1
|
Lupatelli CA, Attard A, Kuhn ML, Cohen C, Thomen P, Noblin X, Galiana E. Automated high-content image-based characterization of microorganism behavioral diversity and distribution. Comput Struct Biotechnol J 2023; 21:5640-5649. [PMID: 38047236 PMCID: PMC10692603 DOI: 10.1016/j.csbj.2023.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Microorganisms have evolved complex systems to respond to environmental signals. Gradients of particular molecules and elemental ions alter the behavior of microbes and their distribution within their environment. Microdevices coupled with automated image-based methods are now employed to analyze the instantaneous distribution and motion behaviors of microbial species in controlled environments at small temporal scales, mimicking, to some extent, macro conditions. Such technologies have so far been adopted for investigations mainly on individual species. Similar versatile approaches must now be developed for the characterization of multiple and complex interactions between a microbial community and its environment. Here, we provide a comprehensive step-by-step method for the characterization of species-specific behavior in a synthetic mixed microbial suspension in response to an environmental driver. By coupling accessible microfluidic devices with automated image analysis approaches, we evaluated the behavioral response of three morphologically different telluric species (Phytophthora parasitica, Vorticella microstoma, Enterobacter aerogenes) to a potassium gradient driver. Using the TrackMate plug-in algorithm, we performed morphometric and then motion analyses to characterize the response of each microbial species to the driver. Such an approach enabled to confirm the different morphological features of the three species and simultaneously characterize their specific motion in reaction to the driver and their co-interaction dynamics. By increasing the complexity of suspensions, this approach could be integrated in a framework for phenotypic analysis in microbial ecology research, helping to characterize how key drivers influence microbiota assembly at microbiota host-environment interfaces.
Collapse
Affiliation(s)
- Carlotta Aurora Lupatelli
- Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, 06903, France
- Université Côte d’Azur, CNRS, UMR 7010, INPHYNI, Nice 06200, France
| | - Agnes Attard
- Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, 06903, France
| | - Marie-Line Kuhn
- Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, 06903, France
| | - Celine Cohen
- Université Côte d’Azur, CNRS, UMR 7010, INPHYNI, Nice 06200, France
| | - Philippe Thomen
- Université Côte d’Azur, CNRS, UMR 7010, INPHYNI, Nice 06200, France
| | - Xavier Noblin
- Université Côte d’Azur, CNRS, UMR 7010, INPHYNI, Nice 06200, France
| | - Eric Galiana
- Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, 06903, France
| |
Collapse
|
2
|
Gogoi A, Rossmann SL, Lysøe E, Stensvand A, Brurberg MB. Genome analysis of Phytophthora cactorum strains associated with crown- and leather-rot in strawberry. Front Microbiol 2023; 14:1214924. [PMID: 37465018 PMCID: PMC10351607 DOI: 10.3389/fmicb.2023.1214924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4-67.6 megabases genomes in 178-204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.
Collapse
Affiliation(s)
- Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Simeon L. Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
3
|
Motaung TE, Peremore C, Wingfield B, Steenkamp E. Plant-associated fungal biofilms-knowns and unknowns. FEMS Microbiol Ecol 2021; 96:5956487. [PMID: 33150944 DOI: 10.1093/femsec/fiaa224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly all microbes, including fungi, grow firmly attached to surfaces as a biofilm. Yet, attention toward fungal interactions with plants and the environment is dedicated to free-floating (planktonic) cells. Fungal biofilms are generally thought to configure interactions across and among plant populations. Despite this, plant fungal biofilm research lags far behind the research on biofilms of medically important fungi. The deficit in noticing and exploring this research avenue could limit disease management and plant improvement programs. Here, we provide the current state of knowledge of fungal biofilms and the different pivotal ecological roles they impart in the context of disease, through leveraging evidence across medically important fungi, secondary metabolite production, plant beneficial functions and climate change. We also provide views on several important information gaps potentially hampering plant fungal biofilm research, and propose a way forward to address these gaps.
Collapse
Affiliation(s)
- Thabiso E Motaung
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Chizné Peremore
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Brenda Wingfield
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Emma Steenkamp
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
4
|
Bassani I, Larousse M, Tran QD, Attard A, Galiana E. Phytophthora zoospores: From perception of environmental signals to inoculum formation on the host-root surface. Comput Struct Biotechnol J 2020; 18:3766-3773. [PMID: 33304469 PMCID: PMC7718214 DOI: 10.1016/j.csbj.2020.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
To explore moist soils and to target host plants, phytopathogenic Phytophthora species utilize the sensory and propulsion capabilities of the biflagellate unicellular zoospores they produce. Zoospore motion and interactions with the microenvironment are of primary importance for Phytophthora physiology. These are also of critical significance for plant pathology in early infection sequential events and their regulation: the directed zoospore migration toward the host, the local aggregation and adhesion at the host penetration site. In the soil, these early events preceding the root colonization are orchestrated by guidance factors, released from the soil particles in water films, or emitted within microbiota and by host plants. This signaling network is perceived by zoospores and results in coordinated behavior and preferential localization in the rhizosphere. Recent computational and structural studies suggest that rhizospheric ion and plant metabolite sensing is a key determinant in driving zoospore motion, orientation and aggregation. To reach their target, zoospores respond to various molecular, chemical and electrical stimuli. However, it is not yet clear how these signals are generated in local soil niches and which gene functions govern the sensing and subsequent responses of zoospores. Here we review studies on the soil, microbial and host-plant factors that drive zoospore motion, as well as the adaptations governing zoospore behavior. We propose several research directions that could be explored to characterize the role of zoospore microbial ecology in disease.
Collapse
Affiliation(s)
- Ilaria Bassani
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Marie Larousse
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Quang D Tran
- Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Nice 06108, France
| | - Agnès Attard
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Eric Galiana
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| |
Collapse
|
5
|
Phytopathogenic oomycetes: a review focusing on Phytophthora cinnamomi and biotechnological approaches. Mol Biol Rep 2020; 47:9179-9188. [PMID: 33068230 DOI: 10.1007/s11033-020-05911-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as "pseudo-fungi", within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnology Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).
Collapse
|
6
|
Transcriptomic and Ultrastructural Signatures of K +-Induced Aggregation in Phytophthora parasitica Zoospores. Microorganisms 2020; 8:microorganisms8071012. [PMID: 32645882 PMCID: PMC7409359 DOI: 10.3390/microorganisms8071012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Most pathogenic oomycetes of the genus Phytophthora spread in water films as flagellated zoospores. Zoospores perceive and produce signals attracting other zoospores, resulting in autoaggregation in vitro or biofilm formation on plant surface. The mechanisms underlying intercellular communication and consequent attraction, adhesion and aggregation are largely unknown. In Phytophthora parasitica, the perception of a K+ gradient induces coordinated motion and aggregation. To define cellular and molecular events associated with oomycete aggregation, we combined transcriptomic and ultrastructural analyses. Results indicate involvement of electroception in K+ sensing. They establish that the transcriptome repertoire required for swimming and aggregation is already fully functional at zoospore release. At the time points analyzed, aggregates are mainly constituted of zoospores. They produce vesicular and fibrillary material discharged at cell-to-cell contacts. Consistently, the signature of transcriptome dynamics during transition to aggregates is an upregulation of genes potentially related to vesicular trafficking. Moreover, transcriptomic and functional analyses show a strong enhancement of carbonic anhydrase activity, indicating that pH homeostasis may contribute to aggregation by acting on both zoospore movement and adhesion. This study poses the molecular and cellular bases of aggregative behavior within oomycetes and expands the current knowledge of ion perception-mediated dissemination of propagules in the rhizosphere.
Collapse
|
7
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|
8
|
Galiana E, Cohen C, Thomen P, Etienne C, Noblin X. Guidance of zoospores by potassium gradient sensing mediates aggregation. J R Soc Interface 2019; 16:20190367. [PMID: 31387479 DOI: 10.1098/rsif.2019.0367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The biflagellate zoospores of some phytopathogenic Phytophthora species spontaneously aggregate within minutes in suspension. We show here that Phytophthora parasitica zoospores can form aggregates in response to a K+ gradient with a particular geometric arrangement. Using time-lapse live imaging in macro- and microfluidic devices, we defined (i) spatio-temporal and concentration-scale changes in the gradient, correlated with (ii) the cell distribution and (iii) the metrics of zoospore motion (velocity, trajectory). In droplets, we found that K+-induced aggregates resulted from a single biphasic temporal sequence involving negative chemotaxis followed by bioconvection over a K+ gradient concentration scale [0-17 mM]. Each K+-sensing cell moved into a region in which potassium concentration is below the threshold range of 1-4 mM, resulting in swarming. Once a critical population density had been achieved, the zoospores formed a plume that migrated downward, with fluid advection in its wake and aggregate formation on the support surface. In the microfluidic device, the density of zoospores escaping potassium was similar to that achieved in droplets. We discuss possible sources of K+ gradients in the natural environment (zoospore population, microbiota, plant roots, soil particles), and implications for the events preceding inoculum formation on host plants.
Collapse
Affiliation(s)
- Eric Galiana
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Celine Cohen
- Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France
| | - Philippe Thomen
- Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France
| | | | - Xavier Noblin
- Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France
| |
Collapse
|
9
|
Hardham AR, Blackman LM. Phytophthora cinnamomi. MOLECULAR PLANT PATHOLOGY 2018; 19:260-285. [PMID: 28519717 PMCID: PMC6637996 DOI: 10.1111/mpp.12568] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/12/2023]
Abstract
Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. TAXONOMY Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. DISEASE SYMPTOMS A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1.
Collapse
Affiliation(s)
- Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| | - Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
10
|
Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Industri B, Nesme X, Bardin M, Galiana E. Tomato root microbiota and Phytophthora parasitica-associated disease. MICROBIOME 2017; 5:56. [PMID: 28511691 PMCID: PMC5434524 DOI: 10.1186/s40168-017-0273-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for the polyphagous and telluric species Phytophthora parasitica. RESULTS Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm. Colonization of the host root surface by the oomycete was associated with a shift in microbial community involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica. CONCLUSIONS The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through a physical association between the oomycete and the bacteria.
Collapse
Affiliation(s)
- Marie Larousse
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Corinne Rancurel
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Camille Syska
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Ferran Palero
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
| | | | - Benoît Industri
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Xavier Nesme
- Université de Lyon, UCBL, CNRS, INRA, Ecologie Microbienne (LEM), 69622 Villeurbanne, France
| | - Marc Bardin
- Plant Pathology, INRA, 84140 Montfavet, France
| | - Eric Galiana
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
11
|
Affiliation(s)
- Marie Larousse
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|