1
|
Jafari S, Motedayyen H, Javadi P, Jamali K, Moradi Hasan-Abad A, Atapour A, Sarab GA. The roles of lncRNAs and miRNAs in pancreatic cancer: a focus on cancer development and progression and their roles as potential biomarkers. Front Oncol 2024; 14:1355064. [PMID: 38559560 PMCID: PMC10978783 DOI: 10.3389/fonc.2024.1355064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Jamali
- Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
2
|
Liang H, Zhu Y, Wu YK. Ampulla of Vater carcinoma: advancement in the relationships between histological subtypes, molecular features, and clinical outcomes. Front Oncol 2023; 13:1135324. [PMID: 37274233 PMCID: PMC10233008 DOI: 10.3389/fonc.2023.1135324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
The incidence of ampulla of Vater carcinoma, a type of periampullary cancer, has been increasing at an annual percentage rate of 0.9%. However, patients with ampulla of Vater carcinoma have quite different prognoses due to the heterogeneities of the tissue origin of this carcinoma. In addition to TNM staging, histological subtypes and molecular features of ampulla of Vater carcinoma are the key factors for predicting the clinical outcomes of patients. Fortunately, with the development of testing technology, information on the histological subtypes and molecular features of ampulla of Vater carcinoma is increasingly being analyzed in-depth. Patients with the pancreaticobiliary subtype have shorter survival times. In immunohistochemical examination, high cutoff values of positive MUC1 staining can be used to accurately predict the outcome of patients. Mutant KRAS, TP53, negative SMAD4 expression, and microsatellite stability are related to poor prognosis, while the clinical value of BRCA1/BRCA2 mutations is limited for prognosis. Testing the histological subtypes and molecular characteristics of ampulla of Vater carcinoma not only is the key to prognosis analysis but also provides extra information for targeted treatment to improve the clinical outcomes of patients.
Collapse
|
3
|
Innocenti L, Ortenzi V, Scarpitta R, Montemurro N, Pasqualetti F, Asseri R, Lazzi S, Szumera-Cieckiewicz A, De Ieso K, Perrini P, Naccarato AG, Scatena C, Fanelli GN. The Prognostic Impact of Gender, Therapeutic Strategies, Molecular Background, and Tumor-Infiltrating Lymphocytes in Glioblastoma: A Still Unsolved Jigsaw. Genes (Basel) 2023; 14:501. [PMID: 36833428 PMCID: PMC9956148 DOI: 10.3390/genes14020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the adoption of novel therapeutical approaches, the outcomes for glioblastoma (GBM) patients remain poor. In the present study, we investigated the prognostic impact of several clinico-pathological and molecular features as well as the role of the cellular immune response in a series of 59 GBM. CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) were digitally assessed on tissue microarray cores and their prognostic role was investigated. Moreover, the impact of other clinico-pathological features was evaluated. The number of CD4+ and CD8+ is higher in GBM tissue compared to normal brain tissue (p < 0.0001 and p = 0.0005 respectively). A positive correlation between CD4+ and CD8+ in GBM is present (rs = 0.417-p = 0.001). CD4+ TILs are inversely related to overall survival (OS) (HR = 1.79, 95% CI 1.1-3.1, p = 0.035). The presence of low CD4+ TILs combined with low CD8+ TILs is an independent predictor of longer OS (HR 0.38, 95% CI 0.18-0.79, p = 0.014). Female sex is independently related to longer OS (HR 0.42, 95% CI 0.22-0.77, p = 0.006). Adjuvant treatment, methylguanine methyltransferase (MGMT) promoter methylation, and age remain important prognostic factors but are influenced by other features. Adaptive cell-mediated immunity can affect the outcomes of GBM patients. Further studies are needed to elucidate the commitment of the CD4+ cells and the effects of different TILs subpopulations in GBM.
Collapse
Affiliation(s)
- Lorenzo Innocenti
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Valerio Ortenzi
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Rosa Scarpitta
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Nicola Montemurro
- Department of Neurosurgery, Pisa University Hospital, 56126 Pisa, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Pisa University Hospital, 56126 Pisa, Italy
- Department of Oncology, Oxford University, Oxford OX1 4BH, UK
| | - Roberta Asseri
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Stefano Lazzi
- Anatomic Pathology Unit, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Anna Szumera-Cieckiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Katia De Ieso
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Paolo Perrini
- Department of Neurosurgery, Pisa University Hospital, 56126 Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Circulating Cell-Free DNA in Renal Cell Carcinoma: The New Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14184359. [PMID: 36139519 PMCID: PMC9497114 DOI: 10.3390/cancers14184359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Early diagnosis of renal cell carcinoma (RCC) is challenging and typically incidental. Currently, several therapeutic strategies are used for the treatment; however, no established predictive biomarker has been established yet, and the optimal treatment choice and sequence of use remain unclear. Moreover, the recurrence occurs in about one-third of patients after tumor resection. Although several prognostic classification systems have been proposed, most of them showed only limited potential in recurrence prediction. Therefore, identifying simple, reliable, and easily accessible biomarkers to anticipate the diagnosis, effectively evaluate the risk of relapse, and predict the response to the therapeutic regimens is an unmet clinical need. Circulating cell-free DNA (cfDNA), released from cancer cells into the bloodstream, was shown to be a non-invasive, viable, inexpensive method to diagnose and monitor several solid malignancies, designed as a potential blood RCC biomarker. This review aims to summarize the state of the art of the current genetic and epigenetic techniques of plasma and serum cfDNA detection and outline the potential application of liquid biopsy in RCC. Abstract Tumor biopsy is still the gold standard for diagnosing and prognosis renal cell carcinoma (RCC). However, its invasiveness, costs, and inability to accurately picture tumor heterogeneity represent major limitations to this procedure. Analysis of circulating cell-free DNA (cfDNA) is a non-invasive cost-effective technique that has the potential to ease cancer detection and prognosis. In particular, a growing body of evidence suggests that cfDNA could be a complementary tool to identify and prognosticate RCC while providing contemporary mutational profiling of the tumor. Further, recent research highlighted the role of cfDNA methylation profiling as a novel method for cancer detection and tissue-origin identification. This review synthesizes current knowledge on the diagnostic, prognostic, and predictive applications of cfDNA in RCC, with a specific focus on the potential role of cell-free methylated DNA (cfMeDNA).
Collapse
|
5
|
Abel F, Giebel B, Frey UH. Agony of choice: How anesthetics affect the composition and function of extracellular vesicles. Adv Drug Deliv Rev 2021; 175:113813. [PMID: 34029645 DOI: 10.1016/j.addr.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
The choice of the anesthetic regime is suggested to affect clinical outcomes following major surgery. Propofol was shown to exert beneficial effects on different cancer outcomes, while volatile anesthetics may be favorable in cardiac surgery. Recently, extracellular vesicles (EVs) were discovered as essential signal mediators in physiological and pathophysiological processes including carcinogenesis and metastasis. Furthermore, depending on their cell source, EVs fulfill therapeutic functions. In addition to extracorporally produced EVs, appropriate systemic intervention such as remote ischemic preconditioning (RIPC) is considered to promote endogenous release of therapeutically active EVs to mediate cardioprotective effects. EVs are assembled in cell-type specific manners and the composition of EVs is not only affected by the disease, but also by the applied anesthetic of anesthetized patients. Here, we compare known impacts of anesthetic agents on outcomes in cancer surgery and cardioprotection and link these effects to the composition and therapeutic potential of EVs.
Collapse
Affiliation(s)
- Frederik Abel
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Bernd Giebel
- Institut für Transfusionsmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Virchowstraße 179, 45147 Essen, Germany.
| | - Ulrich H Frey
- Klinik für Anästhesiologie, operative Intensivmedizin, Schmerz- und Palliativmedizin, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Hölkeskampring 40, 44625 Herne, Germany
| |
Collapse
|
6
|
Cheng G, Li M, Ma X, Nan F, Zhang L, Yan Z, Li H, Zhang G, Han Y, Xie L, Guo X. Systematic Analysis of microRNA Biomarkers for Diagnosis, Prognosis, and Therapy in Patients With Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:543817. [PMID: 33344224 PMCID: PMC7746831 DOI: 10.3389/fonc.2020.543817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The ever-increasing morbidity and mortality of clear cell renal cell carcinoma (ccRCC) urgently demands updated biomarkers. MicroRNAs (miRNAs) are involved in diverse biological processes such as cell proliferation, differentiation, apoptosis by regulating their target genes' expression. In kidney cancers, miRNAs have been reported to be involved in tumorigenesis and to be the diagnostic, prognostic, and therapeutic response biomarkers. Here, we performed a systematic analysis for ccRCC-related miRNAs as biomarkers by searching keywords in the NCBI PubMed database and found 118 miRNAs as diagnostic biomarkers, 28 miRNAs as prognostic biomarkers, and 80 miRNAs as therapeutic biomarkers in ccRCC. miRNA-21, miRNA-155, miRNA-141, miRNA-126, and miRNA-221, as significantly differentially expressed miRNAs between cancer and normal tissues, play extensive roles in the cell proliferation, differentiation, apoptosis of ccRCC. GO and KEGG enrichment analysis of these miRNAs' target genes through Metascape showed these target genes are enriched in Protein Domain Specific Binding (GO:0019904). In this paper, we identified highly specific miRNAs in the pathogenesis of ccRCC and explored their potential applications for diagnosis, prognosis, and treatment of ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Longxiang Xie
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Palmeri M, Funel N, Franco GD, Furbetta N, Gianardi D, Guadagni S, Bianchini M, Pollina LE, Ricci C, Chiaro MD, Candio GD, Morelli L. Tissue microarray-chip featuring computerized immunophenotypical characterization more accurately subtypes ampullary adenocarcinoma than routine histology. World J Gastroenterol 2020; 26:6822-6836. [PMID: 33268964 PMCID: PMC7684454 DOI: 10.3748/wjg.v26.i43.6822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ampullary adenocarcinomas (AACs) are heterogeneous tumors currently classified into three important sub-classes (SC): Intestinal (INT), Pancreato-Biliary (PB) and Mixed-Type (MT). The different subgroups have similar clinical presentation and are treated by pancreatoduodenectomy with curative intent. However, they respond differently to chemotherapy and have different prognostic outcomes. The SC are often difficult to identify with conventional histology alone. The clinical outcome of all three remains unclear, particularly for MT.
AIM To identify two main subtypes of AACs, using an immunohistochemical (IHC) score based on CDX2, CK7 and CK20.
METHODS Tissue samples from 21 patients who had undergone resection of AAC were classified by HE histology and IHC expression of CDX2, CK7 and CK 20. An IHC score was obtained for each marker by counting the number of positive cells (0 = no stained cells; 1 < 25%; 2 < 50% and 3 > 50%) and their intensity (1 = weak; 2 = moderate and 3 = strong). A global score (GS) was then obtained by summation of the IHC scores of each marker. The MT tumors were grouped either with the INT or PB group based on the predominant immuno-molecular phenotype, obtaining only two AACs subtypes. The overall survival in INT and PB patients was obtained by Kaplan-Meier methods.
RESULTS Histological parameters defined the AACs subtypes as follows: 15% INT, 45% PB and 40% MT. Using IHC expression and the GS, 75% and 25% of MT samples were assigned to either the INT or the PB group. The mean value of the GS was 9.5 (range 4-16). All INT samples had a GS above the average, distinct from the PB samples which had a GS score significantly below the average (P = 0.0011). The INT samples were identified by high expression of CDX2 and CK20, whereas PB samples exhibited high expression of CK7 and no expression of CK20 (P = 0.0008). The INT group had a statistically significant higher overall survival than in the PB group (85.7 mo vs 20.3 mo, HR: 8.39; 95%CI: 1.38 to 18.90; P = 0.0152).
CONCLUSION The combination of histopathological and molecular criteria enables the classification of AACs into two clinically relevant histo-molecular phenotypes, which appear to represent distinct disorders with potentially significant changes to the current therapeutic strategies.
Collapse
Affiliation(s)
- Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Niccola Funel
- Division of Surgical Pathology, University-Hospital of Pisa, Pisa 56124, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Luca E Pollina
- Division of Surgical Pathology, University-Hospital of Pisa, Pisa 56124, Italy
| | - Claudio Ricci
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado, Denver, CO 80045, United States
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
8
|
Fassan M, Realdon S, Cascione L, Hahne JC, Munari G, Guzzardo V, Arcidiacono D, Lampis A, Brignola S, Dal Santo L, Agostini M, Bracon C, Maddalo G, Scarpa M, Farinati F, Zaninotto G, Valeri N, Rugge M. Circulating microRNA expression profiling revealed miR-92a-3p as a novel biomarker of Barrett's carcinogenesis. Pathol Res Pract 2020; 216:152907. [PMID: 32131978 DOI: 10.1016/j.prp.2020.152907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
The main intent of secondary prevention strategies for Barrett's esophagus (BE) patients relies in the prompt identification of patients with dysplasia (or intra-epithelial neoplasia; IEN) and early-stage adenocarcinoma (Barrett's adenocarcinoma; BAc). Despite the adequate characterization of the molecular landscape characterizing Barrett's carcinogenesis, no tissue and/or circulating biomarker has been approved for clinical use. A series of 25 serum samples (12 BE, 5 HG-IEN and 8 BAc) were analyzed for comprehensive miRNA profiling and ten miRNAs were found to be significantly dysregulated. In particular seven were upregulated (i.e. miR-92a-3p, miR-151a-5p, miR-362-3p, miR-345-3p, miR-619-3p, miR-1260b, and miR-1276) and three downregulated (i.e. miR-381-3p, miR-502-3p, and miR-3615) in HG-IEN/BAc samples in comparison to non-dysplastic BE. All the identified miRNAs showed significant ROC curves in discriminating among groups with AUC values range of 0.75-0.83. Validation of the results were performed by droplet digital PCR in two out of three tested miRNAs. To understand the cellular source of circulating miR-92a-3p, we analyzed its expression in endoscopy biopsy samples by both qRT-PCR and ISH analyses. As observed in serum samples, miR-92a-3p was over-expressed in HG-IEN/BAc samples in comparison to naïve esophageal squamous mucosa and BE and was mainly localized within the epithelial cells, supporting neoplastic cells as the main source of the circulating miRNA. Our data further demonstrated that circulating miRNAs are a promising mini-invasive diagnostic tool in the secondary follow-up and management of BE patients. Larger multi-Institutional studies should validate and investigate the most adequate miRNAs profile in discriminating BE patients in specific risk classes.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | | | - Luciano Cascione
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), Bellinzona, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens C Hahne
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - Giada Munari
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; Istituto Oncologico Veneto - IOV-IRCCS, Padua, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | - Andrea Lampis
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - Stefano Brignola
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luca Dal Santo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Marco Agostini
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Chiara Bracon
- Beatson West of Scotland Cancer Centre, Glasgow, UK; University of Glasgow, Glasgow, UK
| | - Gemma Maddalo
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Marco Scarpa
- General Surgery Unit, University Hospital of Padua, Padua, Italy
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | | | - Nicola Valeri
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Centre for Molecular Pathology, Royal Marsden Hospital, London, UK.
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; Veneto Cancer Registry, Padua, Italy
| |
Collapse
|
9
|
Fanelli GN, Naccarato AG, Scatena C. Recent Advances in Cancer Plasticity: Cellular Mechanisms, Surveillance Strategies, and Therapeutic Optimization. Front Oncol 2020; 10:569. [PMID: 32391266 PMCID: PMC7188928 DOI: 10.3389/fonc.2020.00569] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The processes of recurrence and metastasis, through which cancer relapses locally or spreads to distant sites in the body, accounts for more than 90% of cancer-related deaths. At present there are very few treatment options for patients at this stage of their disease. The main obstacle to successfully treat advanced cancer is the cells' ability to change in ways that make them resistant to treatment. Understanding the cellular mechanisms that mediate this cancer cell plasticity may lead to improved patient survival. Epigenetic reprogramming, together with tumor microenvironment, drives such dynamic mechanisms favoring tumor heterogeneity, and cancer cell plasticity. In addition, the development of new approaches that can report on cancer plasticity in their native environment have profound implications for studying cancer biology and monitoring tumor progression. We herein provide an overview of recent advancements in understanding the mechanisms regulating cell plasticity and current strategies for their monitoring and therapy management.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
M2 bone marrow-derived macrophage-derived exosomes shuffle microRNA-21 to accelerate immune escape of glioma by modulating PEG3. Cancer Cell Int 2020; 20:93. [PMID: 32231463 PMCID: PMC7099792 DOI: 10.1186/s12935-020-1163-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Background Growing studies have focused on the role of microRNA-21 (miR-21) in glioma, thus our objective was to discuss the effect of M2 bone marrow-derived macrophage (BMDM)-derived exosomes (BMDM-Exos) shuffle miR-21 on biological functions of glioma cells by regulating paternally expressed gene 3 (PEG3). Methods Seventy-one cases of human glioma tissues and 30 cases of non-tumor normal brain tissues were collected and stored in liquid nitrogen. PEG3 and miR-21 expression in glioma tissues was tested. The fasting venous blood of glioma patients and healthy control was collected and centrifuged, and then the supernatant was stored at - 80 °C refrigerator. The contents of interferon (IFN)-γ and transforming growth factor-β1 (TGF-β1) in serum were tested by ELISA. Glioma cells and normal glial cells were cultured to screen the target cells for further in vitro experiments. BMDM-Exos was obtained by ultra-high speed centrifugation and then was identified. BMDM-Exos was co-cultured with U87 cells to detect the biological functions. The fasting venous blood of glioma patients was extracted and treated with ethylene diamine tetraacetic acid-K2 anti-freezing, and then CD8+T cells were isolated. CD8+T cells were co-cultured with U87 cells to detect the CD8+T proliferation, cell cytotoxic activity, U87 cell activity, as well as IFN-γ and TGF-β1 levels. Moreover, BALB/c-nu/nu mice was taken, and the human-nude mouse glioma orthotopic transplantation model was established with U87 cells, and then mice were grouped to test the trends in tumor growth. The brain of mice (fixed by 10% formaldehyde) was sliced to detect the expression of Ki67 and proliferating cell nuclear antigen (PCNA). The spleen of mice was taken to prepare single-cell suspension, and the percentage of T lymphocytes in spleen to CD8+T cells was detected. Results PEG3 expression was decreased and miR-21 expression was increased in glioma cells and tissues. Depleting miR-21 or restoring PEG3 suppressed growth, migration and invasion as well as accelerated apoptosis of glioma cells, also raised CD8+T proliferation, cell cytotoxic activity, and IFN-γ level as well as decreased U87 cell activity and TGF-β1 level. BMDM-Exos shuttle miR-21 promoted migration, proliferation and invasion as well as suppressed apoptosis of glioma cells by reducing PEG3. Exosomes enhanced the volume of tumor, Ki67 and PCNA expression, reduced the percentage of CD8+T cells in glioma mice. Conclusion BMDM-Exos shuffle miR-21 to facilitate invasion, proliferation and migration as well as inhibit apoptosis of glioma cells via inhibiting PEG3, furthermore, promoting immune escape of glioma cells.
Collapse
|
11
|
miRNA-21 promotes cell proliferation and invasion via VHL/PI3K/AKT in papillary thyroid carcinoma. Hum Cell 2019; 32:428-436. [PMID: 31161410 DOI: 10.1007/s13577-019-00254-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the main kind of thyroid carcinoma, most of which are diagnosed in women. MiR-21 has been reported to be upregulated in multiple cancers to effect tumor growth. However, the role of miR-21 in PTC development remains unclear. In this present study, miR-21 and VHL expressions in PTC tissues and cells were evaluated by RT-qPCR and/or western blot. MTT assay and transwell assay were employed to assess cell proliferative and invasive abilities, respectively. Luciferase reporter assay was carried out to identify the target of miR-21and explore its roles in PTC. MiR-21 was upregulated in PTC tissues and cells. Ectopic of miR-21 expression promoted cell proliferative and invasive abilities, while knockdown miR-21 suppressed these in TPC-1 and BCPAP cells. Overexpression of miR-21 predicted poor prognosis in PTC. What is more, luciferase reporter assays showed miR-21 can directly target VHL in PTC cells. Knockdown of miR-21 expression inhibited TPC-1 and BCPAP cell invasion-mediated EMT and proliferation through the PI3K/AKT pathway. In addition, VHL reverses partial function of miR-21 on PTC cell proliferation and invasion. MiR-21 can inhibit cell proliferation and invasion by regulated VHL in PTC cells. The newly identified miR-21/VHL axis might provide a novel insight into the pathogenesis and therapy of PTC.
Collapse
|
12
|
Fassan M, Cui R, Gasparini P, Mescoli C, Guzzardo V, Vicentini C, Munari G, Loupakis F, Lonardi S, Braconi C, Scarpa M, D'Angelo E, Pucciarelli S, Angriman I, Agostini M, D'Incá R, Farinati F, Gafà R, Lanza G, Frankel WL, Croce CM, Valeri N, Rugge M. miR-224 Is Significantly Upregulated and Targets Caspase-3 and Caspase-7 During Colorectal Carcinogenesis. Transl Oncol 2019; 12:282-291. [PMID: 30448733 PMCID: PMC6240712 DOI: 10.1016/j.tranon.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
miR-224 has recently emerged as a driver oncomiR in sporadic colorectal carcinogenesis, but its pathogenetic role is still controversial. A large phenotypical and molecularly characterized series of preinvasive and invasive colorectal lesions was investigated for miR-224 expression by qRT-PCR and in situ hybridization. The caspase-3 and caspase-7 status was also assessed and correlated to miR-224 dysregulation. miR-224 was significantly upregulated during the adenoma-carcinoma sequence and in the context of inflammatory bowel disease dysplastic lesions, whereas its expression was significantly downregulated among BRAF-mutated tumors and in the presence of a DNA mismatch repair deficiency. miR-224 targets caspase-3 and caspase-7 in colorectal cancer, and this inverse relation was already evident from the earliest phases of transformation in intestinal mucosa. The miR-224/caspases axis may represent an interesting field of study for innovative biomarkers/therapeutics for BRAF-mutated/DNA mismatch repair-deficient tumors.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Ri Cui
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pierluigi Gasparini
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Claudia Mescoli
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | | | - Giada Munari
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Fotios Loupakis
- Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Chiara Braconi
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK; Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Marco Scarpa
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Edoardo D'Angelo
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Imerio Angriman
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Marco Agostini
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Renata D'Incá
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Roberta Gafà
- Department of Pathology, University of Ferrara, Ferrara, Italy
| | - Giovanni Lanza
- Department of Pathology, University of Ferrara, Ferrara, Italy
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Carlo Maria Croce
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London, UK; Molecular Pathology Division, Institute of Cancer Research, London and Sutton, UK.
| | - Massimo Rugge
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
13
|
MiR-122 Targets SerpinB3 and Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma. J Clin Med 2019; 8:jcm8020171. [PMID: 30717317 PMCID: PMC6406326 DOI: 10.3390/jcm8020171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
The only first-line treatment approved for advanced hepatocellular carcinoma (HCC) is sorafenib. Since many patients experience drug resistance, the discovery of more effective therapeutic strategies represents an unmet clinical need. MicroRNA (MiR)-122 is downregulated in most HCCs, while oncogenic SerpinB3 is upregulated. Here, we assessed the relationship between miR-122 and SerpinB3 and their influence on cell phenotype and sorafenib resistance in HCC. A bioinformatics analysis identified SerpinB3 among hypothetical miR-122 targets. In SerpinB3-overexpressing HepG2 cells, miR-122 transfection decreased SerpinB3 mRNA and protein levels, whereas miR-122 inhibition increased SerpinB3 expression. Luciferase assay demonstrated the interaction between miR-122 and SerpinB3 mRNA. In an HCC rat model, high miR-122 levels were associated with negative SerpinB3 expression, while low miR-122 levels correlated with SerpinB3 positivity. A negative correlation between miR-122 and SerpinB3 or stem cell markers was found in HCC patients. Anti-miR-122 transfection increased cell viability in sorafenib-treated Huh-7 cells, while miR-122 overexpression increased sorafenib sensitivity in treated cells, but not in those overexpressing SerpinB3. In conclusion, we demonstrated that miR-122 targets SerpinB3, and its low levels are associated with SerpinB3 positivity and a stem-like phenotype in HCC. MiR-122 replacement therapy in combination with sorafenib deserves attention as a possible therapeutic strategy in SerpinB3-negative HCCs.
Collapse
|
14
|
Yuan Y, Liu W, Zhang Y, Zhang Y, Sun S. CircRNA circ_0026344 as a prognostic biomarker suppresses colorectal cancer progression via microRNA-21 and microRNA-31. Biochem Biophys Res Commun 2018; 503:870-875. [DOI: 10.1016/j.bbrc.2018.06.089] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 02/08/2023]
|