1
|
Prause HC, Berk D, Alves-de-Souza C, Hansen PJ, Larsen TO, Marko D, Favero GD, Place A, Varga E. How relevant are sterols in the mode of action of prymnesins? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107080. [PMID: 39276607 DOI: 10.1016/j.aquatox.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Prymnesins, produced by the haptophyte Prymnesium parvum, are considered responsible for fish kills when this species blooms. Although their toxic mechanism is not fully understood, membrane disruptive properties have been ascribed to A-type prymnesins. Currently it is suggested that pore-formation is the underlying cause of cell disruption. Here the hypothesis that A-, B-, and C-type prymnesins interact with sterols in order to create pores was tested. Prymnesin mixtures containing various analogs of the same type were applied in hemolysis and cytotoxicity assays using Atlantic salmon Salmo salar erythrocytes or rainbow trout RTgill-W1 cells. The hemolytic potency of the prymnesin types reflected their cytotoxic potential, with approximate concentrations reaching 50 % hemolysis (HC50) of 4 nM (A-type), 54 nM (C-type), and 600 nM (B-type). Variabilities in prymnesin profiles were shown to influence potency. Prymnesin-A (3 Cl) + 2 pentose + hexose was likely responsible for the strong toxicity of A-type samples. Co-incubation with cholesterol and epi-cholesterol pre-hemolysis reduced the potential by about 50 % irrespective of sterol concentration, suggesting interactions with sterols. However, this effect was not observed in RTgill-W1 toxicity. Treatment of RTgill-W1 cells with 10 µM lovastatin or 10 µM methyl-β-cyclodextrin-cholesterol modified cholesterol levels by 20-30 %. Regardless, prymnesin cytotoxicity remained unaltered in the modified cells. SPR data showed that B-type prymnesins likely bound with a single exponential decay while A-types seemed to have a more complex binding. Overall, interaction with cholesterol appeared to play only a partial role in the cytotoxic mechanism of pore-formation. It is suggested that prymnesins initially interact with cholesterol and stabilize pores through a subsequent, still unknown mechanism possibly including other membrane lipids or proteins.
Collapse
Affiliation(s)
- Hélène-Christine Prause
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna Austria
| | - Deniz Berk
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile; Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Per J Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090 Vienna, Austria
| | - Allen Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
2
|
Gaysina LA. Influence of pH on the Morphology and Cell Volume of Microscopic Algae, Widely Distributed in Terrestrial Ecosystems. PLANTS (BASEL, SWITZERLAND) 2024; 13:357. [PMID: 38337891 PMCID: PMC10857513 DOI: 10.3390/plants13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.
Collapse
Affiliation(s)
- Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450008 Ufa, Russia;
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
3
|
Jian J, Wu Z, Silva-Núñez A, Li X, Zheng X, Luo B, Liu Y, Fang X, Workman CT, Larsen TO, Hansen PJ, Sonnenschein EC. Long-read genome sequencing provides novel insights into the harmful algal bloom species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168042. [PMID: 37898203 DOI: 10.1016/j.scitotenv.2023.168042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms worldwide, which are often associated with massive fish-kills and subsequent economic losses. In here, we present nuclear and plastid genome assemblies using PacBio HiFi long reads and DNBseq short reads for the two P. parvum strains UTEX 2797 and CCMP 3037, representing producers of type A prymnesins. Our results show that the P. parvum strains have a moderate haptophyte genome size of 97.56 and 107.32 Mb. The genome assemblies present one of highest contiguous assembled contig sequences to date consisting of 463 and 362 contigs with a contig N50 of 596.99 kb and 968.39 kb for strain UTEX 2797 and CCMP 3037, respectively. The assembled contigs of UTEX 2797 and CCMP 3037 were anchored to 34 scaffolds, with a scaffold N50 of 5.35 Mb and 3.61 Mb, respectively, accounting for 93.2 % and 97.9 % of the total length. Each plastid genome comprises a circular contig. A total of 20,578 and 19,426 protein-coding genes were annotated for UTEX 2797 and CCMP 3037. The expanded gene family analysis showed that starch and sucrose metabolism, sulfur metabolism, energy metabolism and ABC transporters are involved in the evolution of P. parvum. Polyketide synthase (PKS) genes responsible for the production of secondary metabolites such as prymnesins displayed different expression patterns under nutrient limitation. Overlap with repeats and horizontal gene transfer may be two contributing factors to the high number of PKS genes found in this species. The two high quality P. parvum genomes will serve as valuable resources for ecological, genetic, and toxicological studies of haptophytes that can be used to monitor and potentially manage harmful blooms of ichthyotoxic P. parvum in the future.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Arisbe Silva-Núñez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| | - Xiaohui Li
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Bei Luo
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yun Liu
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Department of Biosciences, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
4
|
Sobieraj J, Metelski D. Insights into Toxic Prymnesium parvum Blooms as a Cause of the Ecological Disaster on the Odra River. Toxins (Basel) 2023; 15:403. [PMID: 37368703 PMCID: PMC10302719 DOI: 10.3390/toxins15060403] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In 2022, Poland and Germany experienced a prolonged and extensive mass fish kill in the Odra River. During the period from the end of July to the beginning of September 2022, a high level of incidental disease and mortality was observed in various fish species (dozens of different species were found dead). The fish mortality affected five Polish provinces (Silesia, Opole, Lower Silesia, Lubuskie, and Western Pomerania) and involved reservoir systems covering most of the river (the Odra River is 854 km long, of which 742 km are in Poland). Fatal cases were investigated using toxicological, anatomopathological, and histopathological tests. Water samples were collected to determine nutrient status in the water column, phytoplankton biomass, and community composition. High nutrient concentrations indicated high phytoplankton productivity, with favorable conditions for golden algal blooms. The harmful toxins (prymnesins secreted by Prymnesium parvum habitats) had not been found in Poland before, but it was only a matter of time, especially in the Odra River, whose waters are permanently saline and still used for navigation. The observed fish mortality resulted in a 50% decrease in the fish population in the river and affected mainly cold-blooded species. Histopathological examinations of fish showed acute damage to the most perfused organs (gills, spleen, kidneys). The disruption to hematopoietic processes and damage to the gills were due to the action of hemolytic toxins (prymnesins). An evaluation of the collected hydrological, meteorological, biological, and physico-chemical data on the observed spatio-temporal course of the catastrophe, as well as the detection of three compounds from the group of B-type prymnesins in the analyzed material (the presence of prymnesins was confirmed using an analysis of the fragmentation spectrum and the accurate tandem mass spectrometry (MS/MS) measurement, in combination with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), allowed the formulation and subsequent testing of the hypothesis for a direct link between the observed fish mortality and the presence of prymnesins in the Odra River. This article systematizes what is known about the causes of the fish kill in the Odra River in 2022, based on official government reports (one Polish and one German) and the EU technical report by the Joint Research Centre. A review and critical analysis of government findings (Polish and German) on this disaster were conducted in the context of what is known to date about similar cases of mass fish kills.
Collapse
Affiliation(s)
- Janusz Sobieraj
- Department of Building Engineering, Warsaw University of Technology, 00-637 Warsaw, Poland;
| | - Dominik Metelski
- Research Group SEJ-609 “AMIKO”, Faculty of Economics and Management Sciences, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|