1
|
Zhang X, Zhao F, Ma T, Zheng Y, Cao J, Li C, Zhu K. UPLC-Q-TOF/MS-based metabonomics reveals mechanisms for Holothuria leucospilota polysaccharides (HLP)-regulated serum metabolic changes in diabetic rats. Food Chem X 2023; 19:100741. [PMID: 37780338 PMCID: PMC10534105 DOI: 10.1016/j.fochx.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to use metabolomic methods to explore how Holothuria leucospilota polysaccharides (HLP) improved metabolism disorders in the liver of Goto-Kakizaki (GK) rats with spontaneous type 2 diabetes. The results showed that HLP effectively improved the metabolic disorder. Based on KEGG functional analysis, five key biomarkers associated with bile acid metabolism were detected and screened (P < 0.05). The results of serum total bile acid levels and liver damage in diabetic rats further showed the regulatory effects of HLP on bile acid metabolism. The results of bile acid-related gene expression in the liver showed that HLP inhibited liver farnesoid X Receptor - small heterodimer partner (FXR-SHP) signalling and increased the expression of bile acid synthesis genes (P < 0.05). Our results explored the underlying mechanisms by which HLP accelerated cholesterol consumption to anti-hypercholesterolemia and anti-diabetic by inhibiting liver FXR-SHP signaling. HLP's effect on bile acid regulation provides insights into treating T2DM.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fuqiang Zhao
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tingting Ma
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanping Zheng
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| |
Collapse
|
2
|
Jia X, Liu Y, He Y, Yu H, Liu Y, Shen Y, Xu X, Li J. Exposure to microplastics induces lower survival, oxidative stress, disordered microbiota and altered metabolism in the intestines of grass carp (Ctenopharyngodon idella). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Shaaban HH, Alzaim I, El-Mallah A, Aly RG, El-Yazbi AF, Wahid A. Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms. Life Sci 2022; 308:120956. [PMID: 36103959 DOI: 10.1016/j.lfs.2022.120956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important health threat that is strongly linked to components of metabolic syndrome, particularly the low-grade inflammatory changes. Significantly, several of the available anti-diabetic drug classes demonstrate a considerable anti-inflammatory effect, and hence might be of benefit for NAFLD patients. In this study, we used a rat model of diet-induced NAFLD to examine the potential effect of metformin, pioglitazone, dapagliflozin and their combinations on NAFLD manifestations. Rats were fed an atherogenic diet containing 1.25 % cholesterol, 0.5 % cholic acid and 60 % cocoa butter for 6 weeks causing a number of metabolic and hepatic alterations including insulin resistance, dyslipidemia, systemic inflammation, increased hepatic oxidative stress and lipid peroxidation, hepatic steatosis, lobular inflammation, as well as increased markers of liver inflammation and hepatocyte apoptosis. Drug treatment, which started at the third week of NAFLD induction and continued for three weeks, not only ameliorated the observed metabolic impairment, but also functional and structural manifestations of NAFLD. Specifically, anti-diabetic drug treatment reversed markers of systemic and hepatic inflammation, oxidative stress, hepatic fibrosis, and hepatocyte apoptosis. Our findings propose that anti-diabetic drugs with a potential anti-inflammatory effect can ameliorate the manifestations of NAFLD, and thus may provide a therapeutic option for such a condition that is closely associated with metabolic diseases. The detailed pharmacology of these classes in aspects linked to the observed impact on NAFLD requires to be further investigated and translated into clinical studies for tailored therapy specifically targeting NAFLD.
Collapse
Affiliation(s)
- Hager H Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Ibrahim Alzaim
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine the American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania G Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Pharmacy, Al-Alamein International University, Alamein, Egypt.
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Ichimura-Shimizu M, Tsuchiyama Y, Morimoto Y, Matsumoto M, Kobayashi T, Sumida S, Kakimoto T, Oya T, Ogawa H, Yamashita M, Matsuda S, Omagari K, Taira S, Tsuneyama K. A Novel Mouse Model of Nonalcoholic Steatohepatitis Suggests that Liver Fibrosis Initiates around Lipid-Laden Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:31-42. [PMID: 34710382 DOI: 10.1016/j.ajpath.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
While the interaction of cells such as macrophages and hepatic stellate cells is known to be involved in the generation of fibrosis in nonalcoholic steatohepatitis (NASH), the mechanism remains unclear. This study employed a high-fat/cholesterol/cholate (HFCC) diet to generate a model of NASH-related fibrosis to investigate the pathogenesis of fibrosis. Two mouse strains: C57BL/6J, the one susceptible to obesity, and A/J, the one relatively resistant to obesity, developed hepatic histologic features of NASH, including fat deposition, intralobular inflammation, hepatocyte ballooning, and fibrosis, after 9 weeks of HFCC diet. The severity of hepatic inflammation and fibrosis was greater in A/J mice than in the C57BL/6J mice. A/J mice fed HFCC diet exhibited characteristic CD204-positive lipid-laden macrophage aggregation in hepatic parenchyma. Polarized light was used to visualize the Maltese cross, cholesterol crystals within the aggregated macrophages. Fibrosis developed in a ring shape from the periphery of the aggregated macrophages such that the starting point of fibrosis could be visualized histologically. Matrix-assisted laser desorption/ionization mass spectrometry imaging analysis detected a molecule at m/z 772.462, which corresponds to the protonated ion of phosphatidylcholine [P-18:1 (11Z)/18:0] and phosphatidylethanolamine [18:0/20:2 (11Z, 14Z)], in aggregated macrophages adjacent to the fibrotic lesions. In conclusion, the HFCC diet-fed A/J model provides an ideal tool to study fibrogenesis and enables novel insights into the pathophysiology of NASH-related fibrosis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Yosuke Tsuchiyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Matsumoto
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Michiko Yamashita
- Morphological Laboratory Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
5
|
EFFICACY OF AN EXPERIMENTAL MODEL OF NON-ALCOHOLIC FATTY LIVER DISEASE BASED ON A HIGH-FAT DIET WITH CHOLESTEROL. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-2-80-222-226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling Diet-Induced NAFLD and NASH in Rats: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9040378. [PMID: 33918467 PMCID: PMC8067264 DOI: 10.3390/biomedicines9040378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, characterized by hepatic steatosis without any alcohol abuse. As the prevalence of NAFLD is rapidly increasing worldwide, important research activity is being dedicated to deciphering the underlying molecular mechanisms in order to define new therapeutic targets. To investigate these pathways and validate preclinical study, reliable, simple and reproducible tools are needed. For that purpose, animal models, more precisely, diet-induced NAFLD and nonalcoholic steatohepatitis (NASH) models, were developed to mimic the human disease. In this review, we focus on rat models, especially in the current investigation of the establishment of the dietary model of NAFLD and NASH in this species, compiling the different dietary compositions and their impact on histological outcomes and metabolic injuries, as well as external factors influencing the course of liver pathogenesis.
Collapse
Affiliation(s)
- Lydie Carreres
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Zuzana Macek Jílková
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Guillaume Vial
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Inserm U 1300, Hypoxia PathoPhysiology (HP2), 38000 Grenoble, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Hervé Lerat
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Unité Mixte de Service UGA hTAG, Inserm US 046, CNRS UAR 2019, 38700 La Tronche, France
- Correspondence:
| |
Collapse
|
7
|
Cleveland BM, Gao G, Radler LM, Picklo MJ. Hepatic Fatty Acid and Transcriptome Profiles during the Transition from Vegetable- to Fish Oil-Based Diets in Rainbow Trout (Oncorhynchus mykiss). Lipids 2020; 56:189-200. [PMID: 33047832 DOI: 10.1002/lipd.12287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
A finishing diet strategy is effective at increasing fillet long-chain n-3 fatty acid content in fish consuming sustainable plant oil-based diets. This study investigates the outcomes of a fish oil finishing diet upon the hepatic fatty acid and transcriptome profile in rainbow trout (Oncorhynchus mykiss). Fish were placed on one of three feeding treatments: (1) FO: a fish oil (FO) diet for 20 weeks, (2) VO/FO: a vegetable oil (VO) diet during weeks 1-12 then the FO diet for 8 weeks, or (3) VO/fd/FO: the VO diet between weeks 1-12, 2 weeks of feed deprivation, then the FO diet for 6 weeks. Hepatic fatty acid and transcriptome profiles were analyzed at week 12, 14, and 20. Hepatic fatty acid profiles at week 12 were similar to dietary profiles; transcriptomic analyses indicated 131 differentially regulated genes (DEG) between VO- and FO-fed fish, characterized by VO-induced up-regulation of cholesterol and long-chain fatty acyl-CoA synthesis and oxidation-reduction processes. At week 14, the hepatic fatty acid profile was similar between VO/FO and FO, although concentrations of 18:3n-3 remained higher in the VO/FO group. Thirty-three DEG were detected at week 14 with enrichment of genes associated with extracellular matrix assembly, supporting liver remodeling during the early finishing diet period. Only five DEG were detected at week 20 between VO/FO and FO. Collectively, these findings suggest that it takes several weeks for liver to reach a homeostatic state, even after the hepatic fatty acid equilibration following a finishing diet.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Lisa M Radler
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Matthew J Picklo
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND, 58203, USA
| |
Collapse
|
8
|
Magaña-Cerino JM, Tiessen A, Soto-Luna IC, Peniche-Pavía HA, Vargas-Guerrero B, Domínguez-Rosales JA, García-López PM, Gurrola-Díaz CM. Consumption of nixtamal from a new variety of hybrid blue maize ameliorates liver oxidative stress and inflammation in a high-fat diet rat model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|