the use of few, poorly resolving molecular markers. Thirty-two FLA were isolated from soil and water samples collected across representative ecosystems of the State of Morelos in Central Mexico, including the drinking water distribution system (DWDS) from the state capital. We classified our isolates as members of Acanthamoeba, Vermamoeba, Naegleria, and Tetramitus by 18S ribosomal DNA (rDNA) sequencing. Vermamoeba isolates were recovered exclusively from the DWDS samples. In contrast, Naegleria strains displayed a broad distribution in soil and water samples across the natural ecosystems. We used a combination of phylogenetic and population genetic analyses of internal transcribed spacer (ITS) and cytochrome oxidase subunit I (COI) sequences from our isolates and a comprehensive set of reference sequences to analyze the currently known diversity of Naegleria spp. Significant associations were uncovered between the most prevalent lineages of Naegleria and Vermamoeba and broad ecological and geographical variables at regional and global levels. The population structure and cryptic diversity within the Naegleria galeacystis-Naegleria americana and Vermamoeba vermiformis species complexes were thoroughly analyzed. Our results prove that the genus Vermamoeba, which was previously thought to consist of only one species, actually encompasses at least seven widely distributed species, as indicated by consistent evidence from Bayesian phylogenetics, two species-delimitation programs, and population genetics analyses. IMPORTANCE Our study sheds new light on the population genetic structure of V. vermiformis and diverse Naegleria species. Using improved molecular markers and advanced analytical approaches, we discovered that N. americana, previously considered a single species, actually contains multiple distinct lineages, as revealed by COI sequencing. These lineages are highly differentiated, with little gene flow between them. Our findings demonstrate that the genus Vermamoeba holds multiple cryptic species, requiring a significant taxonomic revision in light of multilocus sequence analyses. These results advance our understanding of the ecology, molecular systematics, and biogeography of these genera and species complexes at both regional and global scales. This study has significant implications for diagnosing amoebal infections and evaluating health risks associated with FLA in domestic and recreational waters.
Collapse
Affiliation(s)
| | - Javier Rivera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Kudryavtsev A, Voytinsky F, Volkova E. Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa. Sci Rep 2022; 12:12541. [PMID: 35869259 PMCID: PMC9307759 DOI: 10.1038/s41598-022-16721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCoronamoeba villafranca gen. nov. sp. nov. is a small amoeba isolated from the surface planktonic biotope in the Bay of Villefranche (Mediterranean Sea). It has a confusing set of morphological and molecular characters. Its locomotive form is subcylindrical and monopodial with monoaxial cytoplasmic flow and occasional hyaline bulging at the anterior edge (a monotactic morphotype). Based on this set of characters, this amoeba is most similar to members of the genus Nolandella (Tubulinea, Euamoebida). However, molecular phylogenetic analysis based on only the small subunit ribosomal RNA (SSU rRNA) gene and on two concatenated markers (SSU rRNA gene and actin) robustly places this species in the Discosea, specifically, in a clade with Dermamoeba and Paradermamoeba (Dermamoebida) as the closest described relatives, and several SSU rRNA clones from environmental DNA. A unique glycocalyx of the studied amoeba consisting of complex separate units with pentameric symmetry may be considered a unifying character of this species with other dermamoebids. The monotactic morphotype demonstrated by these amoebae primarily occurs in Tubulinea but was recently confirmed in other clades of Amoebozoa (e.g. Dactylopodida and Variosea). This morphotype may be the plesiomorphic mode of cell organization in Amoebozoa that might have evolved in the last amoebozoan common ancestor (LACA) and conserved in several lineages of this group. It may reflect basic characteristics of the cytoskeletal structure and functions in Amoebozoa.
Collapse
|
8
|
Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep 2022; 12:11173. [PMID: 35778543 PMCID: PMC9249873 DOI: 10.1038/s41598-022-15372-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The supergroup Amoebozoa unites a wide diversity of amoeboid organisms and encompasses enigmatic lineages that have been recalcitrant to modern phylogenetics. Deep divergences, taxonomic placement of some key taxa and character evolution in the group largely remain poorly elucidated or controversial. We surveyed available Amoebozoa genomes and transcriptomes to mine conserved putative single copy genes, which were used to enrich gene sampling and generate the largest supermatrix in the group to date; encompassing 824 genes, including gene sequences not previously analyzed. We recovered a well-resolved and supported tree of Amoebozoa, revealing novel deep level relationships and resolving placement of enigmatic lineages congruent with morphological data. In our analysis the deepest branching group is Tubulinea. A recent proposed major clade Tevosa, uniting Evosea and Tubulinea, is not supported. Based on the new phylogenetic tree, paleoecological and paleontological data as well as data on the biology of presently living amoebozoans, we hypothesize that the evolution of Amoebozoa probably was driven by adaptive responses to a changing environment, where successful survival and predation resulted from a capacity to disrupt and graze on microbial mats-a dominant ecosystem of the mid-Proterozoic period of the Earth history.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - O Roger Anderson
- Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
9
|
Kudryavtsev A, Parshukov A, Kondakova E, Volkova E. Vannella mustalahtiana sp. nov. (Amoebozoa, Vannellida) and rainbow trout nodular gill disease (NGD) in Russia. DISEASES OF AQUATIC ORGANISMS 2022; 148:29-41. [PMID: 35142296 DOI: 10.3354/dao03641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An outbreak of nodular gill disease (NGD) in farmed rainbow trout Oncorhynchus mykiss (Walbaum, 1792) was recorded in Ladoga Lake (Karelia, north-western Russia) in Spring 2020. The disease was characterised by typical clinical signs including asphyxiation, distended opercula, loss of activity and swimming upside down under the water surface. Maximum monthly mortality was 15.2%. The histological examination of the gills showed deformation and clubbing of lamellae, epithelial hypertrophy and hyperplasia, lamellar fusion and fusion of filaments. Granulomas were located within the epithelial layer and/or rose above its surface. Light microscopic in vivo observations of the mucus smears from the affected gills revealed numerous amoeboid protists demonstrating a flattened body when adhering to the substratum, and blunt, radiating pseudopodia when afloat. Based on these morphological characters, these amoebae could be assigned to the Discosea (Amoebozoa), and analyses of their small subunit rRNA gene sequences showed that they belonged to the genus Vannella Bovee, 1965. The results reported herein support the designation of a new species, V. mustalahtiana sp. nov. Despite having been isolated from the gills of a freshwater fish, the species belongs to a clade of Vannella comprising mostly species isolated from marine and brackish water habitats. These findings may be essential for the aetiology and treatment of the disease.
Collapse
Affiliation(s)
- Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | | | | | | |
Collapse
|
10
|
Wang F, Tekle YI. Variation of natural selection in the Amoebozoa reveals heterogeneity across the phylogeny and adaptive evolution in diverse lineages. Front Ecol Evol 2022; 10:851816. [PMID: 36874909 PMCID: PMC9980437 DOI: 10.3389/fevo.2022.851816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution and diversity of the supergroup Amoebozoa is complex and poorly understood. The supergroup encompasses predominantly amoeboid lineages characterized by extreme diversity in phenotype, behavior and genetics. The study of natural selection, a driving force of diversification, within and among species of Amoebozoa will play a crucial role in understanding the evolution of the supergroup. In this study, we searched for traces of natural selection based on a set of highly conserved protein-coding genes in a phylogenetic framework from a broad sampling of amoebozoans. Using these genes, we estimated substitution rates and inferred patterns of selective pressure in lineages and sites with various models. We also examined the effect of selective pressure on codon usage bias and potential correlations with observed biological traits and habitat. Results showed large heterogeneity of selection across lineages of Amoebozoa, indicating potential species-specific optimization of adaptation to their diverse ecological environment. Overall, lineages in Tubulinea had undergone stronger purifying selection with higher average substitution rates compared to Discosea and Evosea. Evidence of adaptive evolution was observed in some representative lineages and in a gene (Rpl7a) within Evosea, suggesting potential innovation and beneficial mutations in these lineages. Our results revealed that members of the fast-evolving lineages, Entamoeba and Cutosea, all underwent strong purifying selection but had distinct patterns of codon usage bias. For the first time, this study revealed an overall pattern of natural selection across the phylogeny of Amoebozoa and provided significant implications on their distinctive evolutionary processes.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biology, Spelman College, Atlanta, GA, United States
| | - Yonas I Tekle
- Department of Biology, Spelman College, Atlanta, GA, United States
| |
Collapse
|
11
|
Volkova E, Kudryavtsev A. A morphological and molecular reinvestigation of Janickina pigmentifera (Grassi, 1881) Chatton 1953 - an amoebozoan parasite of arrow-worms (Chaetognatha). Int J Syst Evol Microbiol 2021; 71. [PMID: 34846292 DOI: 10.1099/ijsem.0.005094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amoebozoan parasites of arrow-worms (Chaetognatha) were isolated from their hosts living in plankton of the Bay of Villefranche (Mediterranean Sea). Based on the light microscopic characters, the amoebae were identified as Janickina pigmentifera (Grassi, 1881) by their limax locomotive form and due to the presence of the intracellular symbiont, Perkinsela amoebae, surrounded by a layer of pigment granules. Sequences of the 18S rRNA gene of both J. pigmentifera and its symbiont were obtained for the first time. The molecular phylogenetic analyses of 18S rRNA gene placed J. pigmentifera within the genus Neoparamoeba, a taxon also characterized by the presence of a symbiont, known as Perkinsela amoebae-like organism (PLO). The 18S rRNA gene sequence of P. amoebae from J. pigmentifera grouped with the sequences of 18S rRNA genes of PLOs from Neoparamoeba branchiphila and Neoparamoeba invadens. The first photo documentation of the light microscopic features of J. pigmentifera, such as locomotive form, the morphology of the nucleus and P. amoebae have been provided. The new results support the affinity of J. pigmentifera with the family Paramoebidae suggested previously based on the presence of PLO. In contrast to Janickina, typical members of Paramoebidae (Neoparamoeba and Paramoeba) have a flattened, dactylopodial locomotive form. This discrepancy in morphology can be explained by the obligate parasitic lifestyle of Janickina.
Collapse
Affiliation(s)
- Ekaterina Volkova
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab, St Petersburg, Russia
| | - Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab, St Petersburg, Russia
| |
Collapse
|
12
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
13
|
Montalbano Di Filippo M, Berrilli F, Di Cave D, Novelletto A. Novel data from Italian Vermamoeba vermiformis isolates from multiple sources add to genetic diversity within the genus. Parasitol Res 2019; 118:1751-1759. [DOI: 10.1007/s00436-019-06294-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 01/18/2023]
|
14
|
Testate Amoebae in the 407-Million-Year-Old Rhynie Chert. Curr Biol 2019; 29:461-467.e2. [PMID: 30661795 DOI: 10.1016/j.cub.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
The Lower Devonian Rhynie chert is justly famous for the clear glimpse it offers of early terrestrial ecosystems [1]. Seven species of stem- and crown-group vascular plants have been described from Rhynie, many preserved in growth position [2], as well as 14 species of invertebrate animals, all arthropods [3] save for a single nematode population [4]. While these shed welcome light on early tracheophytes and land animals, modern terrestrial ecosystems additionally contain a diversity of microscopic organisms that are key to ecosystem function, including fungi, protists, and bacteria. Fungi ranging from mycorrhizae to saprophytes are well preserved in Rhynie rocks ([5] and references therein), and oomycetes are also present [5]. Both green algae (charophytes) and cyanobacteria have also been documented locally [6, 7, 8]. To date, however, phagotrophic protists have not been observed in Rhynie cherts, even though such organisms contribute importantly to carbon, nitrogen, and silica cycling in modern terrestrial communities [9]. Here, we report a population of organic tests described as Palaeoleptochlamys hassii gen. nov., sp. nov. from a pond along the Rhynie alluvial plain, which we interpret as arcellinid amoebozoans. These fossils expand the ecological dimensions of the Rhynie biota and support the hypothesis that arcellinids transitioned from marine through freshwater environments to colonize soil ecosystems in synchrony with early vascular plants.
Collapse
|
15
|
Borovičková T, Mrva M, Garajová M. Thecamoeba quadrilineata (Amoebozoa, Lobosa) as a new member of amphizoic amoebae-first isolation from endozoic conditions. Parasitol Res 2019; 118:1019-1023. [PMID: 30643970 DOI: 10.1007/s00436-019-06207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
Abstract
A free-living soil amoeba Thecamoeba quadrilineata (Carter, 1856) Lepşi, 1960 (Amoebozoa: Thecamoebidae) was isolated from endozoic conditions for the first time. Presence of amoebae was detected after 4 days following inoculation of the gut of the earthworm Lumbricus terrestris on agar plate with Escherichia coli. On the basis of our isolation, we consider T. quadrilineata as further amphizoic amoeba species. This study enlarges the range of amphizoic tendency in members of the genus Thecamoeba and stresses the need for further research on the pathogenic potential of Thecamoeba species.
Collapse
Affiliation(s)
- Terézia Borovičková
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava 4, Slovak Republic
| | - Martin Mrva
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava 4, Slovak Republic.
| | - Mária Garajová
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava 4, Slovak Republic
| |
Collapse
|
16
|
Hofstatter PG, Brown MW, Lahr DJG. Comparative Genomics Supports Sex and Meiosis in Diverse Amoebozoa. Genome Biol Evol 2018; 10:3118-3128. [PMID: 30380054 PMCID: PMC6263441 DOI: 10.1093/gbe/evy241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Sex and reproduction are often treated as a single phenomenon in animals and plants, as in these organisms reproduction implies mixis and meiosis. In contrast, sex and reproduction are independent biological phenomena that may or may not be linked in the majority of other eukaryotes. Current evidence supports a eukaryotic ancestor bearing a mating type system and meiosis, which is a process exclusive to eukaryotes. Even though sex is ancestral, the literature regarding life cycles of amoeboid lineages depicts them as asexual organisms. Why would loss of sex be common in amoebae, if it is rarely lost, if ever, in plants and animals, as well as in fungi? One way to approach the question of meiosis in the "asexuals" is to evaluate the patterns of occurrence of genes for the proteins involved in syngamy and meiosis. We have applied a comparative genomic approach to study the occurrence of the machinery for plasmogamy, karyogamy, and meiosis in Amoebozoa, a major amoeboid supergroup. Our results support a putative occurrence of syngamy and meiotic processes in all major amoebozoan lineages. We conclude that most amoebozoans may perform mixis, recombination, and ploidy reduction through canonical meiotic processes. The present evidence indicates the possibility of sexual cycles in many lineages traditionally held as asexual.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Daniel J G Lahr
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| |
Collapse
|
17
|
Melton JT, Wood FC, Branch J, Singla M, Tekle YI. Phylogenomics of Thecamoebida (Discosea, Amoebozoa) with the Description of Stratorugosa tubuloviscum gen. nov. sp. nov., a Freshwater Amoeba with a Perinuclear MTOC. Protist 2018; 170:8-20. [PMID: 30553127 DOI: 10.1016/j.protis.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 01/23/2023]
Abstract
Thecamoebida Smirnov and Cavalier-Smith, 2011 (Discosea, Amoebozoa) has been molecularly understudied. The group until recently consisted of three genera containing species that live in terrestrial or aquatic environments. Here, we describe a fourth genus, Stratorugosa tubuloviscum gen. nov. sp. nov., which was isolated from a freshwater Amoeba proteus Ward's Science culture. Although this species most closely morphologically resembles a large, rugose Thecamoeba, S. tubuloviscum gen. nov. sp. nov. can be differentiated from Thecamoeba spp. by the following: 1) the presence of definitive finger-like (lobate-like) subpseudopodia extending at both the anterior and lateral parts of the cell during locomotion; 2) a peculiar locomotive mechanism with two sections, frontal and back, of the cells moving in a pulling and piggyback movement, respectively; 3) the presence of fibrillar cytoplasmic microtubules (MTs) organized by a prominent, perinuclear microtubule-organizing center (MTOC). A phylogenomic analysis of 511 genes assembled from transcriptomic data showed that this new genus was highly supported as sister to Stenamoeba. Despite the variance in gross morphology, Stenamoeba and S. tubuloviscum gen nov. sp. nov. both have MTOCs unlike two Thecamoeba spp., which display dot-like cytoplasmic MTs and lack an MTOC.
Collapse
Affiliation(s)
- James T Melton
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA.
| | - Fiona C Wood
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Jordan Branch
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Mandakini Singla
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Yonas I Tekle
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
18
|
Abstract
Within the human host, Legionella pneumophila replicates within alveolar macrophages, leading to pneumonia. However, L. pneumophila is an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles of L. pneumophila within the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome of L. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors among Legionella species and >320 effector proteins in L. pneumophila into host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation of L. pneumophila to various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrict L. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure of L. pneumophila to overcome restriction of certain protist hosts. Here, we review the interaction of L. pneumophila with its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge of L. pneumophila-protist host interaction and L. pneumophila's evolution to become a human pathogen.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Kudryavtsev A, Pawlowski J, Smirnov A. More amoebae from the deep-sea: Two new marine species of Vexillifera (Amoebozoa, Dactylopodida) with notes on taxonomy of the genus. Eur J Protistol 2018; 66:9-25. [DOI: 10.1016/j.ejop.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
20
|
Schuler GA, Brown MW. Description of Armaparvus languidus n. gen. n. sp. Confirms Ultrastructural Unity of Cutosea (Amoebozoa, Evosea). J Eukaryot Microbiol 2018; 66:158-166. [PMID: 29858563 DOI: 10.1111/jeu.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/27/2018] [Indexed: 12/01/2022]
Abstract
The American Type Culture Collection (ATCC) PRA-29 isolate has a publicly available transcriptome, which has led to its inclusion in recent phylogenomic analyses. The ATCC PRA-29 isolate was originally identified and deposited as "Pessonella sp." This taxon branches robustly within the recently discovered clade Cutosea, very distantly related to the clade in which the genus Pessonella is believed to branch based on morphological data. Using detailed light and electron microscopy, we studied the morphology and ultrastructure of ATCC PRA-29 as well as other cutosean amoebae to better elucidate the morphological affinity of ATCC PRA-29 to other amoebozoans. Here, we show that ATCC PRA-29 was misidentified by the original depositor as Pessonella and name it Armaparvus languidus n. gen. n. sp. We show that a cell coat of microscales separated from the cell membrane is a unique trait found in all known cutosean amoebae. As Cutosea represents a clade at the deepest bifurcation in the amoebozoan group Evosea and because this clade is currently taxon-poor, but likely represents a major understudied group it will be important to isolate and describe more cutosean amoebae in the future.
Collapse
Affiliation(s)
- Gabriel A Schuler
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
21
|
Tyml T, Lisnerová M, Kostka M, Dyková I. Current view on phylogeny within the genus Flabellula Schaeffer, 1926 (Amoebozoa: Leptomyxida). Eur J Protistol 2018; 64:40-53. [PMID: 29674177 DOI: 10.1016/j.ejop.2018.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
Abstract
The molecular phylogeny of Flabellula Schaeffer, 1926 has been updated by analysing 18S rRNA and actin gene sequences of 19 new strains collected and characterised by the authors over the past ten years. The genus Flabellula Schaeffer, 1926 (Amoebozoa: Leptomyxida) is a taxon in which species delineation based on morphological data by themselves is insufficient or even misleading. The description of two novel species, F. schaefferi n. sp. and F. sawyeri n. sp., is justified by the congruence of morphological data with 18S rRNA and actin gene sequence phylogenies, in-silico secondary structure prediction of the V2 region in the 18S rRNA, and by recognition of species-specific sequential motifs within this region.
Collapse
Affiliation(s)
- Tomáš Tyml
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Martina Lisnerová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Martin Kostka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Iva Dyková
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
22
|
Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Cepicka I, Kostka M, Kosakyan A, Alcântara DMC, Roger AJ, Shadwick LL, Smirnov A, Kudryavtsev A, Lahr DJG, Brown MW. Between a Pod and a Hard Test: The Deep Evolution of Amoebae. Mol Biol Evol 2017; 34:2258-2270. [PMID: 28505375 PMCID: PMC5850466 DOI: 10.1093/molbev/msx162] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features.
Collapse
Affiliation(s)
- Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| | | | | | - Tomáš Pánek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Martin Kostka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Českě Budějovice, Czech Republic.,Department of Parasitology, University of South Bohemia, Českě Budějovice, Czech Republic
| | - Anush Kosakyan
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | | | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Lora L Shadwick
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Daniel J G Lahr
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| |
Collapse
|
23
|
Volkova E, Kudryavtsev A. Description of Neoparamoeba longipodia n. sp. and a new strain of Neoparamoeba aestuarina (Page, 1970) (Amoebozoa, Dactylopodida) from deep-sea habitats. Eur J Protistol 2017; 61:107-121. [DOI: 10.1016/j.ejop.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
24
|
Blandenier Q, Lara E, Mitchell EA, Alcantara DM, Siemensma FJ, Todorov M, Lahr DJ. NAD9/NAD7 (mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene)—A new “Holy Grail” phylogenetic and DNA-barcoding marker for Arcellinida (Amoebozoa)? Eur J Protistol 2017; 58:175-186. [DOI: 10.1016/j.ejop.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 11/17/2022]
|
25
|
Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida). Protist 2017; 168:220-252. [PMID: 28343121 DOI: 10.1016/j.protis.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/29/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022]
Abstract
We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other.
Collapse
|
26
|
Glotova A, Smirnov A. Description of Flamella daurica n. sp., with notes on the phylogeny of the genus Flamella and related taxa. Eur J Protistol 2017; 58:164-174. [PMID: 28319806 DOI: 10.1016/j.ejop.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 11/17/2022]
Abstract
A new species of naked amoebae, Flamella daurica (Amoebozoa, Conosa, Variosea), from the Russian Far East is studied and described. In addition, we isolated a strain, identified as Flamella aegyptia from Lake Ontario in Canada. Its SSU rRNA gene sequence is almost identical with that of the type strain, except for the presence of an intron in the SSU sequence. The phylogenetic analysis of a variosean alignment after inclusion of a number of environmental sequences found in GenBank confirmed that the species Talaepolella tubasferens Lahr 2012 is closely related to the Flamella clade but probably represents an independent genus and includes no less than two different species. This conclusion is supported by considerable differences between Talaepolella and Flamella in morphology and life history. Talaepolella tubasferens is an evolutionary important species demonstrating the transition from compact flamellian to expanded acramoebian morphology. The genus Flamella now includes twelve named species, which makes it one of the most species-rich genera of naked lobose amoebae.
Collapse
Affiliation(s)
- Anna Glotova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaja nab. 7/9, 199034 St. Petersburg, Russia.
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaja nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
27
|
Tekle YI, Williams JR. Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160283. [PMID: 27703691 PMCID: PMC5043310 DOI: 10.1098/rsos.160283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The cytoskeleton is the hallmark of eukaryotic evolution. The molecular and architectural aspects of the cytoskeleton have been playing a prominent role in our understanding of the origin and evolution of eukaryotes. In this study, we seek to investigate the cytoskeleton architecture and its evolutionary significance in understudied amoeboid lineages belonging to Amoebozoa. These amoebae primarily use cytoplasmic extensions supported by the cytoskeleton to perform important cellular processes such as movement and feeding. Amoeboid structure has important taxonomic significance, but, owing to techniques used, its potential significance in understanding diversity of the group has been seriously compromised, leading to an under-appreciation of its value. Here, we used immunocytochemistry and confocal microscopy to study the architecture of microtubules (MTs) and F-actin in diverse groups of amoebae. Our results demonstrate that all Amoebozoa examined are characterized by a complex cytoskeletal array, unlike what has been previously thought to exist. Our results not only conclusively demonstrate that all amoebozoans possess complex cytoplasmic MTs, but also provide, for the first time, a potential synapomorphy for the molecularly defined Amoebozoa clade. Based on this evidence, the last common ancestor of amoebozoans is hypothesized to have had a complex interwoven MT architecture limited within the granular cell body. We also generate several cytoskeleton characters related to MT and F-actin, which are found to be robust for defining groups in deep and shallow nodes of Amoebozoa.
Collapse
|
28
|
Udalov IA, Zlatogursky VV, Smirnov AV. A New Freshwater Naked Lobose Amoeba Korotnevella venosa
n. sp. (Amoebozoa, Discosea). J Eukaryot Microbiol 2016; 63:834-840. [DOI: 10.1111/jeu.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Ilya A. Udalov
- Department of Invertebrate Zoology; Faculty of Biology; Saint Petersburg State University; Universitetskaya nab. 7/9 St. Petersburg 199034 Russia
| | - Vasily V. Zlatogursky
- Department of Invertebrate Zoology; Faculty of Biology; Saint Petersburg State University; Universitetskaya nab. 7/9 St. Petersburg 199034 Russia
| | - Alexey V. Smirnov
- Department of Invertebrate Zoology; Faculty of Biology; Saint Petersburg State University; Universitetskaya nab. 7/9 St. Petersburg 199034 Russia
| |
Collapse
|
29
|
Udalov IA. Pseudoparamoeba microlepis n. sp., Korotnevella fousta n. sp. (Amoebozoa, Dactylopodida), with notes on the evolution of scales among dactylopodid amoebae. Eur J Protistol 2016; 54:33-46. [DOI: 10.1016/j.ejop.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
|
30
|
Cavalier-Smith T, Chao EE, Lewis R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol Phylogenet Evol 2016; 99:275-296. [DOI: 10.1016/j.ympev.2016.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
31
|
Phylogenomics of 'Discosea': A new molecular phylogenetic perspective on Amoebozoa with flat body forms. Mol Phylogenet Evol 2016; 99:144-154. [PMID: 27015898 DOI: 10.1016/j.ympev.2016.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022]
Abstract
The majority of amoeboid lineages with flattened body forms are placed under a taxonomic hypothetical class 'Discosea' sensu Smirnov et al. (2011), which encompasses some of the most diverse morphs within Amoebozoa. However, its taxonomy and phylogeny is poorly understood. This is partly due to lack of support in studies that are based on limited gene sampling. In this study we use a phylogenomic approach including newly-generated RNA-Seq data and comprehensive taxon sampling to resolve the phylogeny of 'Discosea'. Our analysis included representatives from all orders of 'Discosea' and up to 550 genes, the largest gene sampling in Amoebozoa to date. We conducted extensive analyses to assess the robustness of our resulting phylogenies to effects of missing data and outgroup choice using probabilistic methods. All of our analyses, which explore the impact of varying amounts of missing data, consistently recover well-resolved and supported groups of Amoebozoa. Our results neither support the monophyly nor dichotomy of 'Discosea' as defined by Smirnov et al. (2011). Rather, we recover a robust well-resolved clade referred to as Eudiscosea encompassing the majority of discosean orders (seven of the nine studied here), while the Dactylopodida, Thecamoebida and Himatismenida, previously included in 'Discosea,' are non-monophyletic. We also recover novel relationships within the Eudiscosea that are largely congruent with morphology. Our analyses enabled us to place some incertae sedis lineages and previously unstable lineages such as Vermistella, Mayorella, Gocevia, and Stereomyxa. We recommend some phylogeny-based taxonomic amendments highlighting the new findings of this study and discuss the evolution of the group based on our current understanding.
Collapse
|
32
|
Park JS. First Record of Potentially Pathogenic Amoeba Vermamoeba vermiformis (Lobosea: Gymnamoebia) Isolated from a Freshwater of Dokdo Island in the East Sea, Korea. ANIMAL SYSTEMATICS, EVOLUTION AND DIVERSITY 2016. [DOI: 10.5635/ased.2016.32.1.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Isolation of diverse amoebal grazers of freshwater cyanobacteria for the development of model systems to study predator–prey interactions. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T. Metatranscriptomic census of active protists in soils. THE ISME JOURNAL 2015; 9:2178-90. [PMID: 25822483 PMCID: PMC4579471 DOI: 10.1038/ismej.2015.30] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 11/08/2022]
Abstract
The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system.
Collapse
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
- Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), Wageningen, The Netherlands
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ian M Clark
- Department of AgroEcology, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Andreas Richter
- Department of Microbiology and Ecosystem Sciences, University of Vienna, Vienna, Austria
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Singh V, Pandita SK, Tewari R, van Hengstum PJ, Pillai SSK, Agnihotri D, Kumar K, Bhat GD. Thecamoebians (Testate Amoebae) Straddling the Permian-Triassic Boundary in the Guryul Ravine Section, India: Evolutionary and Palaeoecological Implications. PLoS One 2015; 10:e0135593. [PMID: 26288245 PMCID: PMC4546057 DOI: 10.1371/journal.pone.0135593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Exceptionally well-preserved organic remains of thecamoebians (testate amoebae) were preserved in marine sediments that straddle the greatest extinction event in the Phanerozoic: the Permian-Triassic Boundary. Outcrops from the Late Permian Zewan Formation and the Early Triassic Khunamuh Formation are represented by a complete sedimentary sequence at the Guryul Ravine Section in Kashmir, India, which is an archetypal Permian-Triassic boundary sequence. Previous biostratigraphic analysis provides chronological control for the section, and a perspective of faunal turnover in the brachiopods, ammonoids, bivalves, conodonts, gastropods and foraminifera. Thecamoebians were concentrated from bulk sediments using palynological procedures, which isolated the organic constituents of preserved thecamoebian tests. The recovered individuals demonstrate exceptional similarity to the modern thecamoebian families Centropyxidae, Arcellidae, Hyalospheniidae and Trigonopyxidae, however, the vast majority belong to the Centropyxidae. This study further confirms the morphologic stability of the thecamoebian lineages through the Phanerozoic, and most importantly, their apparent little response to an infamous biological crisis in Earth's history.
Collapse
Affiliation(s)
- Vartika Singh
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | | | - Rajni Tewari
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
- * E-mail:
| | - Peter J van Hengstum
- Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, 77553, United States of America
| | - Suresh S. K. Pillai
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | - Deepa Agnihotri
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | - Kamlesh Kumar
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | - G. D. Bhat
- Directorate of Geology and Mining, Jammu and Kashmir Government, Srinagar, 190002, India
| |
Collapse
|
36
|
Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:749-58. [PMID: 25793551 PMCID: PMC4529011 DOI: 10.1289/ehp.1408692] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/17/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. OBJECTIVES The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. METHODS A Water Research Foundation-sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. DISCUSSION OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. CONCLUSIONS Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter water) to reduce home exposures.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | |
Collapse
|
37
|
Berney C, Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, Bass D. Expansion of the 'Reticulosphere': Diversity of Novel Branching and Network-forming Amoebae Helps to Define Variosea (Amoebozoa). Protist 2015; 166:271-95. [PMID: 25965302 DOI: 10.1016/j.protis.2015.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Abstract
Amoebae able to form cytoplasmic networks or displaying a multiply branching morphology remain very poorly studied. We sequenced the small-subunit ribosomal RNA gene of 15 new amoeboid isolates, 14 of which are branching or network-forming amoebae (BNFA). Phylogenetic analyses showed that these isolates all group within the poorly-known and weakly-defined class Variosea (Amoebozoa). They are resolved into six lineages corresponding to distinct new morphotypes; we describe them as new genera Angulamoeba (type species Angulamoeba microcystivorans n. gen., n. sp.; and A. fungorum n. sp.), Arboramoeba (type species Arboramoeba reticulata n. gen., n. sp.), Darbyshirella (type species Darbyshirella terrestris n. gen., n. sp.), Dictyamoeba (type species Dictyamoeba vorax n. gen., n. sp.), Heliamoeba (type species Heliamoeba mirabilis n. gen., n. sp.), and Ischnamoeba (type species Ischnamoeba montana n. gen., n. sp.). We also isolated and sequenced four additional variosean strains, one belonging to Flamella, one related to Telaepolella tubasferens, and two members of the cavosteliid protosteloid lineage. We identified a further 104 putative variosean environmental clone sequences in GenBank, comprising up to 14 lineages that may prove to represent additional novel morphotypes. We show that BNFA are phylogenetically widespread in Variosea and morphologically very variable, both within and between lineages.
Collapse
Affiliation(s)
- Cédric Berney
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Stefan Geisen
- Department of Terrestrial Ecology, Zoological Institute, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jeroen Van Wichelen
- Research Unit Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Frank Nitsche
- Department of General Ecology, Zoological Institute, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Pieter Vanormelingen
- Research Unit Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Zoological Institute, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - David Bass
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
38
|
Cavalier-Smith T, Fiore-Donno AM, Chao E, Kudryavtsev A, Berney C, Snell EA, Lewis R. Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 2015; 83:293-304. [DOI: 10.1016/j.ympev.2014.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/02/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
39
|
Kudryavtsev A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur J Protistol 2014; 50:258-69. [DOI: 10.1016/j.ejop.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
40
|
Tekle YI. DNA barcoding in amoebozoa and challenges: the example of Cochliopodium. Protist 2014; 165:473-84. [PMID: 24945930 DOI: 10.1016/j.protis.2014.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 11/29/2022]
Abstract
The diversity of microbial eukaryotes in general and amoeboid lineages in particular is poorly documented. Even though amoeboid lineages are among the most abundant microbes, taxonomic progress in the group has been hindered by the limitations of traditional taxonomy and technical difficultly in studying them. Studies using molecular approaches such as DNA barcoding with cytochrome oxidase I (COI) gene are slowly trickling in for Amoebozoa, and they hopefully will aid in unveiling the true diversity of the group. In this study a retrospective approach is used to test the utility of COI gene in a scale-bearing amoeba, Cochliopodium, which is morphologically well defined. A total of 126 COI sequences and 62 unique haplotypes were generated from 9 Cochliopodium species. Extensive analyses exploring effects of sequence evolution models and length of sequence on genetic diversity computations were conducted. The findings show that COI is a promising marker for Cochliopodium, except in one case where it failed to delineate two morphologically well-defined cochliopodiums. Two species delimitation approaches also recognize 8 genetic lineages out of 9 species examined. The taxonomic implications of these findings and factors that may confound COI as a barcode marker in Cochliopodium and other amoebae are discussed.
Collapse
Affiliation(s)
- Yonas I Tekle
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
41
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
42
|
del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R, Ruiz-Trillo I. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 2014; 29:252-9. [PMID: 24726347 PMCID: PMC4342545 DOI: 10.1016/j.tree.2014.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes.
Collapse
Affiliation(s)
- Javier del Campo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | - Ramon Massana
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
43
|
Grant JR, Katz LA. Building a phylogenomic pipeline for the eukaryotic tree of life - addressing deep phylogenies with genome-scale data. PLOS CURRENTS 2014; 6. [PMID: 24707447 PMCID: PMC3973741 DOI: 10.1371/currents.tol.c24b6054aebf3602748ac042ccc8f2e9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background
Understanding the evolutionary relationships of all eukaryotes on Earth remains a paramount goal of modern biology, yet analyzing homologous sequences across 1.8 billion years of eukaryotic evolution is challenging. Many existing tools for identifying gene orthologs are inadequate when working with heterogeneous rates of evolution and endosymbiotic/lateral gene transfer. Moreover, genomic-scale sequencing, which was once the domain of large sequencing centers, has advanced to the point where small laboratories can now generate the data needed for phylogenomic studies. This has opened the door for increased taxonomic sampling as individual research groups have the ability to conduct genome-scale projects on their favorite non-model organism.
Results
Here we present some of the tools developed, and insights gained, as we created a pipeline that combines data-mining from public databases and our own transcriptome data to study the eukaryotic tree of life. The first steps of a phylogenomic pipeline involve choosing taxa and loci, and making decisions about how to handle alleles, paralogs and non-overlapping sequences. Next, orthologs are aligned for analyses including gene tree reconstruction and concatenation for supermatrix approaches. To build our pipeline, we created scripts written in Python that integrate third-party tools with custom methods. As a test case, we present the placement of five amoebae on the eukaryotic tree of life based on analyses of transcriptome data. Our scripts available on GitHUb and may be used as-is for automated analyses of large scale phylogenomics, or adapted for use in other types of studies.
Conclusion
Analyses on the scale of all eukaryotes present challenges not necessarily found in studies of more closely related organisms. Our approach will be of relevance to others for whom existing third-party tools fail to fully answer desired phylogenetic questions.
Collapse
Affiliation(s)
- Jessica R Grant
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| |
Collapse
|
44
|
Geisen S, Weinert J, Kudryavtsev A, Glotova A, Bonkowski M, Smirnov A. Two new species of the genus Stenamoeba (Discosea, Longamoebia): Cytoplasmic MTOC is present in one more amoebae lineage. Eur J Protistol 2014; 50:153-65. [DOI: 10.1016/j.ejop.2014.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/18/2013] [Accepted: 01/26/2014] [Indexed: 12/01/2022]
|
45
|
Fiz-Palacios O, Romeralo M, Ahmadzadeh A, Weststrand S, Ahlberg PE, Baldauf S. Did terrestrial diversification of amoebas (amoebozoa) occur in synchrony with land plants? PLoS One 2013; 8:e74374. [PMID: 24040233 PMCID: PMC3770592 DOI: 10.1371/journal.pone.0074374] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/31/2013] [Indexed: 12/04/2022] Open
Abstract
Evolution of lineage diversification through time is an active area of research where much progress has been made in the last decade. Contrary to the situation in animals and plants little is known about how diversification rates have evolved in most major groups of protist. This is mainly due to uncertainty about phylogenetic relationships, scarcity of the protist fossil record and the unknown diversity within these lineages. We have analyzed the evolutionary history of the supergroup Amoebozoa over the last 1000 million years using molecular dating and species number estimates. After an origin in the marine environment we have dated the colonization of terrestrial habitats by three distinct lineages of Amoebozoa: Dictyostelia, Myxogastria and Arcellinida. The common ancestor of the two sister taxa, Dictyostelia and Myxogastria, appears to have existed before the colonization of land by plants. In contrast Arcellinida seems to have diversify in synchrony with land plant radiation, and more specifically with that of mosses. Detection of acceleration of diversification rates in Myxogastria and Arcellinida points to a co-evolution within the terrestrial habitats, where land plants and the amoebozoans may have interacted during the evolution of these new ecosystems.
Collapse
Affiliation(s)
- Omar Fiz-Palacios
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
- * E-mail:
| | - Maria Romeralo
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| | - Afsaneh Ahmadzadeh
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| | - Stina Weststrand
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| | - Per Erik Ahlberg
- Evolution and Development Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 A, Uppsala, Sweden
| | - Sandra Baldauf
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| |
Collapse
|
46
|
Lahr DJG, Grant JR, Katz LA. Multigene phylogenetic reconstruction of the Tubulinea (Amoebozoa) corroborates four of the six major lineages, while additionally revealing that shell composition does not predict phylogeny in the Arcellinida. Protist 2013; 164:323-39. [PMID: 23499265 DOI: 10.1016/j.protis.2013.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Tubulinea is a phylogenetically stable higher-level taxon within Amoebozoa, morphologically characterized by monoaxially streaming and cylindrical pseudopods. Contemporary phylogenetic reconstructions have largely relied on SSU rDNA, and to a lesser extent, on actin genes to reveal the relationships among these organisms. Additionally, the test (shell) forming Arcellinida, one of the most species-rich amoebozoan groups, is nested within Tubulinea and suffers from substantial under-sampling of taxa. Here, we increase taxonomic and gene sampling within the Tubulinea, characterizing molecular data for 22 taxa and six genes (SSU rDNA, actin, α- and β-tubulin, elongation factor 2 and the 14-3-3 regulatory protein). We perform concatenated phylogenetic analyses using these genes as well as approximately unbiased tests to assess evolutionary relationships within the Tubulinea. We confirm the monophyly of Tubulinea and four of the six included lineages (Echinamoeboidea, Leptomyxida, Amoebida and Poseidonida). Arcellinida and Hartmanellidae, the remaining lineages, are not monophyletic in our reconstructions, although statistical testing does not allow rejection of either group. We further investigate more fine-grained morphological evolution of previously defined groups, concluding that relationships within Arcellinida are more consistent with general test and aperture shape than with test composition. We also discuss the implications of this phylogeny for interpretations of the Precambrian fossil record of testate amoebae.
Collapse
Affiliation(s)
- Daniel J G Lahr
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
47
|
Abstract
The model organism Dictyostelium discoideum is a member of the Amoebozoa, one of the six major -divisions of eukaryotes. Amoebozoa comprise a wide variety of amoeboid and flagellate organisms with single cells measuring from 5 μm to several meters across. They have adopted many different life styles and sexual behaviors and can live in all but the most extreme environments. This chapter provides an overview of Amoebozoan diversity and compares roads towards multicellularity within the Amoebozoa with inventions of multicellularity in other protist divisions. The chapter closes with a scenario for the evolution of Dictyostelid multicellularity from an Amoebozoan stress response.
Collapse
Affiliation(s)
| | - Pauline Schaap
- University of Dundee, College of Life Sciences, Dundee, UK
| |
Collapse
|
48
|
Marshall WF, Young KD, Swaffer M, Wood E, Nurse P, Kimura A, Frankel J, Wallingford J, Walbot V, Qu X, Roeder AHK. What determines cell size? BMC Biol 2012; 10:101. [PMID: 23241366 PMCID: PMC3522064 DOI: 10.1186/1741-7007-10-101] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Systems and Synthetic Biology, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Matthew Swaffer
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Elizabeth Wood
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Paul Nurse
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
- Laboratory of Yeast Genetics and Biology, The Rockeller University, 1230 York Avenue, New York, NY 10065, USA
- The Francis Crick Institute, Euston Road 215, London, NW1 2BE, UK
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Frankel
- Department of Biology, University of Iowa, 129 E. Jefferson Street, Iowa City, IA 52242, USA
| | - John Wallingford
- HHMI & Molecular Cell and Developmental Biology, University of Texas, Austin, 78712, USA
| | - Virginia Walbot
- Virginia WalbotDepartment of Biology, Stanford University, Stanford, CA 72205, USA
| | - Xian Qu
- Xian Qu, Cornell University, 244 Weill Hall, 526 Campus Rd, Ithaca, NY 14853, USA
| | - Adrienne HK Roeder
- Cornell University, 239 Weill Hall, 526 Campus Rd, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Glöckner G, Noegel AA. Comparative genomics in the Amoebozoa clade. Biol Rev Camb Philos Soc 2012; 88:215-25. [PMID: 23134060 DOI: 10.1111/j.1469-185x.2012.00248.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 11/30/2022]
Abstract
Amoeboid life forms can be found throughout the evolutionary tree. The greatest proportion of these life forms is found in the Amoebozoa clade, one of the six major eukaryote evolutionary branches. Despite its common origin this clade exhibits a wide diversity of lifestyles including free-living and parasitic species and species with multicellular and multinucleate life stages. In this group, development, cooperation, and social behaviour can be studied in addition to traits common to unicellular organisms. To date, only a few Amoebozoa genomes have been sequenced completely, however a number of expressed sequence tags (ESTs) and complete and draft genomes have become available recently for several species that represent some of the major evolutionary lineages in this clade. This resource allows us to compare and analyse the evolutionary history and fate of branch-specific genes if properly exploited. Despite the large evolutionary time scale since the emergence of the major groups the genomic organization in Amoebozoa has retained common features. The number of Amoebozoa-specific genetic inventions seems to be rather small. The emergence of subgroups is accompanied by gene and domain losses and acquisitions of bacterial gene material. The sophisticated developmental cycles of Myxogastria and Dictyosteliida likely have a common origin and are deeply rooted in amoebozoan evolution. In this review we describe initial approaches to comparative genomics in Amoebozoa, summarize recent findings, and identify goals for further studies.
Collapse
Affiliation(s)
- Gernot Glöckner
- Institute for Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301, Berlin, D-12587, Germany.
| | | |
Collapse
|
50
|
Micriamoeba tesseris nov. gen. nov. sp.: a new taxon of free-living small-sized Amoebae non-permissive to virulent Legionellae. Protist 2012; 163:888-902. [PMID: 22677099 DOI: 10.1016/j.protis.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 11/22/2022]
Abstract
Investigation of soil amoebae in 11 cooling towers allowed us to isolate a major unknown small-sized amoeba population (SZA). However, SZA did not appear to be specific to cooling tower ecosystems since they are also a major amoeba population found in muds isolated from different points of a water treatment plant. The SSU-rDNA sequences from SZA strains did not match any known database sequences, suggesting that SZA constitutes a new amoeba taxon. We isolated and further described one of the SZA that we named Micriamoeba tesseris. The phylogenetic analyses showed that Micriamoeba tesseris belongs to the Amebozoa and branched together with genus Echinamoeba+Vermamoeba vermiformis. Phylogenetic analyses within the Micriamoeba group distinguished different subgroups of Micriamoeba strains according to their origin, i.e. cooling tower or mud. Although Micriamoeba are able to feed on viable E. coli cells, they do not uptake virulent Legionella pneumophila strains, thus enabling them to avoid infection by Legionella. Consequently, Micriamoeba is not directly involved in L. pneumophila multiplication. However, an indirect role of Micriamoeba in Legionella risk is discussed.
Collapse
|