1
|
Lazo PA. Nuclear functions regulated by the VRK1 kinase. Nucleus 2024; 15:2353249. [PMID: 38753965 DOI: 10.1080/19491034.2024.2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
de Souza Gama FH, Dutra LA, Hawgood M, Dos Reis CV, Serafim RAM, Ferreira MA, Teodoro BVM, Takarada JE, Santiago AS, Balourdas DI, Nilsson AS, Urien B, Almeida VM, Gileadi C, Ramos PZ, Salmazo A, Vasconcelos SNS, Cunha MR, Mueller S, Knapp S, Massirer KB, Elkins JM, Gileadi O, Mascarello A, Lemmens BBLG, Guimarães CRW, Azevedo H, Couñago RM. Novel Dihydropteridinone Derivatives As Potent Inhibitors of the Understudied Human Kinases Vaccinia-Related Kinase 1 and Casein Kinase 1δ/ε. J Med Chem 2024; 67:8609-8629. [PMID: 38780468 DOI: 10.1021/acs.jmedchem.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.
Collapse
Affiliation(s)
| | - Luiz A Dutra
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Michael Hawgood
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Caio Vinícius Dos Reis
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Ricardo A M Serafim
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Marcos A Ferreira
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Bruno V M Teodoro
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Jéssica Emi Takarada
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - André S Santiago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Ann-Sofie Nilsson
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Bruno Urien
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Vitor M Almeida
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Carina Gileadi
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Anita Salmazo
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Micael R Cunha
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Susanne Mueller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Katlin B Massirer
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Jonathan M Elkins
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Opher Gileadi
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | | | - Bennie B L G Lemmens
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | - Hatylas Azevedo
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Rafael M Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| |
Collapse
|
3
|
Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med (Wars) 2024; 19:20240981. [PMID: 38868315 PMCID: PMC11167713 DOI: 10.1515/med-2024-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a high mortality rate, high resistance to cytotoxic chemotherapy, and radiotherapy due to its highly aggressive nature. The pathophysiology of GBM is characterized by multifarious genetic abrasions that deactivate tumor suppressor genes, induce transforming genes, and over-secretion of pro-survival genes, resulting in oncogene sustainability. Synthetic lethality is a destructive process in which the episode of a single genetic consequence is tolerable for cell survival, while co-episodes of multiple genetic consequences lead to cell death. This targeted drug approach, centered on the genetic concept of synthetic lethality, is often selective for DNA repair-deficient GBM cells with restricted toxicity to normal tissues. DNA repair pathways are key modalities in the generation, treatment, and drug resistance of cancers, as DNA damage plays a dual role as a creator of oncogenic mutations and a facilitator of cytotoxic genomic instability. Although several research advances have been made in synthetic lethality modalities for GBM therapy, no review article has summarized these therapeutic modalities. Thus, this review focuses on the innovative advances in synthetic lethality modalities for GBM therapy.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Volta Region, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
4
|
Kim DY, Yun H, You JE, Lee JU, Kang DH, Ryu YS, Koh DI, Jin DH. Inactivation of VRK1 sensitizes ovarian cancer to PARP inhibition through regulating DNA-PK stability. Exp Cell Res 2024; 438:114036. [PMID: 38614421 DOI: 10.1016/j.yexcr.2024.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.
Collapse
Affiliation(s)
- Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyeseon Yun
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ji-Eun You
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ji-U Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hee Kang
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
5
|
Navarro-Carrasco E, Monte-Serrano E, Campos-Díaz A, Rolfs F, de Goeij-de Haas R, Pham TV, Piersma SR, González-Alonso P, Jiménez CR, Lazo PA. VRK1 Regulates Sensitivity to Oxidative Stress by Altering Histone Epigenetic Modifications and the Nuclear Phosphoproteome in Tumor Cells. Int J Mol Sci 2024; 25:4874. [PMID: 38732093 PMCID: PMC11084957 DOI: 10.3390/ijms25094874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.
Collapse
Affiliation(s)
- Elena Navarro-Carrasco
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Eva Monte-Serrano
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Aurora Campos-Díaz
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Frank Rolfs
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Thang V. Pham
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Sander R. Piersma
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Paula González-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Pedro A. Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| |
Collapse
|
6
|
Navarro-Carrasco E, Campos-Díaz A, Monte-Serrano E, Rolfs F, de Goeij-de Haas R, Pham TV, Piersma SR, Jiménez CR, Lazo PA. Loss of VRK1 alters the nuclear phosphoproteome in the DNA damage response to doxorubicin. Chem Biol Interact 2024; 391:110908. [PMID: 38367682 DOI: 10.1016/j.cbi.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Dynamic chromatin remodeling requires regulatory mechanisms for its adaptation to different nuclear function, which are likely to be mediated by signaling proteins. In this context, VRK1 is a nuclear Ser-Thr kinase that regulates pathways associated with transcription, replication, recombination, and DNA repair. Therefore, VRK1 is a potential regulatory, or coordinator, molecule in these processes. In this work we studied the effect that VRK1 depletion has on the basal nuclear and chromatin phosphoproteome, and their associated pathways. VRK1 depletion caused an alteration in the pattern of the nuclear phosphoproteome, which is mainly associated with nucleoproteins, ribonucleoproteins, RNA splicing and processing. Next, it was determined the changes in proteins associated with DNA damage that was induced by doxorubicin treatment. Doxorubicin alters the nuclear phosphoproteome affecting proteins implicated in DDR, including DSB repair proteins NBN and 53BP1, cellular response to stress and chromatin organization proteins. In VRK1-depleted cells, the effect of doxorubicin on protein phosphorylation was reverted to basal levels. The nuclear phosphoproteome patterns induced by doxorubicin are altered by VRK1 depletion, and is enriched in histone modification proteins and chromatin associated proteins. These results indicate that VRK1 plays a major role in processes requiring chromatin remodeling in its adaptation to different biological contexts.
Collapse
Affiliation(s)
- Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| | - Aurora Campos-Díaz
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| | - Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| | - Frank Rolfs
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Thang V Pham
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Sander R Piersma
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Connie R Jiménez
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, E-37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007, Salamanca, Spain.
| |
Collapse
|
7
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|
8
|
Chen D, Zhou W, Chen J, Wang J. Comprehensively prognostic and immunological analysis of VRK Serine/Threonine Kinase 1 in pan-cancer and identification in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:15504-15524. [PMID: 38157278 PMCID: PMC10781469 DOI: 10.18632/aging.205389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND VRK1 is a member of the vaccinia-related kinase (VRK) family of serine/threonine protein kinases, which is related to the occurrence and development of malignant tumors. The expression pattern, predictive value, and biological function of VRK1 in various cancers remain largely elusive and warrant further investigation. METHODS Public databases, such as TCGA, GTEx, and UCEC, were utilized to comprehensively analyze the expression of VRK1 across multiple cancer types. Prognostic significance was assessed through Univariate Cox regression and Kaplan-Meier analyses. Additionally, Spearman's correlation analysis was employed to explore the potential associations between VRK1 expression and various factors, including tumor microenvironment scores, immune cell infiltration, and immune-related genes. Moreover, to validate the findings, differential expression of VRK1 in HCC tissues and cell lines was further confirmed using qPCR, Western blot, and immunohistochemistry techniques. RESULTS The upregulation of VRK1 was observed in most cancer types, and was associated with worse prognosis in ACC, KICH, KIRP, LGG, LIHC, LUAD, MESO, and PCPG. In various cancers, VRK1 expression exhibited positive correlations with immune infiltrating cells, immune checkpoint-related genes, TMB, and MSI. Furthermore, the promoter methylation status of VRK1 varied across different tumor types, and this variation was associated with patient prognosis in certain cancers. In our experimental analyses, we observed significantly elevated expression of VRK1 in both HCC tissues and HCC cells. Functionally, we found that the downregulation of VRK1 had a profound impact on HCC cells, leading to a significant decrease in their proliferation, migration, and invasion capabilities. CONCLUSION The expression of VRK1 exerts a notable influence on the prognosis of several tumors and exhibits a strong correlation with tumor immune infiltration. Moreover, in the context of HCC, VRK1 may act as an oncogene, actively promoting tumor progression.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, China
| | - Wuhan Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, China
| | - Jiafei Chen
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, China
| | - Jingui Wang
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China
| |
Collapse
|
9
|
Menez V, Kergrohen T, Shasha T, Silva-Evangelista C, Le Dret L, Auffret L, Subecz C, Lancien M, Ajlil Y, Vilchis IS, Beccaria K, Blauwblomme T, Oberlin E, Grill J, Castel D, Debily MA. VRK3 depletion induces cell cycle arrest and metabolic reprogramming of pontine diffuse midline glioma - H3K27 altered cells. Front Oncol 2023; 13:1229312. [PMID: 37886173 PMCID: PMC10599138 DOI: 10.3389/fonc.2023.1229312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
We previously identified VRK3 as a specific vulnerability in DMG-H3K27M cells in a synthetic lethality screen targeting the whole kinome. The aim of the present study was to elucidate the mechanisms by which VRK3 depletion impact DMG-H3K27M cell fitness. Gene expression studies after VRK3 knockdown emphasized the inhibition of genes involved in G1/S transition of the cell cycle resulting in growth arrest in G1. Additionally, a massive modulation of genes involved in chromosome segregation was observed, concomitantly with a reduction in the level of phosphorylation of serine 10 and serine 28 of histone H3 supporting the regulation of chromatin condensation during cell division. This last effect could be partly due to a concomitant decrease of the chromatin kinase VRK1 in DMG following VRK3 knockdown. Furthermore, a metabolic switch specific to VRK3 function was observed towards increased oxidative phosphorylation without change in mitochondria content, that we hypothesized would represent a cell rescue mechanism. This study further explored the vulnerability of DMG-H3K27M cells to VRK3 depletion suggesting potential therapeutic combinations, e.g. with the mitochondrial ClpP protease activator ONC201.
Collapse
Affiliation(s)
- Virginie Menez
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thomas Kergrohen
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Tal Shasha
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Claudia Silva-Evangelista
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ludivine Le Dret
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lucie Auffret
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chloé Subecz
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Manon Lancien
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yassine Ajlil
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Irma Segoviano Vilchis
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Kévin Beccaria
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Pediatric Neurosurgery, Necker Enfants Malades, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants Malades, Paris, France
| | - Estelle Oberlin
- Inserm UMRS-MD 1197, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - David Castel
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
10
|
Du N, Zhang B, Zhang Y. Downregulation of VRK1 Inhibits Progression of Lung Squamous Cell Carcinoma through DNA Damage. Can Respir J 2023; 2023:4533504. [PMID: 37547297 PMCID: PMC10403328 DOI: 10.1155/2023/4533504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a common malignancy. And the antitumor effect of bovine pox virus-associated kinase 1 (VRK1) is becoming a hot research topic. Methods VRK1 expression and prognosis in LUSC were analyzed using the GEPIA database. The expression of VRK1 mRNA was detected in 25 LUSC clinical tissue samples by RT-PCR. VRK1 shRNA was transfected into LUSC NCI-H520 and SK-MES-1 cell lines to interfere with VRK1 expression, and the efficiency of VRK1 shRNA interference was detected by the western blot. The effects of VRK1 downregulation on LUSC cell viability, migration, cell cycle, and apoptosis were analyzed by the CCK8 assay, scratch assay, transwell assay, and flow cytometry. The effect of VRK1 downregulation on DNA damage response (DDR) was examined by immunofluorescence staining and western blot assays and further validated by in vivo experiments. Results VRK1 was highly expressed in both LUSC tissues and cells. Survival analysis showed that the overall survival of LUSC patients with high VRK1 expression was significantly lower than that of LUSC patients with low VRK1 expression (P=0.0026). The expression level of the VRK1 gene was significantly higher in cancer tissues of LUSC patients than in paracancerous tissues. After transfection of VRK1 shRNA in both LUSC cells, cell activity decreased (P < 0.001), migration ability started to be inhibited (P < 0.001), the ratio of G0/G1 phase cells increased (P < 0.001), and apoptosis rate increased (P < 0.001). Immunofluorescence and western blot results showed that shVRK1 increased the level of γ-H2A.X (P < 0.001) and promoted apoptosis of tumor cells (P < 0.001). In addition, the results of animal experiments showed that shVRK1 had antitumor effects (P < 0.001) and a combined effect with DOX (P < 0.001). Conclusion The downregulation of VRK1 significantly affected the proliferation, apoptosis, migration, and cell cycle progression of LUSC cells via DDR, suggesting that VRK1 is a suitable target for potential LUSC therapy.
Collapse
Affiliation(s)
- Ning Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| |
Collapse
|
11
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
12
|
Shields JA, Meier SR, Bandi M, Mulkearns-Hubert EE, Hajdari N, Ferdinez MD, Engel JL, Silver DJ, Shen B, Zhang W, Hubert CG, Mitchell K, Shakya S, Zhao SC, Bejnood A, Zhang M, Tjin Tham Sjin R, Wilker E, Lathia JD, Andersen JN, Chen Y, Li F, Weber B, Huang A, Emmanuel N. VRK1 Is a Synthetic-Lethal Target in VRK2-Deficient Glioblastoma. Cancer Res 2022; 82:4044-4057. [PMID: 36069976 PMCID: PMC9627132 DOI: 10.1158/0008-5472.can-21-4443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic-lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2-M arrest and DNA damage. The VRK1-VRK2 synthetic-lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line-derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. SIGNIFICANCE A paralog synthetic-lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Hajdari
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | - Kelly Mitchell
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sajina Shakya
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | - Fang Li
- Tango Therapeutics, Boston, Massachusetts
| | | | - Alan Huang
- Tango Therapeutics, Boston, Massachusetts
| | - Natasha Emmanuel
- Tango Therapeutics, Boston, Massachusetts.,Corresponding Author: Natasha Emmanuel, Tango Therapeutics, 201 Brookline Avenue, Suite 901, Boston, MA 02215. Phone: 857-320-4900, E-mail:
| |
Collapse
|
13
|
So J, Mabe NW, Englinger B, Chow KH, Moyer SM, Yerrum S, Trissal MC, Marques JG, Kwon JJ, Shim B, Pal S, Panditharatna E, Quinn T, Schaefer DA, Jeong D, Mayhew DL, Hwang J, Beroukhim R, Ligon KL, Stegmaier K, Filbin MG, Hahn WC. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight 2022; 7:e158755. [PMID: 36040810 PMCID: PMC9675470 DOI: 10.1172/jci.insight.158755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.
Collapse
Affiliation(s)
- Jonathan So
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nathaniel W Mabe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Bernhard Englinger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kin-Hoe Chow
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sydney M Moyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Smitha Yerrum
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Trissal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joana G Marques
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason J Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brian Shim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sangita Pal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eshini Panditharatna
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Quinn
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel A Schaefer
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daeun Jeong
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David L Mayhew
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Justin Hwang
- Department of Medicine and
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Oncologic Pathology and
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Wu J, Li T, Ji H, Chen Z, Zhai B. VRK1 Predicts Poor Prognosis and Promotes Bladder Cancer Growth and Metastasis In Vitro and In Vivo. Front Pharmacol 2022; 13:874235. [PMID: 35559251 PMCID: PMC9086458 DOI: 10.3389/fphar.2022.874235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system with growing morbidity and diagnostic rate in recent years. Therefore, identifying new molecular biomarkers that inhibit the progression of bladder cancer is needed for developing further therapeutics. This study found a new potential treatment target: vaccinia-related kinase 1 (VRK1) and explored the function and mechanism of VRK1 in the development of bladder cancer. First, TCGA database and tissue microarray analysis showed that VRK1 was significantly upregulated in bladder cancer. Kaplan-Meier survival analysis indicates that the OS and PFS of the VRK1 high expression group were significantly lower than the VRK1 low expression group (p = 0.002, p = 0.005). Cox multi-factor analysis results show that VRK1 expression is an independent risk factor affecting tumor progress. The maximum tumor diameter, staging, and adjuvant chemotherapy also have a certain impact on tumor progression (p < 0.05). In internal validation, the column C index is 0.841 (95% CI, 0.803-0.880). In addition, cell functional studies have shown that VRK1 can significantly inhibit the proliferation, migration, and invasiveness of bladder cancer cells. In vivo, nude mice transplanted tumors further prove that low VRK1 can significantly inhibit the proliferation capacity of bladder cancer cells. In summary, VRK1 expression is significantly related to the staging, grade, and poor prognosis of patients with bladder cancer. At the same time, in vivo and in vitro experiments have shown that downregulation of VRK1 can significantly inhibit the proliferation of bladder cancer cells. These findings provide a basis for using VRK1 as a potential therapeutic target for patients with bladder cancer.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Tao Li
- Department of Medical Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hao Ji
- Department of Urology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhi Chen
- Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, China
| | - Baoqian Zhai
- Department of Oncology Radiotherapy, Yancheng No. 1 People's Hospital, Yancheng, China
| |
Collapse
|
15
|
Budziszewski GR, Zhao Y, Spangler CJ, Kedziora KM, Williams M, Azzam D, Skrajna A, Koyama Y, Cesmat A, Simmons H, Arteaga E, Strauss J, Kireev D, McGinty R. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res 2022; 50:4355-4371. [PMID: 35390161 PMCID: PMC9071384 DOI: 10.1093/nar/gkac198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.
Collapse
Affiliation(s)
| | - Yani Zhao
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Bioinformatics and Analytics Research Collaborative, University of North Carolina, Chapel Hill, NC, USA
| | - Michael R Williams
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Dalal N Azzam
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Yuka Koyama
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Andrew P Cesmat
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Holly C Simmons
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Eyla C Arteaga
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dmitri Kireev
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Carrión-Marchante R, Frezza V, Salgado-Figueroa A, Pérez-Morgado MI, Martín ME, González VM. DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14050473. [PMID: 34067799 PMCID: PMC8156982 DOI: 10.3390/ph14050473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer.
Collapse
|
17
|
Campillo-Marcos I, García-González R, Navarro-Carrasco E, Lazo PA. The human VRK1 chromatin kinase in cancer biology. Cancer Lett 2021; 503:117-128. [PMID: 33516791 DOI: 10.1016/j.canlet.2020.12.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
VRK1 is a nuclear Ser-Thr chromatin kinase that does not mutate in cancer, and is overexpressed in many types of tumors and associated with a poor prognosis. Chromatin VRK1 phosphorylates several transcription factors, including p53, histones and proteins implicated in DNA damage response pathways. In the context of cell proliferation, VRK1 regulates entry in cell cycle, chromatin condensation in G2/M, Golgi fragmentation, Cajal body dynamics and nuclear envelope assembly in mitosis. This kinase also controls the initial chromatin relaxation associated with histone acetylation, and the non-homologous-end joining (NHEJ) DNA repair pathway, which involves sequential steps such as γH2AX, NBS1 and 53BP1 foci formation, all phosphorylated by VRK1, in response to ionizing radiation or chemotherapy. In addition, VRK1 can be an alternative target for therapies based on synthetic lethality strategies. Therefore, VRK1 roles on proliferation have a pro-tumorigenic effect. Functions regulating chromatin stability and DNA damage responses have a protective anti-tumor role in normal cells, but in tumor cells can also facilitate resistance to genotoxic treatments.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Raúl García-González
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
18
|
Serafim RM, de Souza Gama FH, Dutra LA, dos Reis CV, Vasconcelos SNS, da Silva Santiago A, Takarada J, Di Pillo F, Azevedo H, Mascarello A, Elkins JM, Massirer KB, Gileadi O, Guimarães CRW, Couñago RM. Development of Pyridine-based Inhibitors for the Human Vaccinia-related Kinases 1 and 2. ACS Med Chem Lett 2019; 10:1266-1271. [PMID: 31531195 PMCID: PMC6746079 DOI: 10.1021/acsmedchemlett.9b00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Vaccinia-related kinases 1 and 2 (VRK1 and VRK2) are human Ser/Thr protein kinases associated with increased cell division and neurological disorders. Nevertheless, the cellular functions of these proteins are not fully understood. Despite their therapeutic potential, there are no potent and specific inhibitors available for VRK1 or VRK2. We report here the discovery and elaboration of an aminopyridine scaffold as a basis for VRK1 and VRK2 inhibitors. The most potent compound for VRK1 (26) displayed an IC50 value of 150 nM and was fairly selective in a panel of 48 human kinases (selectivity score S(50%) of 0.04). Differences in compound binding mode and substituent preferences between the two VRKs were identified by the structure-activity relationship combined with the crystallographic analysis of key compounds. We expect our results to serve as a starting point for the design of more specific and potent inhibitors against each of the two VRKs.
Collapse
Affiliation(s)
- Ricardo
A. M. Serafim
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | | | - Luiz A. Dutra
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Caio V. dos Reis
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Stanley N. S. Vasconcelos
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - André da Silva Santiago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Jéssica
E. Takarada
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Fúlvia Di Pillo
- PhD
Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-886, Brazil
| | | | | | - Jonathan M. Elkins
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Katlin B. Massirer
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Opher Gileadi
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.
| | | | - Rafael M. Couñago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| |
Collapse
|
19
|
Campillo-Marcos I, Lazo PA. Olaparib and ionizing radiation trigger a cooperative DNA-damage repair response that is impaired by depletion of the VRK1 chromatin kinase. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:203. [PMID: 31101118 PMCID: PMC6525392 DOI: 10.1186/s13046-019-1204-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Background The VRK1 chromatin kinase regulates the organization of locally altered chromatin induced by DNA damage. The combination of ionizing radiation with inhibitors of DNA damage responses increases the accumulation of DNA damage in cancer cells, which facilitates their antitumor effect, a process regulated by VRK1. Methods Tumor cell lines with different genetic backgrounds were treated with olaparib to determine their effect on the activation of DNA repair pathways induced by ionizing radiation. The effect of combining olaparib with depletion of the chromatin kinase VRK1 was studied in the context of double-strand breaks repair pathway after treatment with ionizing radiation. The initiation and progression of DDR were studied by specific histone acetylation, as a marker of local chromatin relaxation, and formation of γH2AX and 53BP1 foci. Results In this work, we have studied the effect that VRK1 by itself or in collaboration with olaparib, an inhibitor of PARP, has on the DNA oxidative damage induced by irradiation in order to identify its potential as a new drug target. The combination of olaparib and ionizing radiation increases DNA damage permitting a significant reduction of their respective doses to achieve a similar amount of DNA damage detected by γH2AX and 53BP1 foci. Different treatment combinations of olaparib and ionizing radiation permitted to reach the maximum level of DNA damage at lower doses of both treatments. Furthermore, we have studied the effect that depletion of the VRK1 chromatin kinase, a regulator of DDR, has on this response. VRK1 knockdown impaired all steps in the DDR induced by these treatments, which were detected by a reduction of sequential markers such as H4K16 ac, γH2AX, NBS1 and 53BP1. Moreover, this effect of VRK1 is independent of TP53 or ATM, two genes frequently mutated in cancer. Conclusion The protective DNA damage response induced by ionizing radiation is impaired by the combination of olaparib with depletion of VRK1, and can be used to reduce doses of radiation and their associated toxicity. Proteins implicated in DNA damage responses are suitable targets for development of new therapeutic strategies and their combination can be an alternative form of synthetic lethality. Electronic supplementary material The online version of this article (10.1186/s13046-019-1204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Experimental Therapeutics and Traslational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Traslational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|