1
|
Lu J, Meng J, Wu G, Wei W, Xie H, Liu Y. Th1 cells reduce the osteoblast-like phenotype in valvular interstitial cells by inhibiting NLRP3 inflammasome activation in macrophages. Mol Med 2024; 30:110. [PMID: 39080527 PMCID: PMC11287975 DOI: 10.1186/s10020-024-00882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND AIMS Inflammation is initiates the propagation phase of aortic valve calcification. The activation of NLRP3 signaling in macrophages plays a crucial role in the progression of calcific aortic valve stenosis (CAVS). IFN-γ regulates NLRP3 activity in macrophages. This study aimed to explore the mechanism of IFN-γ regulation and its impact on CAVS progression and valve interstitial cell transdifferentiation. METHODS AND RESULTS The number of Th1 cells and the expression of IFN-γ and STAT1 in the aortic valve, spleen and peripheral blood increased significantly as CAVS progressed. To explore the mechanisms underlying the roles of Th1 cells and IFN-γ, we treated CAVS mice with IFN-γ-AAV9 or an anti-IFN-γ neutralizing antibody. While IFN-γ promoted aortic valve calcification and dysfunction, it significantly decreased NLRP3 signaling in splenic macrophages and Ly6C+ monocytes. In vitro coculture showed that Th1 cells inhibited NLPR3 activation in ox-LDL-treated macrophages through the IFN-γR1/IFN-γR2-STAT1 pathway. Compared with untreated medium, conditioned medium from Th1-treated bone marrow-derived macrophages reduced the osteogenic calcification of valvular interstitial cells. CONCLUSION Inhibition of the NLRP3 inflammasome by Th1 cells protects against valvular interstitial cell calcification as a negative feedback mechanism of adaptive immunity toward innate immunity. This study provides a precision medicine strategy for CAVS based on the targeting of anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Jing Lu
- The First Clinical Medical College, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 22, Nanning, 530021, P.R. China
| | - Jiaming Meng
- Department of Cardiology, Liuzhou People's Hospital, Guangxi, Zhuang Autonomous Region, Wenchang Road 8, Liuzhou, 545000, P.R. China
| | - Gang Wu
- Department of Cardiology, Liuzhou People's Hospital, Guangxi, Zhuang Autonomous Region, Wenchang Road 8, Liuzhou, 545000, P.R. China
| | - Wulong Wei
- Department of Cardiology, Liuzhou People's Hospital, Guangxi, Zhuang Autonomous Region, Wenchang Road 8, Liuzhou, 545000, P.R. China
| | - Huabao Xie
- The First Clinical Medical College, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 22, Nanning, 530021, P.R. China.
| | - Yanli Liu
- Department of Cardiology, Liuzhou People's Hospital, Guangxi, Zhuang Autonomous Region, Wenchang Road 8, Liuzhou, 545000, P.R. China.
| |
Collapse
|
2
|
Gong S, Xiang K, Chen L, Zhuang H, Song Y, Chen J. Integrated bioinformatics analysis identified leucine rich repeat containing 15 and secreted phosphoprotein 1 as hub genes for calcific aortic valve disease and osteoarthritis. IET Syst Biol 2024; 18:77-91. [PMID: 38566328 PMCID: PMC11179158 DOI: 10.1049/syb2.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Calcific aortic valve disease (CAVD) and osteoarthritis (OA) are common diseases in the ageing population and share similar pathogenesis, especially in inflammation. This study aims to discover potential diagnostic and therapeutic targets in patients with CAVD and OA. Three CAVD datasets and one OA dataset were obtained from the Gene Expression Omnibus database. We used bioinformatics methods to search for key genes and immune infiltration, and established a ceRNA network. Immunohistochemical staining was performed to verify the expression of candidate genes in human and mice aortic valve tissues. Two key genes obtained, leucine rich repeat containing 15 (LRRC15) and secreted phosphoprotein 1 (SPP1), were further screened using machine learning and verified in human and mice aortic valve tissues. Compared to normal tissues, the infiltration of immune cells in CAVD tissues was significantly higher, and the expressions of LRRC15 and SPP1 were positively correlated with immune cells infiltration. Moreover, the ceRNA network showed extensive regulatory interactions based on LRRC15 and SPP1. The authors' findings identified LRRC15 and SPP1 as hub genes in immunological mechanisms during CAVD and OA initiation and progression, as well as potential targets for drug development.
Collapse
Affiliation(s)
- Shuji Gong
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Xiang
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Le Chen
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Huanwei Zhuang
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yaning Song
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jinlan Chen
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Lyu T, Liu Y, Li B, Xu R, Guo J, Zhu D. Single-cell transcriptomics reveals cellular heterogeneity and macrophage-to-mesenchymal transition in bicuspid calcific aortic valve disease. Biol Direct 2023; 18:35. [PMID: 37391760 PMCID: PMC10311753 DOI: 10.1186/s13062-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) is the most prevalent congenital valvular heart defect, and around 50% of severe isolated calcific aortic valve disease (CAVD) cases are associated with BAV. Although previous studies have demonstrated the cellular heterogeneity of aortic valves, the cellular composition of specific BAV at the single-cell level remains unclear. METHODS Four BAV specimens from aortic valve stenosis patients were collected to conduct single-cell RNA sequencing (scRNA-seq). In vitro experiments were performed to further validate some phenotypes. RESULTS The heterogeneity of stromal cells and immune cells were revealed based on comprehensive analysis. We identified twelve subclusters of VICs, four subclusters of ECs, six subclusters of lymphocytes, six subclusters of monocytic cells and one cluster of mast cells. Based on the detailed cell atlas, we constructed a cellular interaction network. Several novel cell types were identified, and we provided evidence for established mechanisms on valvular calcification. Furthermore, when exploring the monocytic lineage, a special population, macrophage derived stromal cells (MDSC), was revealed to be originated from MRC1+ (CD206) macrophages (Macrophage-to-Mesenchymal transition, MMT). FOXC1 and PI3K-AKT pathway were identified as potential regulators of MMT through scRNA analysis and in vitro experiments. CONCLUSIONS With an unbiased scRNA-seq approach, we identified a full spectrum of cell populations and a cellular interaction network in stenotic BAVs, which may provide insights for further research on CAVD. Notably, the exploration on mechanism of MMT might provide potential therapeutic targets for bicuspid CAVD.
Collapse
Affiliation(s)
- Tao Lyu
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binglin Li
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Xu
- Quebec Heart and Lung Institute, Laval University, Québec, Canada
| | - Jianghong Guo
- The Rugao People's Hospital, Teaching Hospital of Nantong University, Rugao, China
| | - Dan Zhu
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Skenteris NT, Hemme E, Delfos L, Karadimou G, Karlöf E, Lengquist M, Kronqvist M, Zhang X, Maegdefessel L, Schurgers LJ, Arnardottir H, Biessen EAL, Bot I, Matic L. Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification. Vascul Pharmacol 2023; 150:107167. [PMID: 36958707 DOI: 10.1016/j.vph.2023.107167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Calcification, a key feature of advanced human atherosclerosis, is positively associated with vascular disease burden and adverse events. We showed that macrocalcification can be a stabilizing factor for carotid plaque molecular biology, due to inverse association with immune processes. Mast cells (MCs) are important contributors to plaque instability, but their relationship with macrocalcification is unexplored. With a hypothesis that MC activation negatively associates with carotid plaque macrocalcification, we aimed to investigate the link between MCs and carotid plaque vulnerability, and study MC role in plaque calcification via smooth muscle cells (SMCs). METHODS Pre-operative computed tomography angiographies of patients (n = 40) undergoing surgery for carotid stenosis were used to characterize plaque morphology. Plaque microarrays (n = 40 and n = 126) were used for bioinformatic deconvolution of immune cell populations. Tissue microarrays (n = 103) were used to histologically validate the contribution of activated and resting MCs in plaques. RESULTS Activated MCs and their typical markers were negatively correlated with macrocalcification. The ratio of activated vs. resting MCs was increased in low-calcified plaques from symptomatic patients. There was no modulating effect of medication on MC ratios. In vitro experiments showed that SMC calcification attenuated MC activation, while both active and resting MCs stimulated SMC calcification and induced dedifferentiation towards a pro-inflammatory-, osteochondrocyte-like phenotype, without modulating their migro-proliferative function. CONCLUSIONS Integrative analyses from human plaques showed that MC activation is inversely associated with macrocalcification and positively with parameters of plaque vulnerability. Mechanistically, MCs induce SMC osteogenic reprograming, while matrix calcification in turn attenuates MC activation, offering new therapeutic avenues for exploration.
Collapse
Affiliation(s)
- Nikolaos T Skenteris
- Cardiovascular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands
| | - Esmeralda Hemme
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Lucie Delfos
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Glykeria Karadimou
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kronqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Xiang Zhang
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Technical University Munich, Klinikum rechts der Isar, Department for Vascular and Endovascular Surgery, Germany
| | - Leon J Schurgers
- Department of Biochemistry and CARIM, School for Cardiovascular Diseases, Maastricht University, Netherlands; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Hildur Arnardottir
- Cardiovascular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Curini L, Alushi B, Christopher MR, Baldi S, Di Gloria L, Stefano P, Laganà A, Iannone L, Grubitzsch H, Landmesser U, Ramazzotti M, Niccolai E, Lauten A, Amedei A. The first taxonomic and functional characterization of human CAVD-associated microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:36-48. [PMID: 36789351 PMCID: PMC9896411 DOI: 10.15698/mic2023.02.791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Introduction Calcific aortic valve disease (CAVD) is the most common heart valve disorder, defined by a remodeling multistep process: namely, valve fibrosis with its area narrowing, impaired blood flow, and final calcification phase. Nowadays, the only treatment is the surgical valve replacement. As for other cardiovascular diseases, growing evidence suggest an active role of the immune system in the calcification process that could be modulated by the microbiota. To address this point, we aimed to investigate and characterize, for the first time, the presence of a valve microbiota and associated immune response in human CAVD. Method Calcified aortic valve (CAV) samples from twenty patients (11 from Germany and 9 from Italy) with diagnosis of severe symptomatic CAVD were used to assess the presence of infiltrating T cells, by cloning approach, and to characterize the valve microbiota, by 16S rRNA gene sequencing (NGS). Results We documented the presence of infiltrating T lymphocytes, especially the T helper subset, in CAV samples. Moreover, we found a tissue-associated microbiota in freshly collected CAV samples, which was significantly different in Italian and German patients, suggesting potential correlation with other cardiovascular risk factors. Conclusion The presence of microbiota in inflamed CAV samples represents the right trigger point to explain the valve calcification process, encouraging further studies to explore the potential link between bacteria and adaptive immune response and to define the critical role of local microbiota-immunity axis on CAVD development.
Collapse
Affiliation(s)
- Lavinia Curini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Brunilda Alushi
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK); Department of Interventional Cardiology, Klinik Vincentinum Augsburg, Germany
| | - Mary Roxana Christopher
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK)
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | | | - Anna Laganà
- Cardiac Surgery, Careggi University Hospital, 50134 Florence, Italy
| | - Luisa Iannone
- Cardiac Surgery, Careggi University Hospital, 50134 Florence, Italy
| | - Herko Grubitzsch
- Berlin Institute of Health; Department of Cardiology, German Heart Centre Berlin (DHZB)
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK); Berlin Institute of Health
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Alexander Lauten
- Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK); Department of Interventional Cardiology, Klinik Vincentinum Augsburg, Germany
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy.
,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50139 Florence, Italy.
,* Corresponding Author: Amedeo Amedei, Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; E-mail:
| |
Collapse
|
6
|
A Straightforward Cytometry-Based Protocol for the Comprehensive Analysis of the Inflammatory Valve Infiltrate in Aortic Stenosis. Int J Mol Sci 2023; 24:ijms24032194. [PMID: 36768515 PMCID: PMC9916774 DOI: 10.3390/ijms24032194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Aortic stenosis (AS) is a frequent cardiac disease in old individuals, characterized by valvular calcification, fibrosis, and inflammation. Recent studies suggest that AS is an active inflammatory atherosclerotic-like process. Particularly, it has been suggested that several immune cell types, present in the valve infiltrate, contribute to its degeneration and to the progression toward stenosis. Furthermore, the infiltrating T cell subpopulations mainly consist of oligoclonal expansions, probably specific for persistent antigens. Thus, the characterization of the cells implicated in the aortic valve calcification and the analysis of the antigens to which those cells respond to is of utmost importance to develop new therapies alternative to the replacement of the valve itself. However, calcified aortic valves have been only studied so far by histological and immunohistochemical methods, unable to render an in-depth phenotypical and functional cell profiling. Here we present, for the first time, a simple and efficient cytometry-based protocol that allows the identification and quantification of infiltrating inflammatory leukocytes in aortic valve explants. Our cytometry protocol saves time and facilitates the simultaneous analysis of numerous surface and intracellular cell markers and may well be also applied to the study of other cardiac diseases with an inflammatory component.
Collapse
|
7
|
Xiong T, Chen Y, Han S, Zhang TC, Pu L, Fan YX, Fan WC, Zhang YY, Li YX. Development and analysis of a comprehensive diagnostic model for aortic valve calcification using machine learning methods and artificial neural networks. Front Cardiovasc Med 2022; 9:913776. [PMID: 36531717 PMCID: PMC9751025 DOI: 10.3389/fcvm.2022.913776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Although advanced surgical and interventional treatments are available for advanced aortic valve calcification (AVC) with severe clinical symptoms, early diagnosis, and intervention is critical in order to reduce calcification progression and improve patient prognosis. The aim of this study was to develop therapeutic targets for improving outcomes for patients with AVC. MATERIALS AND METHODS We used the public expression profiles of individuals with AVC (GSE12644 and GSE51472) to identify potential diagnostic markers. First, the R software was used to identify differentially expressed genes (DEGs) and perform functional enrichment analysis. Next, we combined bioinformatics techniques with machine learning methodologies such as random forest algorithms and support vector machines to screen for and identify diagnostic markers of AVC. Subsequently, artificial neural networks were employed to filter and model the diagnostic characteristics for AVC incidence. The diagnostic values were determined using the receiver operating characteristic (ROC) curves. Furthermore, CIBERSORT immune infiltration analysis was used to determine the expression of different immune cells in the AVC. Finally, the CMap database was used to predict candidate small compounds as prospective AVC therapeutics. RESULTS A total of 78 strong DEGs were identified. The leukocyte migration and pid integrin 1 pathways were highly enriched for AVC-specific DEGs. CXCL16, GPM6A, BEX2, S100A9, and SCARA5 genes were all regarded diagnostic markers for AVC. The model was effectively constructed using a molecular diagnostic score system with significant diagnostic value (AUC = 0.987) and verified using the independent dataset GSE83453 (AUC = 0.986). Immune cell infiltration research revealed that B cell naive, B cell memory, plasma cells, NK cell activated, monocytes, and macrophage M0 may be involved in the development of AVC. Additionally, all diagnostic characteristics may have varying degrees of correlation with immune cells. The most promising small molecule medicines for reversing AVC gene expression are Doxazosin and Terfenadine. CONCLUSION It was identified that CXCL16, GPM6A, BEX2, S100A9, and SCARA5 are potentially beneficial for diagnosing and treating AVC. A diagnostic model was constructed based on a molecular prognostic score system using machine learning. The aforementioned immune cell infiltration may have a significant influence on the development and incidence of AVC.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Chen
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shen Han
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tian-Chen Zhang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Pu
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Xin Fan
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei-Chen Fan
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya-Yong Zhang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya-Xiong Li
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers. Sci Rep 2022; 12:20400. [PMID: 36437309 PMCID: PMC9701688 DOI: 10.1038/s41598-022-24130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement. We assessed the frequency of CHIP by DNA sequencing in the blood cells of 168 CAVD patients undergoing surgical aortic valve replacement or transcatheter aortic valve implantation and investigated the effect of CHIP on 12 months survival. To investigate the pathological process of CAVD in CHIP carriers, we compared by RNA-Seq the aortic valve transcriptome of patients with or without CHIP and non-calcific controls. Transcriptomics data were validated by immunohistochemistry on formalin-embedded aortic valve samples. We confirm that CHIP is common in CAVD patients and that its presence is associated with higher mortality following valve replacement. Additionally, we show, for the first time, that CHIP is often accompanied by a broad cellular and humoral immune response in the explanted aortic valve. Our results suggest that an excessive inflammatory response in CHIP patients may be related to the onset and/or progression of CAVD and point to B cells as possible new effectors of CHIP-induced inflammation.
Collapse
|
9
|
Wu LD, Xiao F, Sun JY, Li F, Chen YJ, Chen JY, Zhang J, Qian LL, Wang RX. Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular disease: A network based meta-analysis. Front Genet 2022; 13:971808. [PMID: 36212153 PMCID: PMC9532575 DOI: 10.3389/fgene.2022.971808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: As the most prevalent valvular heart disease, calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis and insufficiency. We aim to illustrate the roles of immune related genes (IRGs) and immune cells infiltration in the occurrence of CAVD.Methods: Integrative meta-analysis of expression data (INMEX) was adopted to incorporate multiple gene expression datasets of CAVD from Gene Expression Omnibus (GEO) database. By matching the differentially expressed genes (DEGs) to IRGs from “ImmPort” database, differentially expressed immune related genes (DEIRGs) were screened out. We performed enrichment analysis and found that DEIRGs in CAVD were closely related to inflammatory response and immune cells infiltration. We also constructed protein–protein interaction (PPI) network of DEIRGs and identified 5 key DEIRGs in CAVD according to the mixed character calculation results. Moreover, CIBERSORT algorithm was used to explore the profile of infiltrating immune cells in CAVD. Based on Spearman’s rank correlation method, correlation analysis between key DEIRGs and infiltrating immune cells was performed.Results: A total of 220 DEIRGs were identified and the enrichment analysis of DEIRGs showed that they were significantly enriched in inflammatory responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as key DEIRGs. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was elevated in calcified aortic valves tissue samples, as well as reduced infiltration of macrophages M2 and NK cells activated. Furthermore, key DEIRGs identified in the present study, including PTPN11, GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of various immune cells.Conclusion: This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key DEIRGs associated with immune cells infiltration, which play a pivotal role in pathogenesis of CAVD.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Feng Xiao
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yu-Jia Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jia-Yi Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jie Zhang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Ru-Xing Wang,
| |
Collapse
|
10
|
Monocytes augment inflammatory responses in human aortic valve interstitial cells via β 2-integrin/ICAM-1-mediated signaling. Inflamm Res 2022; 71:681-694. [PMID: 35411432 PMCID: PMC10156628 DOI: 10.1007/s00011-022-01566-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study. METHODS Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against β2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied. RESULTS AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte β2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing β2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture. CONCLUSION Monocyte β2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.
Collapse
|
11
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Cramer M, Chang J, Li H, Serrero A, El-Kurdi M, Cox M, Schoen FJ, Badylak SF. Tissue response, macrophage phenotype, and intrinsic calcification induced by cardiovascular biomaterials: Can clinical regenerative potential be predicted in a rat subcutaneous implant model? J Biomed Mater Res A 2022; 110:245-256. [PMID: 34323360 PMCID: PMC8678182 DOI: 10.1002/jbm.a.37280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The host immune response to an implanted biomaterial, particularly the phenotype of infiltrating macrophages, is a key determinant of biocompatibility and downstream remodeling outcome. The present study used a subcutaneous rat model to compare the tissue response, including macrophage phenotype, remodeling potential, and calcification propensity of a biologic scaffold composed of glutaraldehyde-fixed bovine pericardium (GF-BP), the standard of care for heart valve replacement, with those of an electrospun polycarbonate-based supramolecular polymer scaffold (ePC-UPy), urinary bladder extracellular matrix (UBM-ECM), and a polypropylene mesh (PP). The ePC-UPy and UBM-ECM materials induced infiltration of mononuclear cells throughout the thickness of the scaffold within 2 days and neovascularization at 14 days. GF-BP and PP elicited a balance of pro-inflammatory (M1-like) and anti-inflammatory (M2-like) macrophages, while UBM-ECM and ePC-UPy supported a dominant M2-like macrophage phenotype at all timepoints. Relative to GF-BP, ePC-UPy was markedly less susceptible to calcification for the 180 day duration of the study. UBM-ECM induced an archetypical constructive remodeling response dominated by M2-like macrophages and the PP caused a typical foreign body reaction dominated by M1-like macrophages. The results of this study highlight the divergent macrophage and host remodeling response to biomaterials with distinct physical and chemical properties and suggest that the rat subcutaneous implantation model can be used to predict in vivo biocompatibility and regenerative potential for clinical application of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA, 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | - Jordan Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | - Hongshuai Li
- Musculoskeletal Growth and Regeneration Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, 450 Technology Drive, Suite 206, Pittsburgh, PA 15219, USA
| | - Aurelie Serrero
- Xeltis BV, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Frederick J. Schoen
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA, 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Ike Y, Shimizu T, Ogawa M, Yamaguchi T, Suzuki K, Takayama Y, Makiguchi T, Iwashina M, Yokoo S. Ossifying fibrous epulis as an IgG4-related disease of the oral cavity: a case report and literature review. BMC Oral Health 2022; 22:4. [PMID: 35012519 PMCID: PMC8744345 DOI: 10.1186/s12903-022-02041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fibrous sclerosing tumours and hypertrophic lesions in IgG4-related disease (IgG4-RD) are formed in various organs throughout the body, but disease in the oral region is not included among individual organ manifestations. We report a case of ossifying fibrous epulis that developed from the gingiva, as an instance of IgG4-RD.
Case presentation A 60-year-old Japanese man visited the Department of Oral and Maxillofacial Surgery, Gunma University Hospital, with a chief complaint of swelling of the left mandibular gingiva. A 65 mm × 45 mm pedunculated tumour was observed. The bilateral submandibular lymph nodes were enlarged. The intraoperative pathological diagnosis of the enlarged cervical lymph nodes was inflammation. Based on this diagnosis, surgical excision was limited to the intraoral tumour, which was subsequently pathologically diagnosed as ossifying fibrous epulis. Histopathologically, the ossifying fibrous epulis exhibited increased levels of fibroblasts and collagen fibres, as well as infiltration by numerous plasma cells. The IgG4/IgG cell ratio was > 40%. Serologic analysis revealed hyper-IgG4-emia (> 135 mg/dL). The patient met the comprehensive clinical diagnosis criteria and the American College of Rheumatology and European League Against Rheumatism classification criteria for IgG4-RD. Based on these criteria, we diagnosed the ossifying fibrous epulis in our patient as an IgG4-related disease. A pathological diagnosis of IgG4-related lymphadenopathy was established for the cervical lymph nodes. Concomitant clinical findings were consistent with type II IgG4-related lymphadenopathy. Conclusions A routine serological test may be needed in cases with marked fibrous changes (such as epulis) in the oral cavity and plasma cells, accompanied by tumour formation, to determine the possibility of individual-organ manifestations of IgG4-related disease.
Collapse
Affiliation(s)
- Yoshiko Ike
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Takahiro Shimizu
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Masaru Ogawa
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan.
| | - Takahiro Yamaguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Keisuke Suzuki
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Yu Takayama
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Takaya Makiguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Masanori Iwashina
- Clinical Department of Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan.
| |
Collapse
|
14
|
Zhou Q, Cao H, Hang X, Liang H, Zhu M, Fan Y, Shi J, Dong N, He X. Midkine Prevents Calcification of Aortic Valve Interstitial Cells via Intercellular Crosstalk. Front Cell Dev Biol 2022; 9:794058. [PMID: 34977035 PMCID: PMC8714929 DOI: 10.3389/fcell.2021.794058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Calcified aortic valve disease (CAVD), the most common valvular heart disease, lacks pharmaceutical treatment options because its pathogenesis remains unclear. This disease with a complex macroenvironment characterizes notable cellular heterogeneity. Therefore, a comprehensive understanding of cellular diversity and cell-to-cell communication are essential for elucidating the mechanisms driving CAVD progression and developing therapeutic targets. In this study, we used single-cell RNA sequencing (scRNA-seq) analysis to describe the comprehensive transcriptomic landscape and cell-to-cell interactions. The transitional valvular endothelial cells (tVECs), an intermediate state during the endothelial-to-mesenchymal transition (EndMT), could be a target to interfere with EndMT progression. Moreover, matrix valvular interstitial cells (mVICs) with high expression of midkine (MDK) interact with activated valvular interstitial cells (aVICs) and compliment-activated valvular interstitial cells (cVICs) through the MK pathway. Then, MDK inhibited calcification of VICs that calcification was validated by Alizarin Red S staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting assays in vitro. Therefore, we speculated that mVICs secreted MDK to prevent VICs’ calcification. Together, these findings delineate the aortic valve cells’ heterogeneity, underlining the importance of intercellular cross talk and MDK, which may offer a potential therapeutic strategy as a novel inhibitor of CAVD.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Hang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Huamin Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Miaomiao Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yixian Fan
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Bartoli-Leonard F, Zimmer J, Aikawa E. Innate and adaptive immunity: the understudied driving force of heart valve disease. Cardiovasc Res 2021; 117:2506-2524. [PMID: 34432007 PMCID: PMC8783388 DOI: 10.1093/cvr/cvab273] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD), and its clinical manifestation that is calcific aortic valve stenosis, is the leading cause for valve disease within the developed world, with no current pharmacological treatment available to delay or halt its progression. Characterized by progressive fibrotic remodelling and subsequent pathogenic mineralization of the valve leaflets, valve disease affects 2.5% of the western population, thus highlighting the need for urgent intervention. Whilst the pathobiology of valve disease is complex, involving genetic factors, lipid infiltration, and oxidative damage, the immune system is now being accepted to play a crucial role in pathogenesis and disease continuation. No longer considered a passive degenerative disease, CAVD is understood to be an active inflammatory process, involving a multitude of pro-inflammatory mechanisms, with both the adaptive and the innate immune system underpinning these complex mechanisms. Within the valve, 15% of cells evolve from haemopoietic origin, and this number greatly expands following inflammation, as macrophages, T lymphocytes, B lymphocytes, and innate immune cells infiltrate the valve, promoting further inflammation. Whether chronic immune infiltration or pathogenic clonal expansion of immune cells within the valve or a combination of the two is responsible for disease progression, it is clear that greater understanding of the immune systems role in valve disease is required to inform future treatment strategies for control of CAVD development.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Zimmer
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Šteiner I, Timbilla S, Stejskal V. Calcific aortic valve stenosis - comparison of inflammatory lesions in the left, right, and non-coronary cusp. Pathol Res Pract 2021; 227:153636. [PMID: 34601399 DOI: 10.1016/j.prp.2021.153636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Calcific aortic valve stenosis (CAVS) is the most frequent acquired heart valve disease in the developed world and the most common cause of heart valve replacement, particularly in older adults. It is considered a form of atherosclerosis and, like the latter, of inflammatory pathogenesis. METHODS The incidence and severity of features of chronic inflammation (vascularization, cellular infiltration, bone metaplasia, calcification) in surgically resected semilunar cusps of a tricuspid aortic valve in 100 patients with CAVS were assessed. A novel method of placing metal clips during the operation by the surgeon to distinguish individual cusps was implemented, allowing the pathologist to associate lesions to particular cusps. The findings were evaluated statistically. RESULTS The median age of the cohort was 73 years. There was a male predominance of 3.5:1. Almost all the patients had a medical history of risk factors - hypertension (92x), diabetes (51x), and dyslipidaemia (85x). Statistical evaluation of the pathological findings showed that the left cusp was least affected by calcification, vascularization, and chronic inflammation, compared to both the right and non-coronary cusps. On the other hand, the left cusp was the most common site of bone metaplasia. The reason for these differences is unknown. We speculate about mechanobiological effects of abnormal hemodynamics. CONCLUSIONS Chronic inflammation plays a significant role in pathogenesis of CAVS. Distinguishing the resected aortic valve cusps by placing metal clips is a useful method to study potential differences (topography) in the pathology of individual cusps.
Collapse
Affiliation(s)
- Ivo Šteiner
- The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital, Hradec Králové, Czech Republic
| | - Salifu Timbilla
- Department of Cardiosurgery, Charles University Faculty of Medicine and Faculty Hospital, Hradec Králové, Czech Republic
| | - Václav Stejskal
- The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital, Hradec Králové, Czech Republic.
| |
Collapse
|
17
|
Jiang Y, Chen J, Wei F, Wang Y, Chen S, Li G, Dong N. Micromechanical force promotes aortic valvular calcification. J Thorac Cardiovasc Surg 2021; 164:e313-e329. [PMID: 34507817 DOI: 10.1016/j.jtcvs.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Calcified aortic valvular disease is known as an inflammation-related process related to force. The purpose of this study was to determine whether micromechanical force could induce valve calcification of porcine valvular interstitial cells and to examine the role of integrin αvβ3 in valvular calcification by using a novel method: magnetic twisting cytometry. METHODS Porcine valvular interstitial cells were cultured in vitro, and micromechanical force was applied to porcine valvular interstitial cells using magnetic twisting cytometry. Changes in calcification-related factors osteopontin and RUNX2 were detected. By using the calcification medium, the optimal magnetic twisting cytometry parameters for inducing valvular interstitial cell calcification were determined, and a magnetic twisting cytometry calcification promotion model was established. The role of αvβ3 in calcification was studied by using αvβ3 antagonists to block the function of αvβ3. RESULTS Reverse transcription polymerase chain reaction assays showed that the expression of osteopontin was enhanced 30 minutes after 25G-1Hz 5 minutes of stimulation. Western blotting assays showed that the expression of osteopontin and RUNX2 was upregulated 24 hours after 25G-1Hz 5 minutes of stimulation. The optimal magnetic twisting cytometry parameter for inducing porcine valvular interstitial cell calcification was 25G-2Hz for 10 minutes. The expression of osteopontin and RUNX2 decreased significantly after the addition of αvβ3 antagonist. Clinically, patients with bicuspid aortic valves had high expression of RUNX2 and β3 in the aortic valve, and β3 significantly correlated with RUNX2. CONCLUSIONS By using magnetic twisting cytometry, we established a porcine valvular interstitial cell calcification model by micromechanical force stimulation and obtained the optimal parameters. Integrin αvβ3 plays a key role in the aortic valve calcification process.
Collapse
Affiliation(s)
- Yefan Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjie Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuxiang Wei
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Abstract
Atherosclerosis is the leading cause of acute cardiovascular events, and vascular calcification is an important pathological phenomenon in atherosclerosis. Recently, many studies have shown that immune cells are closely associated with the development of atherosclerosis and calcification, but there are many conflicting viewpoints because of immune system complications, such as the pro-atherosclerotic and atheroprotective effects of regulatory B cells (Bregs), T helper type 2 (Th2) cells and T helper type 17 (Th17) cells. In this review, we summarize the studies on the roles of immune cells, especially lymphocytes and macrophages, in atherosclerotic calcification. Furthermore, we prepared graphs showing the relationship between T cells, B cells and macrophages and atherosclerotic calcification. Finally, we highlight some potential issues that are closely associated with the function of immune cells in atherosclerotic calcification. Based on current research results, this review summarizes the relationship between immune cells and atherosclerotic calcification, and it will be beneficial to understand the relationship of immune cells and atherosclerotic calcification.
Collapse
Affiliation(s)
- Jingsong Cao
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
19
|
LncRNA AFAP1-AS1 promotes M1 polarization of macrophages and osteogenic differentiation of valve interstitial cells. J Physiol Biochem 2021; 77:461-468. [PMID: 34043161 DOI: 10.1007/s13105-021-00821-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Little is known about the biological functions and underlying mechanisms of long non-coding RNA AFAP1-AS1 in degenerative calcified aortic valve disease (DCAVD). This study aims to explore whether AFAP1-AS1 regulates macrophage polarization in aortic valve calcification. Macrophage polarization and AFAP1-AS1 expression were detected in normal and calcified aortic valves of DCAVD patients. To explore the effect of AFAP1-AS1 on macrophage polarization, gain and loss of function were performed in THP-1 cells, and the percentage of M1 and M2 and the expressions of M1 and M2 markers were analyzed. Meanwhile, osteogenic differentiation was examined in valve interstitial cells (VICs). Compared with normal valves, there were more M1, less M2, and high AFAP1-AS1 expressions in calcified aortic valves, which may indicate a relationship between AFAP1-AS1 and macrophage polarization. AFAP1-AS1 overexpression promoted M1 polarization in lipopolysaccharide (LPS) and interferon gamma (IFN-γ)-treated THP-1 cells but inhibited M2 polarization, as well as augmented VIC osteogenic differentiation. On the contrary, the silence of AFAP1-AS1 could induce macrophage to M2-type and inhibit VIC osteogenic differentiation. These results elucidate that AFAP1-AS1 can promote M1 macrophages polarization to aggravate VIC osteogenic differentiation, playing a role in aortic valve calcification.
Collapse
|
20
|
Wang D, Xiong T, Yu W, Liu B, Wang J, Xiao K, She Q. Predicting the Key Genes Involved in Aortic Valve Calcification Through Integrated Bioinformatics Analysis. Front Genet 2021; 12:650213. [PMID: 34046056 PMCID: PMC8144713 DOI: 10.3389/fgene.2021.650213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Valvular heart disease is obtaining growing attention in the cardiovascular field and it is believed that calcific aortic valve disease (CAVD) is the most common valvular heart disease (VHD) in the world. CAVD does not have a fully effective treatment to delay its progression and the specific molecular mechanism of aortic valve calcification remains unclear. Materials and Methods: We obtained the gene expression datasets GSE12644 and GSE51472 from the public comprehensive free database GEO. Then, a series of bioinformatics methods, such as GO and KEGG analysis, STING online tool, Cytoscape software, were used to identify differentially expressed genes in CAVD and healthy controls, construct a PPI network, and then identify key genes. In addition, immune infiltration analysis was used via CIBERSORT to observe the expression of various immune cells in CAVD. Results: A total of 144 differential expression genes were identified in the CAVD samples in comparison with the control samples, including 49 up-regulated genes and 95 down-regulated genes. GO analysis of DEGs were most observably enriched in the immune response, signal transduction, inflammatory response, proteolysis, innate immune response, and apoptotic process. The KEGG analysis revealed that the enrichment of DEGs in CAVD were remarkably observed in the chemokine signaling pathway, cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. Chemokines CXCL13, CCL19, CCL8, CXCL8, CXCL16, MMP9, CCL18, CXCL5, VCAM1, and PPBP were identified as the hub genes of CAVD. It was macrophages that accounted for the maximal proportion among these immune cells. The expression of macrophages M0, B cells memory, and Plasma cells were higher in the CAVD valves than in healthy valves, however, the expression of B cells naïve, NK cells activated, and macrophages M2 were lower. Conclusion: We detected that chemokines CXCL13, CXCL8, CXCL16, and CXCL5, and CCL19, CCL8, and CCL18 are the most important markers of aortic valve disease. The regulatory macrophages M0, plasma cells, B cells memory, B cells naïve, NK cells activated, and macrophages M2 are probably related to the occurrence and the advancement of aortic valve stenosis. These identified chemokines and these immune cells may interact with a subtle adjustment relationship in the development of calcification in CAVD.
Collapse
Affiliation(s)
- Dinghui Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlong Yu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaihu Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Shakir A, Wheeler Y, Krishnaswamy G. The enigmatic immunoglobulin G4-related disease and its varied cardiovascular manifestations. Heart 2021; 107:790-798. [PMID: 33468575 DOI: 10.1136/heartjnl-2020-318041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a systemic fibroinflammatory disease characterised by multiorgan lymphoplasmacytic infiltration, obliterative phlebitis and storiform fibrosis. It can be associated with cardiovascular pathology. The objective of this narrative review is to summarise the published literature on cardiovascular manifestations of IgG4-RD and to provide a basis for diagnosis and management of the condition by the practising cardiologist.We propose the following categorisations of cardiovascular IgG4-RD: aortitis, medium-vessel arteritis, pulmonary vascular disease, phlebitis, valvulopathy, pericarditis, myocardial disease and antineutrophilic cytoplasmic antibody-associated vasculitis. We also review herein developments in radiological diagnosis and reported medical and surgical therapies. Cardiovascular lesions frequently require procedural and/or surgical interventions, such as aortic aneurysm repair and valve replacement. IgG4-RD of the cardiovascular system results in serious complications that can be missed if not evaluated aggressively. These are likely underdiagnosed, as clinical presentations frequently mimic cardiovascular disease due to more common aetiologies (myocardial infarction, abdominal aortic aneurysm and so on). While systemic corticosteroids are the mainstay of IgG4-RD treatment, biological and disease-modifying agents are becoming more widely used. Cardiologists should be aware of cardiovascular IgG4-RD as a differential diagnosis, and understand the roles of corticosteroids, disease-modifying agents and biologicals, as well as their integration with surgical approaches. There are several knowledge gaps, including diagnosis, risk factors, pathogenesis and appropriate management in Ig4-RD of the cardiovascular system. Areas lacking well-conducted randomized trials include safety of steroids in the setting of vascular aneurysms and the role of disease-modifying drugs and biological agents in patients with established cardiovascular complications of this multifaceted enigmatic disease.
Collapse
Affiliation(s)
- Aamina Shakir
- Internal Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Guha Krishnaswamy
- Wake Forest University Department of Internal Medicine, Winston-Salem, North Carolina, USA .,Allergy, Asthma and Clinical Immunology, Bill Hefner VA Medical Center and affiliated institutions, Salisbury, North Carolina, USA
| |
Collapse
|
22
|
MacGrogan D, Martínez-Poveda B, Desvignes JP, Fernandez-Friera L, Gomez MJ, Gil Vilariño E, Callejas Alejano S, Garcia-Pavia P, Solis J, Lucena J, Salgado D, Collod-Béroud G, Faure E, Théron A, Torrents J, Avierinos JF, Montes L, Dopazo A, Fuster V, Ibañez B, Sánchez-Cabo F, Zaffran S, de la Pompa JL. Identification of a peripheral blood gene signature predicting aortic valve calcification. Physiol Genomics 2020; 52:563-574. [PMID: 33044885 DOI: 10.1152/physiolgenomics.00034.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a significant cause of illness and death worldwide. Identification of early predictive markers could help optimize patient management. RNA-sequencing was carried out on human fetal aortic valves at gestational weeks 9, 13, and 22 and on a case-control study with adult noncalcified and calcified bicuspid and tricuspid aortic valves. In dimension reduction and clustering analyses, diseased valves tended to cluster with fetal valves at week 9 rather than normal adult valves, suggesting that part of the disease program might be due to reiterated developmental processes. The analysis of groups of coregulated genes revealed predominant immune-metabolic signatures, including innate and adaptive immune responses involving lymphocyte T-cell metabolic adaptation. Cytokine and chemokine signaling, cell migration, and proliferation were all increased in CAVD, whereas oxidative phosphorylation and protein translation were decreased. Discrete immune-metabolic gene signatures were present at fetal stages and increased in adult controls, suggesting that these processes intensify throughout life and heighten in disease. Cellular stress response and neurodegeneration gene signatures were aberrantly expressed in CAVD, pointing to a mechanistic link between chronic inflammation and biological aging. Comparison of the valve RNA-sequencing data set with a case-control study of whole blood transcriptomes from asymptomatic individuals with early aortic valve calcification identified a highly predictive gene signature of CAVD and of moderate aortic valve calcification in overtly healthy individuals. These data deepen and broaden our understanding of the molecular basis of CAVD and identify a peripheral blood gene signature for the early detection of aortic valve calcification.
Collapse
Affiliation(s)
- Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Martínez-Poveda
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Jean-Pierre Desvignes
- Aix Marseille University, Marseille Medical Genetics, INSERM U1251, Marseille, France
| | - Leticia Fernandez-Friera
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,HM Hospitales-Centro Integral de Enfermedades Cardiovasculares, Madrid, Spain
| | - Manuel José Gomez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Eduardo Gil Vilariño
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sergio Callejas Alejano
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Pablo Garcia-Pavia
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Cardiología, Hospital Universitario Puerta de Hierro, Madrid, Spain.,Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Jorge Solis
- Departmento of Cardiología, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Joaquín Lucena
- Servicio de Patología Forense, Instituto de Medicina Legal y Ciencias Forenses
| | - David Salgado
- Aix Marseille University, Marseille Medical Genetics, INSERM U1251, Marseille, France
| | | | - Emilie Faure
- Aix Marseille University, Marseille Medical Genetics, INSERM U1251, Marseille, France
| | - Alexis Théron
- Service de Cardiologie, Hôpital de la Timone, Marseille, France
| | - Julia Torrents
- Service d'anatomie et Cytologie Pathologiques, Hôpital de la Timone, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille University, Marseille Medical Genetics, INSERM U1251, Marseille, France.,Service de Cardiologie, Hôpital de la Timone, Marseille, France
| | | | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Valentín Fuster
- Cardiovascular Imaging and Population Studies Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Cardiology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Borja Ibañez
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Service d'anatomie et Cytologie Pathologiques, Hôpital de la Timone, Marseille, France.,Hospital Clínico San Carlos, Madrid, Spain.,IIS-Fundación Jiménez Díaz Hospital Universitario, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Stephane Zaffran
- Aix Marseille University, Marseille Medical Genetics, INSERM U1251, Marseille, France
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Inukai M, Shibahara I, Kumabe T. In Reply to the Letter to the Editor Regarding "A Case of Calcifying Pseudoneoplasms of the Neuraxis Coexisting with Interhemispheric Lipoma and Agenesis of the Corpus Callosum: Involvement of Infiltrating Macrophages". World Neurosurg 2020; 139:670-671. [PMID: 32689675 DOI: 10.1016/j.wneu.2020.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Madoka Inukai
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
24
|
Liu FY, Bai P, Jiang YF, Dong NG, Li G, Chu C. Role of Interleukin 17A in Aortic Valve Inflammation in Apolipoprotein E-deficient Mice. Curr Med Sci 2020; 40:729-738. [PMID: 32862384 DOI: 10.1007/s11596-020-2230-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/10/2020] [Indexed: 12/29/2022]
Abstract
Interleukin 17A (IL17A) is reported to be involved in many inflammatory processes, but its role in aortic valve diseases remains unknown. We examined the role of IL17A based on an ApoE-/- mouse model with strategies as fed with high-fat diet or treated with IL17A monoclonal antibody (mAb). 12 weeks of high-fat diet feeding can elevate cytokines secretion, inflammatory cells infiltration and myofibroblastic transition of valvular interstitial cells (VICs) in aortic valve. Moreover, diet-induction accelerated interleukin 17 receptor A (IL17RA) activation in VICs. In an IL17A inhibition model, the treatment group was intra-peritoneally injected with anti-IL17A mAb while controls received irrelevant antibody. Functional blockade of IL17A markedly reduced cellular infiltration and transition in aortic valve. To investigate potential mechanisms, NF-κB was co-stained in IL17RA+ VICs and IL17RA+ macrophages, and further confirmed by Western blotting in VICs. High-fat diet could activate NF-κB nuclear translocation in IL17RA+ VICs and IL17RA+ macrophages and this process was depressed after IL17A mAb-treatment. In conclusion, high-fat diet can lead to IL17A upregulation, VICs myofibroblastic transition and inflammatory cells infiltration in the aortic value of ApoE-/- mice. Blocking IL17A with IL17A mAb can alleviate aortic valve inflammatory states.
Collapse
Affiliation(s)
- Fa-Yuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Bai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye-Fan Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chong Chu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Pedriali G, Morciano G, Patergnani S, Cimaglia P, Morelli C, Mikus E, Ferrari R, Gasbarro V, Giorgi C, Wieckowski MR, Pinton P. Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. Int J Mol Sci 2020; 21:ijms21144899. [PMID: 32664529 PMCID: PMC7402290 DOI: 10.3390/ijms21144899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
Calcific aortic stenosis is a disorder that impacts the physiology of heart valves. Fibrocalcific events progress in conjunction with thickening of the valve leaflets. Over the years, these events promote stenosis and obstruction of blood flow. Known and common risk factors are congenital defects, aging and metabolic syndromes linked to high plasma levels of lipoproteins. Inflammation and oxidative stress are the main molecular mediators of the evolution of aortic stenosis in patients and these mediators regulate both the degradation and remodeling processes. Mitochondrial dysfunction and dysregulation of autophagy also contribute to the disease. A better understanding of these cellular impairments might help to develop new ways to treat patients since, at the moment, there is no effective medical treatment to diminish neither the advancement of valve stenosis nor the left ventricular function impairments, and the current approaches are surgical treatment or transcatheter aortic valve replacement with prosthesis.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Simone Patergnani
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Paolo Cimaglia
- Cardiovascular Department, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (P.C.); (E.M.)
| | - Cristina Morelli
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44121 Ferrara, Italy;
| | - Elisa Mikus
- Cardiovascular Department, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (P.C.); (E.M.)
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44121 Ferrara, Italy;
| | - Vincenzo Gasbarro
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
- Correspondence: ; Tel.: +0532-455802
| |
Collapse
|
26
|
Liu Z, Wang Y, Shi J, Chen S, Xu L, Li F, Dong N. IL-21 promotes osteoblastic differentiation of human valvular interstitial cells through the JAK3/STAT3 pathway. Int J Med Sci 2020; 17:3065-3072. [PMID: 33173427 PMCID: PMC7646116 DOI: 10.7150/ijms.49533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives: This study amied to whether IL-21 promotes osteoblast transdifferentiation of cultured human Valvular interstitial cells (VICs). Methods: We first confirmed that IL-21 alters gene expression between CAVD aortic valve tissue and normal samples by immunohistochemistry, qPCR, and western blotting. VICs were cultured and treated with IL-21. Gene and protein expression levels of the osteoblastic markers ALP and Runx2, which can be blocked by specific JAK3 inhibitors and/or siRNA of STAT3, were measured. Results: IL-21 expression was upregulated in calcified aortic valves and promotes osteogenic differentiation of human VICs. IL-21 accelerated VIC calcification through the JAK3/STAT3 pathway. Conclusion: Our data suggest that IL-21 is a key factor in valve calcification and a promising candidate for targeted therapeutics for CAVD.
Collapse
Affiliation(s)
- Zongtao Liu
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Kostyunin AE, Ovcharenko EA, Barbarash OL. [The renin-angiotensin-aldosterone system as a potential target for therapy in patients with calcific aortic stenosis: a literature review]. ACTA ACUST UNITED AC 2019; 59:4-17. [PMID: 31884936 DOI: 10.18087/cardio.n328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Calcific aortic valve stenosis (CAVS) is a serious socio-economic problem in developed countries because this disease is the most common indication for aortic valve replacement. Currently, there are no methods for non-invasive treatment of CAVS. Nevertheless, it is assumed that effective drug therapy for CAVS can be developed on the basis of modulators of the renin-angiotensin-aldosterone system (RAAS), which is involved in the pathogenesis of this disease. The purpose of this paper is to compile and analyze current information on the role of RAAS in the CAVS pathophysiology. Recent data on the effectiveness of RAAS inhibition are reviewed.
Collapse
Affiliation(s)
- A E Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - O L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases
| |
Collapse
|
28
|
Hourai R, Ozawa H, Sohmiya K, Hirose Y, Katsumata T, Daimon M, Ishizaka N. IgG4-Positive Plasmacytic Infiltration in Aortic Wall and Aortic Valve Surgical Samples and Its Relation to Preoperative Serum IgG4 Levels. Int Heart J 2019; 60:688-694. [DOI: 10.1536/ihj.18-490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Hideki Ozawa
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | | | | | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | - Masahiro Daimon
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | | |
Collapse
|
29
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
30
|
Lee SH, Choi JH. Involvement of inflammatory responses in the early development of calcific aortic valve disease: lessons from statin therapy. Anim Cells Syst (Seoul) 2018; 22:390-399. [PMID: 30533261 PMCID: PMC6282465 DOI: 10.1080/19768354.2018.1528175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common degenerative heart valve disease. Among the many risk factors for this disease are age, hypercholesterolemia, hypertension, smoking, type-2 diabetes, rheumatic fever, and chronic kidney disease. Since many of these overlap with risk factors for atherosclerosis, the molecular and cellular mechanisms of CAVD development have been presumed to be similar to those for atherogenesis. Thus, attempts have been made to evaluate the therapeutic efficacy of statins, representative anti-atherosclerosis drugs with lipid-lowering and anti-inflammatory effects, against CAVD. Unfortunately, statins have shown little or no effect on CAVD development. But some reports suggest that statins may prevent or reduce the development of early stage CAVD in which having calcification is absent or minimal. These results suggest that therapeutic approaches should differ according to the stage of disease, and that a precise understanding of the mechanism of aortic valve calcification is required to identify novel therapeutic targets for advanced CAVD. Given the involvement of inflammatory processes in the development and progression of CAVD, current therapeutic approaches for chronic inflammatory cardiovascular disease like atherosclerosis may help to prevent or minimize the early development of CAVD. In this review, we focus on several inflammatory cellular and molecular components involved in CAVD that might be considered drug targets for preventing CAVD.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Hourai R, Kasashima S, Fujita SI, Sohmiya K, Daimon M, Hirose Y, Katsumata T, Kanki S, Ozeki M, Ishizaka N. A Case of Aortic Stenosis with Serum IgG4 Elevation, and IgG4-Positive Plasmacytic Infiltration in the Aortic Valve, Epicardium, and Aortic Adventitia. Int Heart J 2018; 59:1149-1154. [DOI: 10.1536/ihj.17-567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | | | | | - Masahiro Daimon
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | | | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | - Sachiko Kanki
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | | | | |
Collapse
|
32
|
Yano T, Yamamoto M, Mochizuki A, Ogawa T, Nagano N, Fujito T, Nishida J, Nagahara D, Abe K, Miki T, Suzuki C, Takahashi H, Ishibashi-Ueda H, Miura T. Successful Transcatheter Diagnosis and Medical Treatment of Right Atrial Involvement in IgG4-related Disease. Int Heart J 2018; 59:1155-1160. [DOI: 10.1536/ihj.17-467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Motohisa Yamamoto
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University
| | - Atsushi Mochizuki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Junichi Nishida
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Daigo Nagahara
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Chisako Suzuki
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University
| | - Hiroki Takahashi
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| |
Collapse
|
33
|
Losappio LM, Mirone C, Chevallard M, Farioli L, De Luca F, Pastorello EA. Tryptase as a marker of severity of aortic valve stenosis. Clin Mol Allergy 2018; 16:17. [PMID: 30093839 PMCID: PMC6080360 DOI: 10.1186/s12948-018-0095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/27/2018] [Indexed: 12/02/2022] Open
Abstract
Background Severe aortic valve stenosis is one of the most common cause of mortality in adult patients affected with metabolic syndrome, a condition associated with an active inflammatory process involving also mast cells and their mediators, in particular tryptase. The aim of this study was to characterize the possible long-term prognostic role of tryptase in severe aortic valve stenosis. Case presentation The baseline serum tryptase was measured in 5 consecutive patients admitted to our Hospital to undergo aortic valve replacement for severe acquired stenosis. Within 2 years after, the patients were evaluated for the occurrence of major cardiovascular events (MACE). The tryptase measurements were higher in patients experiencing MACE (10.9, 11.7 and 9.32 ng/ml) than in non-MACE ones (5.69 and 5.58 ng/ml). Conclusions In patients affected with severe aortic stenosis, baseline serum tryptase may predict occurence of MACE. Further studies are needed to demonstrate the long-term prognostic role of this biomarker.
Collapse
Affiliation(s)
- Laura M Losappio
- The Department of Allergology and Immunology, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Corrado Mirone
- The Department of Allergology and Immunology, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michel Chevallard
- The Department of Allergology and Immunology, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Farioli
- The Department of Laboratory Medicine, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio De Luca
- The Department of Allergology and Immunology, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Elide A Pastorello
- The Department of Allergology and Immunology, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy.,3Unit of Allergy and Immunology, Niguarda Ca' Granda Hospital, Piazza Ospedale Maggiore, 3, 20162 Milan, Italy
| |
Collapse
|
34
|
Šteiner I, Stejskal V, Žáček P. Mast cells in calcific aortic stenosis. Pathol Res Pract 2018; 214:163-168. [DOI: 10.1016/j.prp.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/26/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
35
|
Bruls S, Courtois A, Delvenne P, Hustinx R, Moutschen M, De Leval L, Defraigne JO, Sakalihasan N. IgG4-Related Disease Causing Rapid Evolution of a Severe Aortic Valvular Stenosis. Ann Thorac Surg 2017; 103:e239-e240. [PMID: 28219556 DOI: 10.1016/j.athoracsur.2016.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/13/2016] [Indexed: 11/30/2022]
Abstract
Immunoglobulin G4-related systemic disease (IgG4-RSD) is a recognized emerging entity characterized by chronic fibroinflammation that can affect every organ but rarely affects the cardiovascular system. We report a rare case of IgG4-RSD involving an aortic valve that resulted in rapid progression of an aortic valvular stenosis and was successfully treated by aortic valve replacement and corticosteroids.
Collapse
Affiliation(s)
- Samuel Bruls
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, Liège, Belgium
| | - Audrey Courtois
- Surgical Research Center, GIGA-R, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital of Liège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, University Hospital of Liège, Liège, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | | | - Jean-Olivier Defraigne
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, Liège, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, Liège, Belgium; Surgical Research Center, GIGA-R, University of Liège, Liège, Belgium.
| |
Collapse
|
36
|
Li G, Qiao W, Zhang W, Li F, Shi J, Dong N. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J Thorac Cardiovasc Surg 2017; 153:1318-1327.e1. [PMID: 28283241 DOI: 10.1016/j.jtcvs.2017.01.052] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/31/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of the present study was to comprehensively compare the phenotype profile of infiltrated macrophages in human noncalcified and calcific aortic valves, and to determine whether the shift of macrophage polarization modulates valvular calcification in vitro. METHODS Cell surface markers of macrophages and inflammatory cytokines expression in 90 cases of human noncalcified and calcific aortic valve leaflets were analyzed. The normal aortic valve interstitial cells were isolated and cultured in vitro. After incubation with nonconditioned medium and conditioned medium from unstimulated or lipopolysaccharide-stimulated U937 monocytes, valve interstitial cells were evaluated by osteogenic differentiation markers. RESULTS Infiltration of macrophages was enhanced in the calcific aortic valves, and M1 phenotype was the predominant macrophage subsets. In addition, both proinflammatory and anti-inflammatory cytokines were significantly upregulated in the calcific aortic valves. Furthermore, lipopolysaccharide-stimulated monocytes presented with increased expression of inducible nitric oxide synthase and high proportional CD11c-positive (M1) macrophages. Conditioned medium from unstimulated monocytes promoted the osteogenic differentiation of valve interstitial cells in vitro, as evidenced by increased markers such as bone morphogenetic protein 2, osteopontin, and alkaline phosphatase. Conditioned medium from M1 macrophages further enhanced valve interstitial cells calcification. Enzyme-linked immunosorbent assay showed that M1 phenotype macrophages secreted tumor necrosis factors α and interleukin 6, and neutralizing antibodies to these 2 proinflammatory cytokines attenuated induction of osteogenic differentiation and calcification by the conditioned media. CONCLUSIONS Both total numbers and polarization of macrophage influence the process of calcification in human aortic valve. The shift toward M1 phenotype might promote valve interstitial cell calcification.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenjing Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
37
|
Hourai R, Kasashima S, Sohmiya K, Yamauchi Y, Ozawa H, Hirose Y, Ogino Y, Katsumata T, Daimon M, Fujita SI, Hoshiga M, Ishizaka N. IgG4-positive cell infiltration in various cardiovascular disorders - results from histopathological analysis of surgical samples. BMC Cardiovasc Disord 2017; 17:52. [PMID: 28158996 PMCID: PMC5291949 DOI: 10.1186/s12872-017-0488-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background The diagnosis of Immunoglobulin G4 (IgG4)-related disease (IgG4-RD), in general, depends on serum IgG4 concentrations and histopathological findings; therefore, diagnosis of IgG4-RD in cardiovascular organs/tissues is often difficult owing to the risk of tissue sampling. Methods Prevalence of IgG4-positive lymphoplasmacytic infiltration in 103 consecutive cardiovascular surgical samples from 98 patients with various cardiovascular diseases was analyzed immunohistochemically. Results The diagnoses of the enrolled patients included aortic aneurysm (abdominal, n = 8; thoracic, n = 9); aortic dissection (n = 20); aortic stenosis (n = 24), aortic regurgitation (n = 10), and mitral stenosis/regurgitation (n = 17). In total, 10 (9.7%) of the 103 specimens showed IgG4-positive cell infiltration with various intensities; five of these were aortic valve specimens from aortic stenosis, and IgG4-positive cell infiltration was present at >10 /HPF in three of them. In one aortic wall sample from an abdominal aortic aneurysm, various histopathological features of IgG4-RD, such as IgG4-positive cell infiltration, obliterating phlebitis, and storiform fibrosis, were observed. Conclusions IgG4-positive cell infiltration was observed in 9.7% of the surgical cardiovascular specimens, mainly in the aortic valve from aortic stenosis and in the aortic wall from aortic aneurysm. Whether IgG4-positive cell infiltration has pathophysiological importance in the development or progression of cardiovascular diseases should be investigated in future studies.
Collapse
Affiliation(s)
- Ryoto Hourai
- Department of Cardiology, Osaka Medical College, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Satomi Kasashima
- Department of Pathology, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Koichi Sohmiya
- Department of Cardiology, Osaka Medical College, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Yohei Yamauchi
- Department of Cardiology, Osaka Medical College, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Hideki Ozawa
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | | | - Yasuhiro Ogino
- Department of Pathology, Osaka Medical College, Osaka, Japan
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Masahiro Daimon
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Shu-Ichi Fujita
- Department of Cardiology, Osaka Medical College, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical College, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Nobukazu Ishizaka
- Department of Cardiology, Osaka Medical College, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| |
Collapse
|
38
|
Understanding the structural features of symptomatic calcific aortic valve stenosis: A broad-spectrum clinico-pathologic study in 236 consecutive surgical cases. Int J Cardiol 2016; 228:364-374. [PMID: 27866029 DOI: 10.1016/j.ijcard.2016.11.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND With age, aortic valve cusps undergo varying degrees of sclerosis which, sometimes, can progress to calcific aortic valve stenosis (AVS). To perform a retrospective clinico-pathologic investigation in patients with calcific AVS. METHODS We characterized and graded the structural remodeling in 236 aortic valves (200 tricuspid and 36 bicuspid) from patients with calcific AVS (148 males; average 72years); possible relationships between general/clinical/echocardiographic characteristics and the histopathologic changes were explored. Twenty autopsy aortic valves served as controls. In 40 cases, we also tested the immunohistochemical expression of metalloproteinases and cytokines, and characterized the inflammatory infiltrate. In 5 cases, we cultured cusp stem cells and explored their potential to differentiate into osteoblasts/adipocytes. RESULTS AVS cusps showed structural remodeling as severe fibrosis (100%), calcific nodules (100%), neoangiogenesis (81%), inflammation (71%), bone metaplasia with or without hematopoiesis (6% and 53%, respectively), adipose metaplasia (16%), and cartilaginous metaplasia (7%). At multivariate analysis, AVS degree and interventricular septum thickness were the only predictors of remodeling (barring inflammation). All the tested metalloproteinases (except MMP-13) and cytokines were expressed in AVS cusps. Inflammation mainly consisted of B and T lymphocytes (CD4+/CD8+ cell ratio 3:1) and plasma cells. AVS changes were mostly different from typical atherosclerosis. Cultured mesenchymal cusp stem cells could differentiate into osteoblasts/adipocytes. CONCLUSIONS Structural remodeling in AVS is peculiar and considerable, and is related to the severity of the disease. However, the different newly formed tissues-where "valvular interstitial cells" play a key role-and their well-known slow turnover suggest a reverse structural remodeling improbable.
Collapse
|
39
|
Lee SH, Choi JH. Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells. Immune Netw 2016; 16:26-32. [PMID: 26937229 PMCID: PMC4770097 DOI: 10.4110/in.2016.16.1.26] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/11/2023] Open
Abstract
Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
40
|
Natorska J, Marek G, Sadowski J, Undas A. Presence of B cells within aortic valves in patients with aortic stenosis: Relation to severity of the disease. J Cardiol 2016; 67:80-5. [DOI: 10.1016/j.jjcc.2015.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 04/03/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
|
41
|
Milutinovic A, Petrovič D, Zorc M, Vraspir Porenta O, Arko M, Pleskovič A, Alibegovic A, Zorc-Pleskovic R. Mast Cells Might Have a Protective Role against the Development of Calcification and Hyalinisation in Severe Aortic Valve Stenosis. Folia Biol (Praha) 2016; 62:160-6. [PMID: 27643581 DOI: 10.14712/fb2016062040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aortic valve stenosis is characterized by inflammation and extracellular matrix remodelling. The aim of this study was to analyse the impact of mast cells on the occurrence of histopathological changes of aortic valves in patients with severe grade, non-rheumatic degenerative aortic valve stenosis. Valve specimens were obtained from 38 patients undergoing valve replacement. The role of mast cells was analysed by dividing the specimens into two groups, characterized by the presence (group A, N = 13) or absence of mast cells (group B, N = 25). There were no significant differences in clinical data between the two groups. In group A, T cells and macrophages were present in all aortic valves, as compared to a significantly lower proportion of valves with T cells and macrophages in group B. Valves in group A were less often calcified and hyaline-degenerated than valves in group B. There were no changes in fibrosis between the two groups. We found a positive correlation between the presence of mast cells and macrophages/T cells, a negative correlation between the presence of mast cells and calcification/ hyaline degeneration, and no correlation between the presence of mast cells and fibrosis. There was also a negative correlation between the presence of macrophages/T cells and calcification. The linear regression model identified only the presence of mast cells as an independent negative prediction value for calcification. In conclusion, mast cells might have a protective role against the development of calcification and hyaline degeneration in severe grade, non-rheumatic aortic valve stenosis.
Collapse
Affiliation(s)
- A Milutinovic
- University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
| | - D Petrovič
- University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
| | - M Zorc
- University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
| | - O Vraspir Porenta
- University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
| | - M Arko
- University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
| | - A Pleskovič
- University Medical Centre of Ljubljana, Department of Internal Medicine, Ljubljana, Slovenia
| | - A Alibegovic
- University of Ljubljana, Faculty of Medicine, Institute of Forensic Medicine, Ljubljana, Slovenia
| | - R Zorc-Pleskovic
- University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
| |
Collapse
|
42
|
Šteiner I, Laco J. IgG4-related disease of the aortic valve. Cardiovasc Pathol 2015; 24:264. [DOI: 10.1016/j.carpath.2015.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022] Open
|
43
|
Maleszewski JJ, Halushka MK. Response to comments on: Maleszewski JJ et al. IgG4-related disease of the aortic valve: a report of two cases and review of the literature. Cardiovasc Pathol 2015;24(1)56-9. Cardiovasc Pathol 2015; 24:265. [PMID: 25958012 DOI: 10.1016/j.carpath.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022] Open
|
44
|
Laco J, Kamarádová K, Mottl R, Mottlová A, Doležalová H, Tuček L, Žatečková K, Slezák R, Ryška A. Plasma cell granuloma of the oral cavity: a mucosal manifestation of immunoglobulin G4-related disease or a mimic? Virchows Arch 2014; 466:255-63. [PMID: 25522952 DOI: 10.1007/s00428-014-1711-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/23/2014] [Accepted: 12/09/2014] [Indexed: 12/23/2022]
Abstract
The aim of the study was to test the hypothesis that oral plasma cell granuloma may represent a mucosal manifestation of immunoglobulin (Ig)G4-related disease (IgG4-RD) in the oral cavity. The study sample comprised two males and four females, aged 54-79 years (median 62 years). The lesions were localized on gingival/alveolar mucosa (four cases), hard palate, and floor of the mouth, measuring 17-40 mm (median 31 mm). The duration of the lesions ranged from 3 months to several years. Information on IgG4 serum levels was available for two patients, and these were increased to 1.85 and 1.65 g/L, respectively. The follow-up period ranged 11-30 months (median 13 months). None of the lesions recurred, and none of the patients developed any manifestation of IgG4-RD. Microscopically, all cases presented as nodular lesions composed of numerous polyclonal plasma cells admixed with lymphocytes, histiocytes, mast cells, and eosinophils, set within collagenized stroma in variable proportions. Obliterative phlebitis was observed in two cases. The number of IgG4-positive plasma cells ranged between 51 and 142 per HPF (median 114), while the IgG4/IgG ratio values ranged between 0.16 and 0.72 (median 0.44) and were above 0.40 in three cases. Based on international criteria, two cases were diagnosed as definite and one as probable IgG4-RD. Oral plasma cell granuloma is a heterogeneous group of lesions, and a subset may represent a mucosal manifestation of IgG4-RD in the oral cavity.
Collapse
Affiliation(s)
- Jan Laco
- The Fingerland Department of Pathology, Charles University in Prague-Faculty of Medicine and University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic,
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Nedal Omran
- Department of Cardiac Surgery, Faculty of Medicine and Faculty Hospital; Charles University in Prague; Hradec Kralove Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine and Faculty Hospital; Charles University in Prague; Hradec Kralove Czech Republic
| | - Lukas Krbal
- The Fingerland Department of Pathology, Faculty of Medicine and Faculty Hospital; Charles University in Prague; Hradec Kralove Czech Republic
| | - Jan Vojacek
- Department of Cardiac Surgery, Faculty of Medicine and Faculty Hospital; Charles University in Prague; Hradec Kralove Czech Republic
| | - Jiri Mandak
- Department of Cardiac Surgery, Faculty of Medicine and Faculty Hospital; Charles University in Prague; Hradec Kralove Czech Republic
| |
Collapse
|
46
|
Idiopathic vs. secondary retroperitoneal fibrosis: a clinicopathological study of 12 cases, with emphasis to possible relationship to IgG4-related disease. Virchows Arch 2013; 463:721-30. [DOI: 10.1007/s00428-013-1480-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
|