1
|
Li J, Wei W, Lai Z, Lai KP. In silico studies reveal the anti-osteosarcoma targets and action mechanisms of resveratrol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Losada-García A, Cortés-Ramírez SA, Cruz-Burgos M, Morales-Pacheco M, Cruz-Hernández CD, Gonzalez-Covarrubias V, Perez-Plascencia C, Cerbón MA, Rodríguez-Dorantes M. Hormone-Related Cancer and Autoimmune Diseases: A Complex Interplay to be Discovered. Front Genet 2022; 12:673180. [PMID: 35111194 PMCID: PMC8801914 DOI: 10.3389/fgene.2021.673180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Neoplasic transformation is a continuous process that occurs in the body. Even before clinical signs, the immune system is capable of recognizing these aberrant cells and reacting to suppress them. However, transformed cells acquire the ability to evade innate and adaptive immune defenses through the secretion of molecules that inhibit immune effector functions, resulting in tumor progression. Hormones have the ability to modulate the immune system and are involved in the pathogenesis of autoimmune diseases, and cancer. Hormones can control both the innate and adaptive immune systems in men and women. For example androgens reduce immunity through modulating the production of pro-inflammatory and anti-inflammatory mediators. Women are more prone than men to suffer from autoimmune diseases such as systemic lupus erythematosus, psoriasis and others. This is linked to female hormones modulating the immune system. Patients with autoimmune diseases consistently have an increased risk of cancer, either as a result of underlying immune system dysregulation or as a side effect of pharmaceutical treatments. Epidemiological data on cancer incidence emphasize the link between the immune system and cancer. We outline and illustrate the occurrence of hormone-related cancer and its relationship to the immune system or autoimmune diseases in this review. It is obvious that some observations are contentious and require explanation of molecular mechanisms and validation. As a result, future research should clarify the molecular pathways involved, including any causal relationships, in order to eventually allocate information that will aid in the treatment of hormone-sensitive cancer and autoimmune illness.
Collapse
Affiliation(s)
- A Losada-García
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - SA Cortés-Ramírez
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - M Cruz-Burgos
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - M Morales-Pacheco
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Carlos Perez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA and Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - MA Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M Rodríguez-Dorantes
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- *Correspondence: M Rodríguez-Dorantes,
| |
Collapse
|
3
|
Wang X, Lu Y, Tuo Z, Zhou H, Zhang Y, Cao Z, Peng L, Yu D, Bi L. Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncol Rep 2021; 45:109. [PMID: 33907836 PMCID: PMC8082341 DOI: 10.3892/or.2021.8060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Renal cell carcinoma (RCC) is a lethal urologic tumor commonly seen in men that best responds to partial nephrectomy. An enhanced understanding of the molecular pathogenesis of RCC can broaden treatment options and tumor prevention strategies. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates several bioactive substances, and the present study aimed to identify the role of SIRT1/AMP-activated protein kinase (AMPK) signaling in RCC progression. SIRT1 expression was detected in 100 patients with RCC using tissue microarray immunohistochemistry. SIRT1-knockdown and overexpression were performed via RNA interference and plasmid transfection. Inhibition of AMPK was used for the phenotypic rescue assays to verify whether AMPK was a downstream target of SIRT1. Reverse transcription-quantitative PCR was performed to verify transfection efficiency. Transwell, MTT and flow cytometry apoptosis assays were performed to evaluate the migration, invasion, proliferation and early apoptosis level of RCC cells. SIRT1 and AMPK protein expression in human RCC tissues and cell lines (786-O and ACHN) was detected using western blotting and immunofluorescence staining. The current results, combined with data from The Cancer Genome Atlas database, revealed that SIRT1 expression in RCC tissues was downregulated compared with in adjacent normal tissues. Additionally, high SIRT1 expression was associated with an improved prognosis in patients with RCC. Overexpression of SIRT1 inhibited the proliferation, migration and invasion of RCC cell lines and induced apoptosis, while inhibition of SIRT1 expression had the opposite effects. Further experiments indicated that SIRT1 may serve an anticancer role by upregulating the expression levels of downstream AMPK, thus revealing a potential therapeutic target for RCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Youlu Lu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Zhou
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
4
|
Lou T, Huang Q, Su H, Zhao D, Li X. Targeting Sirtuin 1 signaling pathway by ginsenosides. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113657. [PMID: 33276056 DOI: 10.1016/j.jep.2020.113657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a kind of traditional Chinese herbal medicine, known as "king of herbs" and widely used in China, South Korea, and other Asian countries. Ginsenosides are one of active components of Panax ginseng Meyer, which have many pharmacological effects, such as enhancing memory, improving immunity and cardiovascular system, delaying aging, and preventing cancer. AIMS OF THE REVIEW This review aims to summarize the recent findings for ginsenosides targeting Sirtuin 1 (SIRT1) signaling pathway for the prevention and treatment of a series of diseases. MATERIALS AND METHODS An up-to-August 2020 search was carried out in databases such as PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure, and classic books of traditional Chinese medicine using the keywords: "SIRT1", and/or paired with "ginseng", and "ginsenosides". RESULTS SIRT1 is a class-III histone deacetylase (HDAC), a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, which is deeply involved in a series of pathological processes. Based on specific intracellular localization, SIRT1 has various cytoplasmic and nuclear targets and plays a potential role in energy metabolism, oxidative stress, inflammation, tumorigenesis, and aging. Ginsenosides are generally classified into three groups and microbially transformed to final metabolites. Among of them, most ginsenosides have been reported as SIRT1 activators, especially those ginsenosides with two glucopyranosyl groups on the C-3 position. Importantly, many ginsenosides can be used to prevent and treat oxidative stress, inflammation, aging, tumorigenesis, depression, and others by targeting SIRT1 signaling pathway. CONCLUSIONS This paper reviews recent evidences of ginsenosides targeting SIRT1 for the first time, which could provide new insights on the preclinical and clinical researches for ginsenosides against multiple disorders.
Collapse
Affiliation(s)
- Tingting Lou
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Zhang M, Liu Y, Kong D. Identifying biomolecules and constructing a prognostic risk prediction model for recurrence in osteosarcoma. J Bone Oncol 2021; 26:100331. [PMID: 33376666 PMCID: PMC7758551 DOI: 10.1016/j.jbo.2020.100331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Osteosarcoma is a high-morbidity bone cancer with an unsatisfactory prognosis. The aim of this study is to develop novel potential prognostic biomarkers and construct a prognostic risk prediction model for recurrence in osteosarcoma. METHODS By analyzing microarray data, univariate and multivariate Cox regression analyses were performed to screen prognostic RNA signatures and to build a prognostic model. The RNA signatures were validated using Kaplan-Meier curves. Then, we developed and validated a nomogram combining age, recurrence, metastatic, and Prognostic score (PS) models to predict the individual's overall survival at the 3- and 5-year points. Pathway enrichment of RNA was conducted based on the significant co-expressed RNAs. RESULTS A total of 319 mRNAs and 14 lncRNAs were identified in the microarray data. One lncRNA (LINC00957) and six mRNAs (METL1, CA9, B3GALT4, ALDH1A1, LAMB3, and ITGB4) were identified as RNA signatures and showed good performances in survival prediction for both the training and validation cohorts. Cox regression analysis showed that the seven RNA signatures could independently predict overall survival. Furthermore, age, recurrence, metastatic, and PS models were identified as independent prognostic factors via univariate and multivariate Cox analyses (P < 0.05) and included in the prognostic nomogram. The C-index values for the 3- and 5-year overall survival predictions of the nomogram were 0.809 and 0.740, respectively. CONCLUSIONS The current study provides the novel potential of seven RNA candidates as prognostic biomarkers. Nomograms were constructed to provide accurate and individualized survival prediction for recurrence in osteosarcoma patients.
Collapse
Affiliation(s)
- Minglei Zhang
- Departments of Orthopaedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin 130033, China
| | - Yang Liu
- Department of Radiological, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, Jilin 130000, China
| | - Daliang Kong
- Departments of Orthopaedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin 130033, China
| |
Collapse
|
6
|
Screening and Identification of Differentially Expressed Genes Expressed among Left and Right Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8465068. [PMID: 32420374 PMCID: PMC7201700 DOI: 10.1155/2020/8465068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
Purpose Colon adenocarcinoma (COAD) is the third most common malignancy globally and is further categorized as left colon adenocarcinoma (LCOAD) or right colon adenocarcinoma (RCOAD) depending on the location of the primary tumor. The therapeutic outcome and long-term prognosis for patients with COAD are less than satisfactory, and this may be associated with tumor location. Therefore, it is important to investigate the genetic differences in COAD at different sites. Patients and Methods. Public data associated with COAD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using R software (version 3.5.3), and functional annotation of DEGs was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction network was constructed, hub genes were identified and analyzed, and data mining using Gene Expression Profiling Interactive Analysis (GEPIA) was conducted. Results A total of 286 DEGs were identified between LCOAD and RCOAD. Additionally, 10 hub genes associated with COAD at different locations were screened, namely, CDKN2A, IGF1R, MDM2, SMAD3, SLC2A1, GRM5, PLCB4, FGFR1, UBE2V2, and TNFRSF10B. The expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and solute carrier family 2 member 1 (SLC2A1) was significantly associated with pathological stage (P < 0.05). COAD patients with high expression levels of CDKN2A exhibited poorer overall survival (OS) times than those with low expression levels (P < 0.05). Conclusion CDKN2A expression was significantly different between LCOAD and RCOAD and was closely related to the prognosis of COAD. It is of great value for further understanding of the pathogenesis of LCOAD and RCOAD.
Collapse
|
7
|
Feng H, Zhang Q, Zhao Y, Zhao L, Shan B. Leptin acts on mesenchymal stem cells to promote chemoresistance in osteosarcoma cells. Aging (Albany NY) 2020; 12:6340-6351. [PMID: 32289750 PMCID: PMC7185129 DOI: 10.18632/aging.103027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/27/2020] [Indexed: 04/17/2023]
Abstract
Leptin signaling influences osteoblastogenesis and modulates the fate of mesenchymal stem cells (MSCs) during bone and cartilage regeneration. Although MSCs abound in the osteosarcoma (OS) microenvironment, and leptin exhibits pro-tumorigenic properties, leptin's influence on OS progression and chemoresistant signaling in MSCs remains unclear. Using cell viability and apoptosis assays, we showed that medium conditioned by leptin-treated human MSCs promotes cisplatin resistance in cultured human OS cells. Moreover, GFP-LC3 expression and chloroquine treatment experiments showed that this effect is mediated by stimulation of autophagy in OS cells. TGF-β expression in MSCs was upregulated by leptin and suppressed by leptin receptor knockdown. Silencing TGF-β in MSCs also abolished OS cell chemoresistance induced by leptin-conditioned medium. Cisplatin resistance was also induced when leptin-conditioned MSCs were co-injected with MG-63 OS cells to generate subcutaneous xenografts in nude mice. Finally, we observed a significant correlation between autophagy-associated gene expression in OS clinical samples and patient prognosis. We conclude that leptin upregulates TGF-β in MSCs, which promotes autophagy-mediated chemoresistance in OS cells.
Collapse
Affiliation(s)
- Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai 054031, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang 050000, Hebei, China
| | - Yi Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Lili Zhao
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai 054031, Hebei, China
| | - Baoen Shan
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
8
|
Garva R, Thepmalee C, Yasamut U, Sudsaward S, Guazzelli A, Rajendran R, Tongmuang N, Khunchai S, Meysami P, Limjindaporn T, Yenchitsomanus PT, Mutti L, Krstic-Demonacos M, Demonacos C. Sirtuin Family Members Selectively Regulate Autophagy in Osteosarcoma and Mesothelioma Cells in Response to Cellular Stress. Front Oncol 2019; 9:949. [PMID: 31608237 PMCID: PMC6771295 DOI: 10.3389/fonc.2019.00949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
The class III NAD+ dependent deacetylases-sirtuins (SIRTs) link transcriptional regulation to DNA damage response and reactive oxygen species generation thereby modulating a wide range of cellular signaling pathways. Here, the contribution of SIRT1, SIRT3, and SIRT5 in the regulation of cellular fate through autophagy was investigated under diverse types of stress. The effects of sirtuins' silencing on cell survival and autophagy was followed in human osteosarcoma and mesothelioma cells exposed to DNA damage and oxidative stress. Our results suggest that the mitochondrial sirtuins SIRT3 and 5 are pro-proliferative under certain cellular stress conditions and this effect correlates with their role as positive regulators of autophagy. SIRT1 has more complex role which is cell type specific and can affect autophagy in both positive and negative ways. The mitochondrial sirtuins (SIRT3 and SIRT5) affect both early and late stages of autophagy, whereas SIRT1 acts mostly at later stages of the autophagic process. Investigation of potential crosstalk between SIRT1, SIRT3, and SIRT5 revealed several feedback loops and a significant role of SIRT5 in regulating SIRT3 and SIRT1. Results presented here support the notion that sirtuin family members play important as well as differential roles in the regulation of autophagy in osteosarcoma vs. mesothelioma cells exposed to DNA damage and oxidative stress, and this can be exploited in increasing the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Richa Garva
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Chutamas Thepmalee
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sangkab Sudsaward
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Alice Guazzelli
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Ramkumar Rajendran
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Nopprarat Tongmuang
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasiprapa Khunchai
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Parisa Meysami
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Thawornchai Limjindaporn
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | | | - Constantinos Demonacos
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Ying H, Ying B, Zhang J, Kong D. Sirt1 modulates H3 phosphorylation and facilitates osteosarcoma cell autophagy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3374-3381. [PMID: 31390921 DOI: 10.1080/21691401.2019.1648280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongliang Ying
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinrui Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
11
|
Liu Y, Zhang F, Zhang Z, Wang D, Cui B, Zeng F, Huang L, Zhang Q, Sun Q. High expression levels of Cyr61 and VEGF are associated with poor prognosis in osteosarcoma. Pathol Res Pract 2017. [PMID: 28647210 DOI: 10.1016/j.prp.2017.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cysteine Rich Angiogenic Inducer 61 (Cyr61) and Vascular Endothelial Growth Factor (VEGF) are signaling proteins involved in the regulation of tumor angiogenesis and progression. The purpose of this study was to investigate the clinicopathological and prognostic significance of Cyr61 and VEGF expressions in osteosarcoma. Immunohistochemical staining was performed to evaluate the expression of both the proteins in 84 osteosarcoma samples. Correlation between Cyr61/VEGF expressions and clinicopathological parameters was determined using Rank sum test and Spearman's rank correlation coefficient. Prognostic factors were identified using univariate and multivariate Cox regression analysis. The expressions of Cyr61 and VEGF were weak in 26.2% and 17.9%, moderate in 26.2% and 23.8%, and strong in 47.6% and 58.3% of osteosarcoma samples, respectively. Cyr61 and VEGF expressions moderately correlated with each other in osteosarcoma, and exhibited significant association with Enneking stage and distant metastasis. In addition, the high expression of both proteins significantly correlated with short overall survival time in these patients. The key finding in this study was that both Cyr61 and VEGF expressions were independent prognostic indicators of overall survival. In summary, our results indicate that expression of Cyr61 and VEGF may serve as important prognostic predictors in patients with osteosarcoma.
Collapse
Affiliation(s)
- Yanming Liu
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China; Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, Shandong 255036, PR China
| | - Feiyue Zhang
- Department of Obstetrics, Zibo Central Hospital, Zibo, Shandong 255036, PR China
| | - Zhaobo Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, Shandong 255036, PR China
| | - Daoqing Wang
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China
| | - Baojuan Cui
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China
| | - Fanshuo Zeng
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China
| | - Laigang Huang
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China
| | - Qi Zhang
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China
| | - Qiangsan Sun
- Department of Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong 250033, PR China.
| |
Collapse
|
12
|
Altıntop MD, Temel HE, Sever B, Akalın Çiftçi G, Kaplancıklı ZA. Synthesis and Evaluation of New Benzodioxole- Based Thiosemicarbazone Derivatives as Potential Antitumor Agents. Molecules 2016; 21:molecules21111598. [PMID: 27879683 PMCID: PMC6273715 DOI: 10.3390/molecules21111598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
New benzodioxole-based thiosemicarbazone derivatives were synthesized and evaluated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma and NIH/3T3 mouse embryonic fibroblast cells. In order to examine the correlation between anticancer activity and cholinesterases, the compounds were evaluated for their inhibitory effects on AChE and BuChE. The most effective anticancer agents were investigated for their effects on DNA synthesis, apoptosis and mitochondrial membrane potential. 4-(1,3-Benzodioxol-5-yl)-1-([1,1'-biphenyl]-4-ylmethylene)thiosemicarbazide (5) was identified as the most promising anticancer agent against C6 and A549 cell lines due to its inhibitory effects on C6 and A549 cells and low toxicity to NIH/3T3 cells. Compound 5 increased early and late apoptosis in A549 and C6 cells. Compound 5 also caused disturbance on mitochondrial membrane potential and showed DNA synthesis inhibitory activity in A549 and C6 cells. Compound 5 was investigated for SIRT1 inhibitory activity to provide mechanistic insight and for that purpose docking studies were also performed for this compound on SIRT1. On the other hand, compound 5 did not show any inhibitory activity against AChE and BuChE. This outcome pointed out that there is no relationship between anticancer activity of compound 5 and cholinesterases.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|