1
|
Shao Y, Yang Z, Miao W, Yu X, Pu Y. Circ_0005015 upregulates BACH1 to promote aggressive behaviors in glioblastoma by sponging microRNA-382-5p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4139-4151. [PMID: 38032493 DOI: 10.1007/s00210-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
To investigate the potential role and molecular mechanism of circ_0005015 in GBM progression. Circ_0005015, microRNA-382-5p (miR-382-5p), and BTB domain and CNC homolog 1 (BACH1) levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was determined by MTT, colony formation, and EdU assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were assessed using wound healing and transwell assays. Glucose accumulation and lactate levels were examined by the corresponding kit. RNA pull-down and dual-luciferase reporter assays were performed to confirm the interaction between miR-382-5p and circ_0005015 or BACH1. Protein levels of MMP9, PCNA, and BACH1 were examined using western blot assay. Role of circ_0005015 on tumor growth in vivo was analyzed using a xenograft tumor model. Circ_0005015 content was up-regulated in GBM patients and cells, its knockdown restrained GBM cell proliferation, migration, invasion, glycolysis, and triggered apoptosis. Mechanistically, we found that circ_0005015 could directly interact with miR-382-5p and serve as a miRNA sponge to regulate BACH1 expression. In addition, circ_0005015 knockdown might repress tumor growth in vivo. Circ_0005015 boosted GBM progression via binding to miR-382-5p to up-regulate BACH1, which may offer new effective targets for GBM treatment.
Collapse
Affiliation(s)
- Yun Shao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhengxiang Yang
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Weifeng Miao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Xiangrong Yu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yi Pu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
2
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
3
|
Della Monica R, Buonaiuto M, Cuomo M, Pagano C, Trio F, Costabile D, de Riso G, Cicala FS, Raia M, Franca RA, Del Basso De Caro M, Sorrentino D, Navarra G, Coppola L, Tripodi L, Pastore L, Hench J, Frank S, Schonauer C, Catapano G, Bifulco M, Chiariotti L, Visconti R. Targeted inhibition of the methyltransferase SETD8 synergizes with the Wee1 inhibitor adavosertib in restraining glioblastoma growth. Cell Death Dis 2023; 14:638. [PMID: 37758718 PMCID: PMC10533811 DOI: 10.1038/s41419-023-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.
Collapse
Affiliation(s)
- Rosa Della Monica
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy.
| | - Michela Buonaiuto
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Mariella Cuomo
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Federica Trio
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
| | - Davide Costabile
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- SEMM-European School of Molecular Medicine, University of Napoli "Federico II", Napoli, Italy
| | - Giulia de Riso
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Francesca Sveva Cicala
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Maddalena Raia
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
| | | | | | | | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lorella Tripodi
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lucio Pastore
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Juergen Hench
- Institute for Medical Genetics and Pathology, Basel University Hospitals, Basel, Switzerland
| | - Stephan Frank
- Institute for Medical Genetics and Pathology, Basel University Hospitals, Basel, Switzerland
| | | | | | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lorenzo Chiariotti
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy.
| | - Roberta Visconti
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Institute for the Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research of Italy, Napoli, Italy.
| |
Collapse
|
4
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
5
|
Ke B, Ye K. SETD8 promotes glycolysis in colorectal cancer via regulating HIF1α/HK2 axis. Tissue Cell 2023; 82:102065. [PMID: 36921492 DOI: 10.1016/j.tice.2023.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Glycolysis is one of the factors influencing cancer cell growth and metastasis. Here, we aimed to investigate the role of SETD8 gene, which is a pro-oncogene. Using bioinformatics tools including Ualcan, Timer, GEPIA, and PrognoScan to study the expression of SETD8 in colorectal cancer, we found that SETD8 expression was higher in colon cancer tissues than that in normal tissues. Higher levels of SETD8 predicted poorer survival of patients. This piqued our interest, so we transfected SETD8 knockdown and overexpression plasmids into colorectal cancer cells and found that SETD8 overexpression enhanced proliferation and glycolysis in colon cancer cells, while SETD8 knockdown decreased cell proliferation and glycolysis. Mechanistically, we examined the expression of HIF1α and HK2 protein by western-blot assay and found that SETD8 activated the HIF1α/HK2 pathway. Then, we treated SETD8-overexpressed cells with HIF1α inhibitor and found that the pro-tumor growth and glycolytic effects of SETD8 were reversed, indicating that SETD8 promoted the growths of colorectal cancer cells by upregulating the HIF1α /HK2 pathway.
Collapse
Affiliation(s)
- Bingxin Ke
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311121, China.
| | - Kejun Ye
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
6
|
Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Roles for the methyltransferase SETD8 in DNA damage repair. Clin Epigenetics 2022; 14:34. [PMID: 35246238 PMCID: PMC8897848 DOI: 10.1186/s13148-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetic posttranslational modifications are critical for fine-tuning gene expression in various biological processes. SETD8 is so far the only known lysyl methyltransferase in mammalian cells to produce mono-methylation of histone H4 at lysine 20 (H4K20me1), a prerequisite for di- and tri-methylation. Importantly, SETD8 is related to a number of cellular activities, impinging upon tissue development, senescence and tumorigenesis. The double-strand breaks (DSBs) are cytotoxic DNA damages with deleterious consequences, such as genomic instability and cancer origin, if unrepaired. The homology-directed repair and canonical nonhomologous end-joining are two most prominent DSB repair pathways evolved to eliminate such aberrations. Emerging evidence implies that SETD8 and its corresponding H4K20 methylation are relevant to establishment of DSB repair pathway choice. Understanding how SETD8 functions in DSB repair pathway choice will shed light on the molecular basis of SETD8-deficiency related disorders and will be valuable for the development of new treatments. In this review, we discuss the progress made to date in roles for the lysine mono-methyltransferase SETD8 in DNA damage repair and its therapeutic relevance, in particular illuminating its involvement in establishment of DSB repair pathway choice, which is crucial for the timely elimination of DSBs.
Collapse
Affiliation(s)
- Libo Xu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ling Zhang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xindan Hu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Hui Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
7
|
Li X, Liu Z, Xia C, Yan K, Fang Z, Fan Y. SETD8 stabilized by USP17 epigenetically activates SREBP1 pathway to drive lipogenesis and oncogenesis of ccRCC. Cancer Lett 2021; 527:150-163. [PMID: 34942305 DOI: 10.1016/j.canlet.2021.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, epigenetic modifications, including DNA methylation, histone modification and noncoding RNA (ncRNA)-associated gene silencing, have received increasing attention from the scientific community. Many studies have demonstrated that epigenetic regulation can render dynamic alterations in the transcriptional potential of a cell, which then affects the cell's biological function. The initiation and development of clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell cancer (RCC), is also closely related to genomic alterations by epigenetic modification. For ccRCC, lipid accumulation is one of the most typical characteristics. In other words, dysregulation of lipid uptake and synthesis occurs in ccRCC, which inversely promotes cancer proliferation and progression. However, the link among epigenetic alterations, lipid biosynthesis and renal cancer progression remains unclear. SETD8 is a histone methyltransferase and plays pivotal roles in cell cycle regulation and oncogenesis of various cancers, but its role in RCC is not well understood. In this study, we discovered that SETD8 was significantly overexpressed in RCC tumors, which was positively related to lipid storage and correlated with advanced tumor grade and stage and poor patient prognosis. Depletion of SETD8 by siRNAs or inhibitor UNC0379 diminished fatty acid (FA) de novo synthesis, cell proliferation and metastasis in ccRCC cells. Mechanistically, SETD8, which was posttranslationally stabilized by USP17, could transcriptionally modulate sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in fatty acid biosynthesis and lipogenesis, by monomethylating the 20th lysine of the H4 histone, elevating lipid biosynthesis and accumulation in RCC and further promoting cancer progression and metastasis. Taken together, the USP17/SETD8/SREBP1 signaling pathway plays a pivotal role in promoting RCC progression. SETD8 might be a novel biomarker and potential therapeutic target for treating RCC.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China; Key Laboratory of Cardio-vascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, China.
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Chuanyou Xia
- The First Affiliated Hospital of Shandong First Medical University/Shandong Provincial Qian-Fo-Shan Hospital, China.
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| |
Collapse
|
8
|
Peng G, Liu Y, Yang C, Shen C. MicroRNA-25 promotes cell proliferation, migration and invasion in glioma by directly targeting cell adhesion molecule 2. Exp Ther Med 2021; 23:16. [PMID: 34815768 PMCID: PMC8593921 DOI: 10.3892/etm.2021.10938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous microRNAs (miRNAs/miRs) have been demonstrated to serve oncogenic or suppressive roles in glioma. Exploration of the underlying molecular mechanism of miRNAs in the development and progression of glioma is beneficial for the identification of novel therapeutic targets. In the present study, the function of miR-25 in glioma progression, as well as its underlying mechanism, were investigated. It was determined that miR-25 was significantly upregulated in glioma tissues and cell lines compared with normal brain tissues and cells, respectively. Furthermore, high expression levels of miR-25 were associated with an advanced clinical stage. The knockdown of miR-25 expression significantly reduced glioma cell proliferation, migration and invasion. Cell adhesion molecule 2 (CADM2) was identified as a direct target of miR-25 in glioma cells. Moreover, CADM2 expression level was significantly downregulated and inversely correlated with miR-25 expression level in glioma tissues, indicating that the expression of CADM2 was negatively regulated by miR-25. The inhibition of CADM2 expression counteracted the effects on glioma cell proliferation, migration and invasion caused by miR-25 downregulation. Furthermore, CADM2 knockdown considerably promoted the proliferation and migration of glioma cells. In summary, the present study demonstrated that miR-25 was significantly upregulated in glioma and that it promoted glioma cell proliferation, migration and invasion, at least partially, by directly targeting CADM2. These findings expanded the understanding of the molecular mechanism that underlies glioma progression.
Collapse
Affiliation(s)
- Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chenxing Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
10
|
Nie X, Liu H, Wei X, Li L, Lan L, Fan L, Ma H, Liu L, Zhou Y, Hou R, Chen WD. miRNA-382-5p Suppresses the Expression of Farnesoid X Receptor to Promote Progression of Liver Cancer. Cancer Manag Res 2021; 13:8025-8035. [PMID: 34712060 PMCID: PMC8547345 DOI: 10.2147/cmar.s324072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background The dysregulation of microRNAs (miRNAs) and hepatotoxicity due to the aberrant accumulation of bile acids (BAs) are notorious causes that predispose an individual to the development of hepatocellular carcinoma (HCC). Farnesoid X receptor (FXR), encoded by NR1H4 gene, has been identified as a crucial BA receptor to maintain the homeostasis of BA pool and its expression is decreased in HCC. miR-382-5p plays an important role in the pathogenesis of many human malignancies and was reported to promote the proliferation and differentiation of normal liver cells and liver regeneration. However, there is still some controversy about its role in HCC microenvironment. This study aims to explore the expression pattern of miR-382-5p in HCC and its role in regulating FXR during the development of HCC. Methods Tissues collected from 30 HCC patients were subjected to extraction of total RNA and quantitative real-time PCR (qRT-PCR) for the analyses of miR-382-5p expression and NR1H4 mRNA levels, and their expressions were verified by analyzing the online HCC-related GSE datasets. The role of miR-382-5p in regulating cellular proliferation and expression of FXR in different HCC cell lines was analyzed by qRT-PCR, Western Blot, real-time cellular analysis (RTCA) and luciferase reporter assays. The role of miR-382-5p in regulating downstream genes of FXR in HCC cells was also analyzed. Results miR-382-5p was upregulated in HCC tissues and inversely associated with the downregulation of NR1H4 mRNA levels. The luciferase reporter assay proved that miR-382-5p directly targeted the 3ʹ-untranslated region (3ʹ-UTR) of human NR1H4 mRNA. Overexpression of miR-382-5p led to a malignant proliferation of HCC cells by suppressing the expression of FXR. In contrast, blocking the endogenous miR-382-5p was sufficient to suppress the cellular proliferation rate of HCC through increasing FXR expression. Additionally, miR-382-5p inhibited the expression of some target genes of FXR, including SHP, FGF19 and SLC51A, and this inhibitory effect was FXR-dependent. Conclusion Therefore, miR-382-5p promotes the progression of HCC in vitro by suppressing FXR and could serve as a valuable therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Lanqing Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Lei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Ruifang Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, People's Republic of China
| |
Collapse
|
11
|
Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment. Drug Discov Today 2021; 26:2423-2430. [PMID: 34022460 DOI: 10.1016/j.drudis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
SET8 is the only lysine methyltransferase that can specifically monomethylate the histone H4K20. SET8-mediated protein modifications are largely involved in the regulation of cell cycle, DNA repair, gene transcription, cell apoptosis, and other vital physiological processes. The aberrant expression of SET8 is closely linked to the proliferation, invasion, metastasis, and prognosis of a variety of cancers. As a consequence, targeting SET8 could be an appealing strategy for cancer therapy. In this article, we introduce the molecular structure of SET8, followed by summarizing its roles in various biological pathways. Crucially, we highlight the potential functions of SET8 in tumors, as well as progress in the development of SET inhibitors for cancer treatment.
Collapse
|
12
|
Wei X, Xiao B, Wang L, Zang L, Che F. Potential new targets and drugs related to histone modifications in glioma treatment. Bioorg Chem 2021; 112:104942. [PMID: 33965781 DOI: 10.1016/j.bioorg.2021.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Glioma accounts for 40-50% of craniocerebral tumors, whose outcome rarely improves after standard treatment. The development of new therapeutic targets for glioma treatment has important clinical significance. With the deepening of research on gliomas, recent researchers have found that the occurrence and development of gliomas is closely associated with histone modifications, including methylation, acetylation, phosphorylation, and ubiquitination. Additionally, evidence has confirmed the close relationship between histone modifications and temozolomide (TMZ) resistance. Therefore, histone modification-related proteins have been widely recognized as new therapeutic targets for glioma treatment. In this review, we summarize the potential histone modification-associated targets and related drugs for glioma treatment. We have further clarified how histone modifications regulate the pathogenesis of gliomas and the mechanism of drug action, providing novel insights for the current clinical glioma treatment. Herein, we have also highlighted the limitations of current clinical therapies and have suggested future research directions and expected advances in potential areas of disease prognosis. Due to the complicated glioma pathogenesis, in the present review, we have acknowledged the limitations of histone modification applications in the related clinical treatment.
Collapse
Affiliation(s)
- Xiuhong Wei
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, China
| | - Bolian Xiao
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Key Laboratory of Neurophysiology, Key Laboratory of Tumor Biology, Linyi, Shandong, China
| | - Liying Wang
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Department of Neurology, the Clinical Medical College of Weifang Medical College, Weifang, Shandong, China
| | - Lanlan Zang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Key Laboratory of Neurophysiology, Key Laboratory of Tumor Biology, Linyi, Shandong, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Fengyuan Che
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Key Laboratory of Neurophysiology, Key Laboratory of Tumor Biology, Linyi, Shandong, China.
| |
Collapse
|
13
|
Wang Z, Wu H, Yan H, Cai T, Dai J, Liu Q. LINC00210 exerts oncogenic roles in glioma by sponging miR-328. Exp Ther Med 2020; 20:137. [PMID: 33110451 PMCID: PMC7581018 DOI: 10.3892/etm.2020.9266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to serve key roles in human cancer types, including glioma. However, to the best of our knowledge, the expression and function of lncRNA LINC00210 in glioma have not previously been investigated. The present study was conducted to explore the regulatory role of LINC00210 in glioma cells. The present study demonstrated that LINC00210 was significantly upregulated in glioma tissues, and high expression of LINC00210 was significantly associated with advanced clinical stage and poor prognosis in patients with glioma. It was found that LINC00210 knockdown significantly inhibited the proliferation and migration of U251 and T98G cells. The results of luciferase reporter assays indicated that LINC00210 could directly target microRNA (miR)-328 in glioma cells, and miR-328 expression was negatively correlated with LINC00210 expression in glioma tissues. LINC00210 knockdown significantly promoted the expression of miR-328 in U251 and T98G cells. Moreover, silencing miR-328 impaired the inhibitory effects of LINC00210 knockdown on the proliferation and migration of U251 and T98G cells. Therefore, the present results suggested that LINC00210 may exert an oncogenic role in glioma via sponging miR-328.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Wu
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Yan
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tao Cai
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jin Dai
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiang Liu
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
14
|
LPP and RYR2 Gene Polymorphisms Correlate with the Risk and the Prognosis of Astrocytoma. J Mol Neurosci 2019; 69:628-635. [DOI: 10.1007/s12031-019-01391-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
15
|
Wang J, Chen C, Yan X, Wang P. The role of miR-382-5p in glioma cell proliferation, migration and invasion. Onco Targets Ther 2019; 12:4993-5002. [PMID: 31417288 PMCID: PMC6601051 DOI: 10.2147/ott.s196322] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Dysregulation of a single miRNA can play an essential role in tumor development and progression. Recent studies have shown that miR-382-5p can function as an oncogene or as a tumor suppressor in different types of cancers. However, the role of miR-382-5p in glioma growth and expansion has not been characterized. Methods: Quantitative real time-PCR (qRT-PCR) was used to measure miR-382-5p levels in glioma tissues. The miR-382-5p mimics and inhibitors were employed to upregulate and downregulate miR-382-5p expression respectively in glioma cells. EdU assay was used to assess cell proliferation. Wound healing and Transwell assays were employed to evaluate cell migration and invasion. Western blot was used to measure the changes of epithelial-to-mesenchymal transition (EMT) markers and the potential miR-382-5p target genes. Results: We found that miR-382-5p levels were low in glioma tissues as determined by qRT-PCR. EdU assay showed that upregulation of miR-382-5p significantly decreased cell proliferation in both U87 and U251 cells. Wound healing rate was significantly decreased in response to miR-382-5p mimics and significantly increased in response to miR-382-5p inhibitors. Transwell migration assays further confirmed the inhibitory effects of miR-382-5p on the migration in both U251 and U87 cells. Transwell invasion assays showed that upregulation of miR-382-5p resulted in a remarkable decrease in the number of invading cells, whereas downregulation of miR-382-5p led to a significant increase in the numbers of invading U87 and U251 cells. In addition, overexpression of miR-382-5p decreased the protein levels of N-cadherin, Snail and Slug, and increased E-cadherin levels, in glioma cells. Furthermore, miR-382-5p levels negatively correlated with Y box-binding protein 1 (YBX1) in lower grade glioma tissues, and negatively regulated the expression of YBX1 in glioma cells. Conclusion: In summary, miR-382-5p inhibited proliferation, migration, invasion, and the EMT in glioma cells, possibly through targeting the oncogene YBX1.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Neurosurgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Chunfeng Chen
- Department of Neurosurgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Xu Yan
- Department of Neurosurgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Peng Wang
- Department of Neurosurgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215000, People's Republic of China
| |
Collapse
|
16
|
He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, Ma J, Cai H, Li Z, Xue Y. MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:9. [PMID: 30621721 PMCID: PMC6323715 DOI: 10.1186/s13046-018-0990-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Abstract
Background RNA binding proteins (RBPs) have been reported to interact with RNAs to regulate gene expression. Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs, which involved in the angiogenesis of tumor. The purpose of this study is to elucidate the potential roles and molecular mechanisms of MOV10 and circ-DICER1 in regulating the angiogenesis of glioma-exposed endothelial cells (GECs). Methods The expressions of circ-DICER1, miR-103a-3p and miR-382-5p were detected by real-time PCR. The expressions of MOV10, ZIC4, Hsp90 and PI3K/Akt were detected by real-time PCR or western blot. The binding ability of circ-SHKBP1 and miR-544a / miR-379, ZIC4 and miR-544a / miR-379 were analyzed with Dual-Luciferase Reporter System or RIP experiment. The direct effects of ZIC4 on the Hsp90β promoter were analyzed by the ChIP experiment. The cell viability, migration and tube formation in vitro were detected by CCK-8, Transwell assay and Matrigel tube formation assay. The angiogenesis in vivo was evaluated by Matrigel plug assay. Student’s t-test (two tailed) was used for comparisons between two groups. One-way analysis of variance (ANOVA) was used for multi-group comparisons followed by Bonferroni post-hoc analysis. Results The expressions of RNA binding proteins MOV10, circ-DICER1, ZIC4, and Hsp90β were up-regulated in GECs, while miR103a-3p/miR-382-5p were down-regulated. MOV10 binding circ-DICER1 regulated the cell viability, migration, and tube formation of GECs. And the effects of both MOV10 and circ-DICER1 silencing were better than the effects of MOV10 or circ-DICER1 alone silencing. In addition, circ-DICER1 acts as a molecular sponge to adsorb miR-103a-3p / miR-382-5p and impair the negative regulation of miR-103a-3p / miR-382-5p on ZIC4 in GECs. Furthermore, ZIC4 up-regulates the expression of its downstream target Hsp90β, and Hsp90 promotes the cell viability, migration, and tube formation of GECs by activating PI3K/Akt signaling pathway. Conclusions MOV10 / circ-DICER1 / miR-103a-3p (miR-382-5p) / ZIC4 pathway plays a vital role in regulating the angiogenesis of glioma. Our findings not only provides novel mechanisms for the angiogenesis of glioma, but also provide potential targets for anti-angiogenesis therapies of glioma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0990-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lini Zhao
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
17
|
The association between rs16917496 T/C polymorphism of SET8 gene and cancer risk in Asian populations: a meta-analysis. Biosci Rep 2018; 38:BSR20180702. [PMID: 30341251 PMCID: PMC6239252 DOI: 10.1042/bsr20180702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have demonstrated close associations between SET8 rs16917496 T/C polymorphism and cancer risk, but the results of published studies were not consistent. We therefore performed this meta-analysis to explore the associations between rs16917496 T/C polymorphism and cancer risk. Five online databases were searched. Odds ratios (ORs) with a 95% confidence interval (CI) were calculated to assess the association between rs16917496 T/C polymorphism and cancer risk. In addition, heterogeneity, accumulative, sensitivity analysis, and publication bias were conducted to check the statistical power. Overall, 13 publications involving 5878 subjects were identified according to included criteria. No significant cancer risk was observed in genetic model of SET8 rs16917496 T/C polymorphism in Asian populations (C vs. T: OR = 1.04, 95%CI = 0.88–1.23, P = 0.63%; TC vs. TT: OR = 1.17, 95%CI = 0.96–1.24, P = 0.11%; CC vs. TT: OR = 0.90, 95%CI = 0.60–1.37, P = 0.63; TC+CC vs. TT: OR = 1.11, 95%CI = 0.90–1.38, P = 0.33; CC vs. TT+TC: OR = 0.92, 95%CI = 0.65–1.30, P = 0.63). Furthermore, similar associations were found in the subgroup analysis of race diversity, control design, genotyping methods, and different cancer types. In summary, our meta-analysis indicated that the SET8 rs16917496 T/C polymorphism may not play a critical role in cancer development in Asian populations.
Collapse
|
18
|
Lukyanova EN, Snezhkina AV, Kalinin DV, Pokrovsky AV, Golovyuk AL, Stepanov OA, Pudova EA, Razmakhaev GS, Orlova MV, Polyakov AP, Kiseleva MV, Kaprin AD, Kudryavtseva AV. Analysis of mutations in CDC27, CTBP2, HYDIN and KMT5A genes in carotid paragangliomas. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from paraganglionic tissue of the carotid body localizing at the bifurcation of carotid artery. These tumors are slowly growing, but occasionally they become aggressive and metastatic. Surgical treatment remains high-risk and extremely challenging; radiation and chemotherapy are poorly effective. The study of molecular pathogenesis of CPGLs will allow developing novel therapeutic approaches and revealing biomarkers. Previously, we performed the exome sequencing of 52 CPGLs and estimated mutational load (ML). Paired histologically normal tissues or blood were unavailable, so potentially germline mutations were excluded from the analysis with strong filtering conditions using 1000 Genomes Project and ExAC databases. In this work, ten genes (ZNF717, CDC27, FRG2C, FAM104B, CTBP2, HLA-DRB1, HYDIN, KMT5A, MUC3A, and PRSS3) characterized by the highest level of mutational load were analyzed. Using several prediction algorithms (SIFT, PolyPhen-2, MutationTaster, and LRT), potentially pathogenic mutations were identified in four genes (CDC27, CTBP2, HYDIN, and KMT5A). Many of these mutations occurred in the majority of cases, and their mutation type was checked using exome sequencing data of blood prepared with the same exome enrichment kit that was used for preparation of exome libraries from CPGLs. The majority of the mutations were germline that can apparently be associated with annotation errors in 1000 Genomes Pro ject and ExAC. However, part of the mutations identified in CDC27, CTBP2, HYDIN, and KMT5A remain potentially pathogenic, and there is a large body of data on the involvement of these genes in the formation and progression of other tumors. This allows considering CDC27, CTBP2, HYDIN, and KMT5A genes as potentially associated with CPGL pathogenesis and requires taking them into account in further investigations. Thus, there is a necessity to improve the methods for identification of cancer-asso ciated genes as well as pathogenic mutations.
Collapse
Affiliation(s)
| | | | - D. V. Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - A. V. Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - A. L. Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | | | - E. A. Pudova
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - G. S. Razmakhaev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - M. V. Orlova
- Peoples’ Friendship University of Russia (RUDN University)
| | - A. P. Polyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - M. V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - A. V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, RAS; National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| |
Collapse
|