1
|
Taguchi S, Kawai T, Nakagawa T, Kume H. Latest evidence on clinical outcomes and prognostic factors of advanced urothelial carcinoma in the era of immune checkpoint inhibitors: a narrative review. Jpn J Clin Oncol 2024; 54:254-264. [PMID: 38109484 DOI: 10.1093/jjco/hyad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
The management of advanced (locally advanced or metastatic) urothelial carcinoma has been revolutionized since pembrolizumab was introduced in 2017. Several prognostic factors for advanced urothelial carcinoma treated with pembrolizumab have been reported, including conventional parameters such as performance status and visceral (especially liver) metastasis, laboratory markers such as the neutrophil-to-lymphocyte ratio, sarcopenia, histological/genomic markers such as programmed cell death ligand 1 immunohistochemistry and tumor mutational burden, variant histology, immune-related adverse events, concomitant medications in relation to the gut microbiome, primary tumor site (bladder cancer versus upper tract urothelial carcinoma) and history/combination of radiotherapy. The survival time of advanced urothelial carcinoma has been significantly prolonged (or 'doubled' from 1 to 2 years) after the advent of pembrolizumab, which will be further improved with novel agents such as avelumab and enfortumab vedotin. This review summarizes the latest evidence on clinical outcomes and prognostic factors of advanced urothelial carcinoma in the contemporary era of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taketo Kawai
- Department of Urology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Kato M, Sawayama H, Komohara Y, Hisano Y, Nakamura H, Ohuchi M, Ogawa K, Miyamoto Y, Yoshida N, Baba H. Complete pathologic response after laparoscopic hepatectomy following treatment with nivolumab and ipilimumab for anticancer drug-resistant MSI-high colon cancer liver metastasis consisting of poorly differentiated adenocarcinoma with squamous differentiation: A case report. Clin J Gastroenterol 2024; 17:57-64. [PMID: 37874527 DOI: 10.1007/s12328-023-01855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023]
Abstract
A 56-year-old man referred to our hospital for cecum cancer. Enhanced computed tomography (CT) found swollen reginal lymph nodes and liver metastasis. Magnetic Resonance Imaging (MRI) revealed a solitary lesion on liver (S2). We performed a laparoscopic ileocolic resection and liver partial resection. Tumor pathology showed that these tumors were moderate-differentiated adenocarcinoma (pT3N2bM1 Stage IVA). Genetic examination revealed MSI-high, KRAS wild type, and BRAF wild type. After surgery, two liver metastases were found in S4 and S7 as new lesion in EOB-MRI. We started chemotherapy with the FOLFOFIRI plus bevacizumab regimen, but two liver metastases were enlarged after six cycles of chemotherapy. As a second-line treatment, nivolumab and ipilimumab combination therapy was started. After three cycles of these therapy, both of these tumors shrinkage were observed. We performed laparoscopic liver resection. In specimens, there were no malignant cells. Pathological study revealed that in the initial surgery specimen, PD-L1 protein was detected in both primary and metastatic lesions, and HLA-DR, CK5/6 in liver. No recurrence was observed at 6 months after the surgery. In conclusion, we reported the case of anticancer drug-resistant MSI-high colon cancer liver metastasis was resected after treatment with immune-checkpoint inhibitors and a pathological complete response was found.
Collapse
Affiliation(s)
- Moeko Kato
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Surgery, Kumamoto General Hospital, 10-10, Toricho, Yatushiro, Kumamoto, 866-0856, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Surgery, Kumamoto General Hospital, 10-10, Toricho, Yatushiro, Kumamoto, 866-0856, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Hisano
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiro Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mayuko Ohuchi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Katsuhiro Ogawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
3
|
Shi H, Zhang W, Zhang L, Zheng Y, Dong T. Comparison of different predictive biomarker testing assays for PD-1/PD-L1 checkpoint inhibitors response: a systematic review and network meta-analysis. Front Immunol 2023; 14:1265202. [PMID: 37822932 PMCID: PMC10562577 DOI: 10.3389/fimmu.2023.1265202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Background Accurate prediction of efficacy of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) checkpoint inhibitors is of critical importance. To address this issue, a network meta-analysis (NMA) comparing existing common measurements for curative effect of PD-1/PD-L1 monotherapy was conducted. Methods We searched PubMed, Embase, the Cochrane Library database, and relevant clinical trials to find out studies published before Feb 22, 2023 that use PD-L1 immunohistochemistry (IHC), tumor mutational burden (TMB), gene expression profiling (GEP), microsatellite instability (MSI), multiplex IHC/immunofluorescence (mIHC/IF), other immunohistochemistry and hematoxylin-eosin staining (other IHC&HE) and combined assays to determine objective response rates to anti-PD-1/PD-L1 monotherapy. Study-level data were extracted from the published studies. The primary goal of this study was to evaluate the predictive efficacy and rank these assays mainly by NMA, and the second objective was to compare them in subgroup analyses. Heterogeneity, quality assessment, and result validation were also conducted by meta-analysis. Findings 144 diagnostic index tests in 49 studies covering 5322 patients were eligible for inclusion. mIHC/IF exhibited highest sensitivity (0.76, 95% CI: 0.57-0.89), the second diagnostic odds ratio (DOR) (5.09, 95% CI: 1.35-13.90), and the second superiority index (2.86). MSI had highest specificity (0.90, 95% CI: 0.85-0.94), and DOR (6.79, 95% CI: 3.48-11.91), especially in gastrointestinal tumors. Subgroup analyses by tumor types found that mIHC/IF, and other IHC&HE demonstrated high predictive efficacy for non-small cell lung cancer (NSCLC), while PD-L1 IHC and MSI were highly efficacious in predicting the effectiveness in gastrointestinal tumors. When PD-L1 IHC was combined with TMB, the sensitivity (0.89, 95% CI: 0.82-0.94) was noticeably improved revealed by meta-analysis in all studies. Interpretation Considering statistical results of NMA and clinical applicability, mIHC/IF appeared to have superior performance in predicting response to anti PD-1/PD-L1 therapy. Combined assays could further improve the predictive efficacy. Prospective clinical trials involving a wider range of tumor types are needed to establish a definitive gold standard in future.
Collapse
Affiliation(s)
- Haotong Shi
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenxia Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yawen Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Taotao Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Miyama Y, Kaneko G, Nishimoto K, Yasuda M. Lower neutrophil-to-lymphocyte ratio and positive programmed cell death ligand-1 expression are favorable prognostic markers in patients treated with pembrolizumab for urothelial carcinoma. Cancer Med 2022; 11:4236-4245. [PMID: 35699000 PMCID: PMC9678108 DOI: 10.1002/cam4.4779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are effective in some cancer patients; however, they may show no efficacy in others. Predictive biomarkers are crucial for appropriately selecting the patients who receive ICI therapy. This study aimed to clarify the predictors of disease progression in urothelial carcinoma (UC) patients treated with an ICI, pembrolizumab. METHODS We analyzed the response patterns of 50 UC patients who were treated with pembrolizumab, as well as the association between survival and clinicopathological factors. Clinical factors included age, sex, body mass index, clinical courses, laboratory data, metastases, and adverse events. Pathological factors included special variant, squamous differentiation, programmed cell death ligand-1 (PD-L1) expression, CD8-positive lymphocytes density, and CDKN2A/p16 homozygous deletion. RESULTS During pembrolizumab treatment, four (8%), 11 (22%), and eight (16%) patients achieved the best-case scenarios of complete response, partial response, and stable disease, respectively. Twenty-seven patients (54%) showed progressive disease. In this study, younger age, lower preoperative neutrophil-to-lymphocyte ratio (NLR), and positive PD-L1 expression were significantly correlated with longer progression-free survival and overall survival. Moreover, lower NLR and positive PD-L1 expression were independently associated with longer OS in multivariate analysis. CONCLUSIONS Based on our observations, lower NLR and positive PD-L1 expression may be independent favorable prognostic markers in UC patients treated with pembrolizumab. These results suggest that both host and tumor status can reflect the effectiveness of pembrolizumab among patients with UC.
Collapse
Affiliation(s)
- Yu Miyama
- Department of PathologySaitama Medical University International Medical CenterSaitamaJapan
| | - Go Kaneko
- Department of Uro‐OncologySaitama Medical University International Medical CenterSaitamaJapan
| | - Koshiro Nishimoto
- Department of Uro‐OncologySaitama Medical University International Medical CenterSaitamaJapan
| | - Masanori Yasuda
- Department of PathologySaitama Medical University International Medical CenterSaitamaJapan
| |
Collapse
|
5
|
Madureira AC. Programmed Cell Death-Ligand-1 expression in Bladder Schistosomal Squamous Cell Carcinoma – There’s room for Immune Checkpoint Blockage? Front Immunol 2022; 13:955000. [PMID: 36148227 PMCID: PMC9486959 DOI: 10.3389/fimmu.2022.955000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is a carcinogen type 1 since 1994. It is strongly associated with bladder squamous-cell carcinoma in endemic regions, where it accounts for 53-69% of bladder-carcinoma cases. This histological subtype is associated with chronic inflammation being more aggressive and resistant to conventional chemo and radiotherapy. Immune-Checkpoint-Blockage (ICB) therapies targeting the Programmed-Cell-Death-Protein-1(PD-1)/Programmed-Cell-Death-Ligand-1(PD-L1) axis showed considerable success in treating advanced bladder urothelial carcinoma. PD-L1 is induced by inflammatory stimuli and expressed in immune and tumor cells. The binding of PD-L1 with PD-1 modulates immune response leading to T-cell exhaustion. PD-L1 presents in several isoforms and its expression is dynamic and can serve as a companion marker for patients’ eligibility, allowing the identification of positive tumors that are more likely to respond to ICB therapy. The high PD-L1 expression in bladder-urothelial-carcinoma and squamous-cell carcinoma may affect further ICB-therapy application and outcomes. In general, divergent histologies are ineligible for therapy. These treatments are expensive and prone to auto-immune side effects and resistance. Thus, biomarkers capable of predicting therapy response are needed. Also, the PD-L1 expression assessment still needs refinement. Studies focused on squamous cell differentiation associated with S. haematobium remain scarce. Furthermore, in low and middle-income-regions, where schistosomiasis is endemic, SCC biomarkers are needed. This mini-review provides an overview of the current literature regarding PD-L1 expression in bladder-squamous-cell-carcinoma and schistosomiasis. It aims to pinpoint future directions, controversies, challenges, and the importance of PD-L1 as a biomarker for diagnosis, disease aggressiveness, and ICB-therapy prognosis in bladder-schistosomal-squamous-cell carcinoma.
Collapse
|
6
|
Tripathi N, Jo Y, Tripathi A, Sayegh N, Li H, Nussenzveig R, Haaland B, Thomas VM, Gupta S, Maughan BL, Swami U, Pal SK, Grivas P, Agarwal N, Sirohi D. Genomic landscape of locally advanced or metastatic urothelial carcinoma with squamous differentiation compared to pure urothelial carcinoma. Urol Oncol 2022; 40:493.e1-493.e7. [DOI: 10.1016/j.urolonc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/01/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
7
|
Wei Z, Zhang Y. Immune Cells in Hyperprogressive Disease under Immune Checkpoint-Based Immunotherapy. Cells 2022; 11:cells11111758. [PMID: 35681453 PMCID: PMC9179330 DOI: 10.3390/cells11111758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Immunotherapy, an antitumor therapy designed to activate antitumor immune responses to eliminate tumor cells, has been deeply studied and widely applied in recent years. Immune checkpoint inhibitors (ICIs) are capable of preventing the immune responses from being turned off before tumor cells are eliminated. ICIs have been demonstrated to be one of the most effective and promising tumor treatments and significantly improve the survival of patients with multiple tumor types. However, low effective rates and frequent atypical responses observed in clinical practice limit their clinical applications. Hyperprogressive disease (HPD) is an unexpected phenomenon observed in immune checkpoint-based immunotherapy and is a challenge facing clinicians and patients alike. Patients who experience HPD not only cannot benefit from immunotherapy, but also experience rapid tumor progression. However, the mechanisms of HPD remain unclear and controversial. This review summarized current findings from cell experiments, animal studies, retrospective studies, and case reports, focusing on the relationships between various immune cells and HPD and providing important insights for understanding the pathogenesis of HPD.
Collapse
Affiliation(s)
- Zhanqi Wei
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China;
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Changping District, Beijing 102218, China
| | - Yuewei Zhang
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Changping District, Beijing 102218, China
- Correspondence:
| |
Collapse
|
8
|
Mollica V, Massari F, Rizzo A, Ferrara R, Menta AK, Adashek JJ. Genomics and Immunomics in the Treatment of Urothelial Carcinoma. Curr Oncol 2022; 29:3499-3518. [PMID: 35621673 PMCID: PMC9139747 DOI: 10.3390/curroncol29050283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022] Open
Abstract
Urothelial carcinoma is a complex cancer with genomic immunomic drivers that have prognostic and predictive treatment implications. Identifying potential targetable alterations via next-generation sequencing and RNA sequencing may allow for elucidation of such targets and exploitation with targeted therapeutics. The role of immunotherapy in treating urothelial carcinoma has shown benefit, but it is unclear in which patients immunotherapeutics have the highest yield. Continuing efforts into better identifying which patients may benefit most from targeted therapies, immunotherapies, and combination therapies may ultimately lead to improved outcomes for patients with this disease.
Collapse
Affiliation(s)
- Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy; (V.M.); (F.M.)
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy; (V.M.); (F.M.)
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico ‘Don Tonino Bello’, I.R.C.C.S. Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Molecular Immunology Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Arjun K. Menta
- Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
9
|
Li M, Zhong X, Du F, Wu X, Li M, Chen Y, Zhao Y, Shen J, Yang Z, Xiao Z. Current Understanding and Future Perspectives on Hyperprogressive Disease Highlight the Tumor Microenvironment. J Clin Pharmacol 2022; 62:1059-1078. [PMID: 35303368 DOI: 10.1002/jcph.2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer immunotherapy with immune checkpoint inhibitors has revolutionized traditional cancer therapy. Although many patients have achieved long-term survival benefits from immune checkpoint inhibitors treatment, there are still some patients who develop rapid tumor progression after immunotherapy, known as hyperprogressive disease. Here we summarize current knowledge on hyperprogressive disease after immune checkpoint inhibitors treatment to promote more thorough understanding of the disease. This review focuses on multiple aspects of hyperprogressive disease, especially the tumor microenvironment, with the hope that more reliable biomarkers and therapeutics could be established for hyperprogressive disease in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiqi Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Zhongming Yang
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| |
Collapse
|
10
|
Kerzeli IK, Lord M, Doroszko M, Elgendy R, Chourlia A, Stepanek I, Larsson E, van Hooren L, Nelander S, Malmstrom PU, Dragomir A, Segersten U, Mangsbo SM. Single-cell RNAseq and longitudinal proteomic analysis of a novel semi-spontaneous urothelial cancer model reveals tumor cell heterogeneity and pretumoral urine protein alterations. PLoS One 2021; 16:e0253178. [PMID: 34232958 PMCID: PMC8262791 DOI: 10.1371/journal.pone.0253178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer, one of the most prevalent malignancies worldwide, remains hard to classify due to a staggering molecular complexity. Despite a plethora of diagnostic tools and therapies, it is hard to outline the key steps leading up to the transition from high-risk non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC). Carcinogen-induced murine models can recapitulate urothelial carcinogenesis and natural anti-tumor immunity. Herein, we have developed and profiled a novel model of progressive NMIBC based on 10 weeks of OH-BBN exposure in hepatocyte growth factor/cyclin dependent kinase 4 (R24C) (Hgf-Cdk4R24C) mice. The profiling of the model was performed by histology grading, single cell transcriptomic and proteomic analysis, while the derivation of a tumorigenic cell line was validated and used to assess in vivo anti-tumor effects in response to immunotherapy. Established NMIBC was present in females at 10 weeks post OH-BBN exposure while neoplasia was not as advanced in male mice, however all mice progressed to MIBC. Single cell RNA sequencing analysis revealed an intratumoral heterogeneity also described in the human disease trajectory. Moreover, although immune activation biomarkers were elevated in urine during carcinogen exposure, anti-programmed cell death protein 1 (anti-PD1) monotherapy did not prevent tumor progression. Furthermore, anti-PD1 immunotherapy did not control the growth of subcutaneous tumors formed by the newly derived urothelial cancer cell line. However, treatment with CpG-oligodeoxynucleotides (ODN) significantly decreased tumor volume, but only in females. In conclusion, the molecular map of this novel preclinical model of bladder cancer provides an opportunity to further investigate pharmacological therapies ahead with regards to both targeted drugs and immunotherapies to improve the strategies of how we should tackle the heterogeneous tumor microenvironment in urothelial bladder cancer to improve responses rates in the clinic.
Collapse
Affiliation(s)
- Iliana K. Kerzeli
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Milena Doroszko
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aikaterini Chourlia
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ivan Stepanek
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elinor Larsson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Uno Malmstrom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anca Dragomir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sara M. Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|