1
|
Zhang Z, Chen F, Deng X. Screening and identification of susceptibility genes for cervical cancer via bioinformatics analysis and the construction of an mitophagy-related genes diagnostic model. J Cancer Res Clin Oncol 2024; 150:423. [PMID: 39294534 PMCID: PMC11410911 DOI: 10.1007/s00432-024-05952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE This study aims to utilize bioinformatics methods to systematically screen and identify susceptibility genes for cervical cancer, as well as to construct and validate an mitophagy-related genes (MRGs) diagnostic model. The objective is to increase the understanding of the disease's pathogenesis and improve early diagnosis and treatment. METHOD We initially collected a large amount of genomic data, including gene expression profile and single nucleotide polymorphism (SNP) data, from the control group and Cervical cancer (CC) patients. Through bioinformatics analysis, which employs methods such as differential gene expression analysis and pathway enrichment analysis, we identified a set of candidate susceptibility genes associated with cervical cancer. RESULTS MRGs were extracted from single-cell RNA sequencing data, and a network graph was constructed on the basis of intercellular interaction data. Furthermore, using machine learning algorithms, we constructed a clinical prognostic model and validated and optimized it via extensive clinical data. Through bioinformatics analysis, we successfully identified a group of genes whose expression significantly differed during the development of CC and revealed the biological pathways in which these genes are involved. Moreover, our constructed clinical prognostic model demonstrated excellent performance in the validation phase, accurately predicting the clinical prognosis of patients. CONCLUSION This study delves into the susceptibility genes of cervical cancer through bioinformatics approaches and successfully builds a reliable clinical prognostic model. This study not only helps uncover potential pathogenic mechanisms of cervical cancer but also provides new directions for early diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Gynecology, The People's Hospital of Pingyang, Wenzhou, 325400, China.
| | - Fangfang Chen
- Department of Gynecology, The People's Hospital of Pingyang, Wenzhou, 325400, China
| | - Xiaoxiao Deng
- Department of Gynecology, The People's Hospital of Pingyang, Wenzhou, 325400, China
| |
Collapse
|
2
|
Lira GA, de Azevedo FM, Lins IGDS, Marques IDL, Lira GA, Eich C, de Araujo Junior RF. High M2-TAM Infiltration and STAT3/NF-κB Signaling Pathway as a Predictive Factor for Tumor Progression and Death in Cervical Cancer. Cancers (Basel) 2024; 16:2496. [PMID: 39061137 PMCID: PMC11275153 DOI: 10.3390/cancers16142496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The tumor microenvironment (TME) plays a crucial role in the progression, invasion, and metastasis of cervical carcinoma (CC). Tumor-associated macrophages (TAMs) are significant components of the CC TME, but studies on their correlation with CC progression are still controversial. This study aimed to investigate the relationship between TAM infiltration, the STAT3/NF-κB signaling pathway, and Overall Survival (OS) in CC patients. METHODS In a retrospective study, 691 CC patients who had received a definitive histopathologic diagnosis of CC scored by the FIGO staging system and not undergone preoperative treatment were selected from a database. The effect of TAM infiltration on tumor progression biomarkers using Tissue Microarray (TMA) and immunohistochemistry was evaluated. Furthermore, the impact of the expression of these biomarkers and clinical-pathological parameters on recurrence-free (RF) and OS using Kaplan-Meier and multivariable Cox regression methods was also analyzed. RESULTS High stromal CD163 + 204 + TAMs density and via STAT3 and NF-κB pathways was relevant to the expression of E-cadherin, Vimentin, MMP9, VEGFα, Bcl-2, Ki-67, CD25, MIF, FOXP3, and IL-17 (all p < 0.0001). In addition, elevated TNM staging IV had a strong association correlation with STAT3 and NF-κB pathways (p < 0.0001), CD25 (p < 0.001), VEGFα (p < 0.001), MIF (p < 0.0001), and Ki-67 (p < 0.0001). On the other hand, overall and recurrence survival was shown to be strongly influenced by the expression of SNAIL (HR = 1.52), E-cadherin (HR = 1.78), and Ki-67 (HR = 1.44). CONCLUSION M2-TAM and via STAT3/NF-κB pathways had a strong effect on CC tumor progression which reverberated in the severity of clinicopathological findings, becoming an important factor of poor prognosis.
Collapse
Affiliation(s)
- George Alexandre Lira
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte Natal, Natal 59072-970, RN, Brazil;
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil;
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- League Against Cancer from Rio Grande do Norte, Advanced Oncology Center, Natal 59075-740, RN, Brazil; (I.G.d.S.L.); (G.A.L.)
| | | | | | - Isabelle de Lima Marques
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil;
| | - Giovanna Afonso Lira
- League Against Cancer from Rio Grande do Norte, Advanced Oncology Center, Natal 59075-740, RN, Brazil; (I.G.d.S.L.); (G.A.L.)
| | - Christina Eich
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Raimundo Fernandes de Araujo Junior
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte Natal, Natal 59072-970, RN, Brazil;
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil;
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Postgraduate Program in Functional and Structural Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| |
Collapse
|
3
|
Liu S, Gu Y, Shi Y, Yu S, Li W, Lv W. AEBP1 upregulation contributes to cervical cancer progression by facilitating cell proliferation, migration, and invasion. J Obstet Gynaecol Res 2024; 50:1166-1174. [PMID: 38684171 DOI: 10.1111/jog.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Aberrant expression of adipocyte enhancer-binding protein 1 (AEBP1) has been demonstrated to be involved in the tumorigenesis and progression of numerous cancers. This study was aimed to investigate the mechanism of AEBP1 in the development of cervical cancer. METHODS The expression of AEBP1 in cervical cancer was assessed by immunohistochemistry. The function of AEBP1 on cell proliferation, migration, and invasion was determined by methyl thiazolyl tetrazolium assay, colony formation, and transwell assay. The activation of related signaling pathway was determined by western blot. The bioinformatics analysis was performed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS Higher protein expression of AEBP1 was observed in patients with cervical cancer. Overexpressed AEBP1 promoted cell proliferation, migration, and invasion abilities in cervical cancer cells. Moreover, the research manifested that AEBP1 activated the phosphorylation of STAT3. GO and KEGG analysis showed that genes positively related to AEBP1 were highly enriched in functions like epithelial cell proliferation, muscle cell migration, myoblast migration, smooth muscle tissue development, ECM-receptor interaction, transcriptional misregulation in cancer, and proteoglycans in cancer. While genes negatively related to AEBP1 were associated with immunity, including inflammatory response, external-stimulus response, neutrophil, granulocyte, and macrophage chemotaxis. CONCLUSIONS This study suggested that AEBP1 acts as an oncogened and might be a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Songjun Liu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yanpin Gu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yin Shi
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shuqian Yu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wu Li
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
5
|
Wang Y, Lou C, Zhao S, Li B, Zhang Y, Yu Z, Wu F, Chen D, Wu Q. Preparation of polypeptide-metal complexes-coated Hosenkoside A and its inhibitory effect in cervical cancer. Int J Biol Macromol 2024; 259:129177. [PMID: 38176488 DOI: 10.1016/j.ijbiomac.2023.129177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
We reported the anti-cervical cancer effect of proprietary saponin content from seeds of Impatiens balsamina L., Hosenkoside A. Our study found that Hosenkoside A significantly promotes cell apoptosis and cell cycle arrest after administration, exhibiting anti-tumor effects. Then the transcriptome sequencing results after administration showed that Hosenkoside A had a significant inhibitory effect on Histone deacetylase 3 (HDAC3). After sufficient administration time, the inhibition of HDAC3 expression level leads to a significant decrease in lysine acetylation at histone 3 sites 4 and 9, blocking the activation of Signal transducer and activator of transcription 3 (STAT3) and achieving anti-tumor effects. In addition, we encapsulated Hosenkoside A into polypeptide metal complexes (PMC) to form slow-release spheres. This material breaks down in the tumor environment, not only does it solve the problem of low drug solubility, but it also achieves targeted sustained-release drug delivery. Under the same concentration of stimulation, the PMC complex group showed better anti-tumor effects in both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Yiwen Wang
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Chen Lou
- Wenzhou Medical University, Wenzhou 325060, China
| | - Siyuan Zhao
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Binfen Li
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Youli Zhang
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Zhecheng Yu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Fangfang Wu
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China
| | - Daqing Chen
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China.
| | - Qian Wu
- Emergency Medicine Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325060, China.
| |
Collapse
|
6
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Thakur K, Janjua D, Aggarwal N, Chhokar A, Yadav J, Tripathi T, Chaudhary A, Senrung A, Shrivastav A, Bharti AC. Physical interaction between STAT3 and AP1 in cervical carcinogenesis: Implications in HPV transcription control. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166817. [PMID: 37532113 DOI: 10.1016/j.bbadis.2023.166817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The constitutive activation and aberrant expression of Signal Transducer and Activator of Transcription 3 (STAT3) plays a key role in initiation and progression of cervical cancer (CaCx). How STAT3 influences HPV transcription is poorly defined. In the present study, we probed direct and indirect interactions of STAT3 with HPV16/18 LCR. In silico assessment of cis-elements present on LCR revealed the presence of potential STAT3 binding motifs. However, experimental validation by ChIP-PCR could not confirm any specific STAT3 binding on HPV16 LCR. Protein-protein interaction (PPI) network analysis of STAT3 with other host transcription factors that bind LCR, highlighted the physical association of STAT3 with c-FOS and c-JUN. This was further confirmed in vitro by co-immunoprecipitation, where STAT3 co-immunoprecipitated with c-FOS and c-JUN in CaCx cells. The result was supported by immunocytochemical analysis and colocalization of STAT3 with c-FOS and c-JUN. Positive signals in proximity ligation assay validated physical interaction and colocalization of STAT3 with AP1. Colocalization of STAT3 with c-FOS and c-JUN increased upon IL-6 treatment and decreased post-Stattic treatment. Alteration of STAT3 expression affected the subcellular localization of c-FOS and c-JUN, along with the expression of viral oncoproteins (E6 and E7) in CaCx cells. High expression of c-JUN in tumor tissues correlated with poor prognosis in both HPV16 and HPV18 CaCx cohort whereas high expression of STAT3 correlated with poor prognosis in HPV18 CaCx lesions only. Overall, the data suggest an indirect interaction of STAT3 with HPV LCR via c-FOS and c-JUN and potentiate transcription of viral oncoproteins.
Collapse
Affiliation(s)
- Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anuraag Shrivastav
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada; Paul Albrechtsen Research Institute CCMB, 675 McDermot Ave, Winnipeg, Manitoba, Canada
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
8
|
Jill N, Bhootra S, Kannanthodi S, Shanmugam G, Rakshit S, Rajak R, Thakkar V, Sarkar K. Interplay between signal transducers and activators of transcription (STAT) proteins and cancer: involvement, therapeutic and prognostic perspective. Clin Exp Med 2023; 23:4323-4339. [PMID: 37775649 DOI: 10.1007/s10238-023-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Signal transducers and activators of transcription or STAT are proteins that consist of various transcription factors that are responsible for activating genes regarding cell proliferation, differentiation, and apoptosis. They commonly activate several cytokine, growth, or hormone factors via the JAK-STAT signaling pathway by tyrosine phosphorylation which are responsible for giving rise to numerous immune responses. Mutations within the Janus-Kinases (JAKs) or the STATs can set off the commencement of various malfunctions of the immune system of the body; carcinogenesis being an inevitable outcome. STATs are known to act as both oncogenes and tumor suppressor genes which makes it a hot topic of investigation. Various STATs related mechanisms are currently being investigated to analyze its potential of serving as a therapeutic base for numerous immune diseases and cancer; a deeper understanding of the molecular mechanisms involved in the signaling pathways can contribute to the same. This review will throw light upon each STAT member in causing cancer malignancies by affecting subsequent signaling pathways and its genetic and epigenetic associations as well as various inhibitors that could be used to target these pathways thereby devising new treatment options. The review will also focus upon the therapeutic advances made in cancers that most commonly affect people and discuss how STAT genes are identified as prognostic markers.
Collapse
Affiliation(s)
- Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Samiyah Kannanthodi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rohit Rajak
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vidhi Thakkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Abdelhafez OH, Abdel-Rahman IM, Alaaeldin E, Refaat H, El-Sayed R, Al-Harbi SA, Shawky AM, Hegazy MEF, Moustafa AY, Shady NH. Pro-Apoptotic Activity of Epi-Obtusane against Cervical Cancer: Nano Formulation, In Silico Molecular Docking, and Pharmacological Network Analysis. Pharmaceuticals (Basel) 2023; 16:1578. [PMID: 38004443 PMCID: PMC10674245 DOI: 10.3390/ph16111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a major disease that threatens human health all over the world. Intervention and prevention in premalignant processes are successful ways to prevent cancer from striking. On the other hand, the marine ecosystem is a treasure storehouse of promising bioactive metabolites. The use of such marine products can be optimized by selecting a suitable nanocarrier. Therefore, epi-obtusane, previously isolated from Aplysia oculifera, was investigated for its potential anticancer effects toward cervical cancer through a series of in vitro assays in HeLa cells using the MTT assay method. Additionally, the sesquiterpene was encapsulated within a liposomal formulation (size = 130.8 ± 50.3, PDI = 0.462, zeta potential -12.3 ± 2.3), and the antiproliferative potential of epi-obtusane was investigated against the human cervical cancer cell line HeLa before and after encapsulation with liposomes. Epi-obtusane exhibited a potent effect against the HeLa cell line, while the formulated molecule with liposomes increased the in vitro antiproliferative activity. Additionally, cell cycle arrest analysis, as well as the apoptosis assay, performed via FITC-Annexin-V/propidium iodide double staining (flow cytofluorimetry), were carried out. The pharmacological network enabled us to deliver further insights into the mechanism of epi-obtusane, suggesting that STAT3 might be targeted by the compound. Moreover, molecular docking showed a comparable binding score of the isolated compound towards the STAT3 SH2 domain. The targets possess an anticancer effect through the endometrial cancer pathway, regulation of DNA templated transcription, and nitric oxide synthase, as mentioned by the KEGG and ShinyGo 7.1 databases.
Collapse
Affiliation(s)
- Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt
| | - Islam M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia 61111, Egypt;
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt
| | - Hesham Refaat
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52246, USA;
| | - Refat El-Sayed
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah 24231, Saudi Arabia; (R.E.-S.); (S.A.A.-H.)
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Sami A. Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah 24231, Saudi Arabia; (R.E.-S.); (S.A.A.-H.)
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, El-Tahrir Street, Dokki, Giza 12622, Egypt;
| | - Alaa Y. Moustafa
- Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt;
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
10
|
Han S, Liu X, Ju S, Mu W, Abulikemu G, Zhen Q, Yang J, Zhang J, Li Y, Liu H, Chen Q, Cui B, Wu S, Zhang Y. New mechanisms and biomarkers of lymph node metastasis in cervical cancer: reflections from plasma proteomics. Clin Proteomics 2023; 20:35. [PMID: 37689639 PMCID: PMC10492398 DOI: 10.1186/s12014-023-09427-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE Lymph node metastasis (LNM) and lymphatic vasculature space infiltration (LVSI) in cervical cancer patients indicate a poor prognosis, but satisfactory methods for diagnosing these phenotypes are lacking. This study aimed to find new effective plasma biomarkers of LNM and LVSI as well as possible mechanisms underlying LNM and LVSI through data-independent acquisition (DIA) proteome sequencing. METHODS A total of 20 cervical cancer plasma samples, including 7 LNM-/LVSI-(NC), 4 LNM-/LVSI + (LVSI) and 9 LNM + /LVSI + (LNM) samples from a cohort, were subjected to DIA to identify differentially expressed proteins (DEPs) for LVSI and LNM. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for DEP functional annotation. Protein-protein interaction (PPI) and weighted gene coexpression network analysis (WGCNA) were used to detect new effective plasma biomarkers and possible mechanisms. RESULTS A total of 79 DEPs were identified in the cohort. GO and KEGG analyses showed that DEPs were mainly enriched in the complement and coagulation pathway, lipid and atherosclerosis pathway, HIF-1 signal transduction pathway and phagosome and autophagy. WGCNA showed that the enrichment of the green module differed greatly between groups. Six interesting core DEPs (SPARC, HPX, VCAM1, TFRC, ERN1 and APMAP) were confirmed to be potential plasma diagnostic markers for LVSI and LNM in cervical cancer patients. CONCLUSION Proteomic signatures developed in this study reflected the potential plasma diagnostic markers and new possible pathogenesis mechanisms in the LVSI and LNM of cervical cancer.
Collapse
Affiliation(s)
- Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuang Ju
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wendi Mu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Gulijinaiti Abulikemu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qianwei Zhen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jiaqi Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuxia Wu
- Department of Obstetrics and Gynecology, the Fifth People's Hospital of Jinan, Jinan, Shandong, 250012, People's Republic of China.
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
11
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
12
|
Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: An emphasis on molecular pathways. Eur J Pharmacol 2023; 941:175380. [PMID: 36627099 DOI: 10.1016/j.ejphar.2022.175380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
One of the most common hematological malignancies is multiple myeloma (MM) that its mortality and morbidity have increased. The incidence rate of MM is suggested to be higher in Europe and various kinds of therapeutic strategies including stem cell transplantation. However, MM treatment is still challenging and gene therapy has been shown to be promising. The non-coding RNAs (ncRNAs) including miRNAs, lncRNAs and circRNAs are considered as key players in initiation, development and progression of MM. In the present review, the role of ncRNAs in MM progression and drug resistance is highlighted to provide new insights for future experiments for their targeting and treatment of MM. The miRNAs affect proliferation and invasion of MM cells, and targeting tumor-promoting miRNAs can induce apoptosis and cell cycle arrest, and reduces proliferation of MM cells. Furthermore, miRNA regulation is of importance for modulating metastasis and chemotherapy response of tumor cells. The lncRNAs exert the same function and determine proliferation, migration and therapy response of MM cells. Notably, lncRNAs mainly target miRNAs in regulating MM progression. The circRNAs also target different molecular pathways in regulating MM malignancy that miRNAs are the most well-known ones. Furthermore, clinical application of ncRNAs in MM is discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Sadat Mahdavi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shokooh Salimimoghaddam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
13
|
Li XN, Peng YH, Yue W, Tao L, Zhang WJ. A cohort study using IL-6/Stat3 activity and PD-1/PD-L1 expression to predict five-year survival for patients after gastric cancer resection. PLoS One 2022; 17:e0277908. [PMID: 36454780 PMCID: PMC9714712 DOI: 10.1371/journal.pone.0277908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES The expression/activation of IL-6, p-Stat3, PD-1 and PD-L1 in gastric cancer (GC) tissues were examined to evaluate their abilities in predicting the survival prognosis in postoperative patients with GC. METHODS The clinicopathological data and paraffin-embedded tissues of 205 patients who underwent gastric cancer resection were collected at the First Affiliated Hospital of Shihezi University School of Medicine, and the patients were followed-up annually after surgery. Immunohistochemistry (IHC) was used to detect the expression of IL-6, p-Stat3, PD-1 and PD-L1 proteins using tissue microarrays derived from these patients. Statistical analyses were performed using non-parametric tests, Spearman's correlation, ROC curves, Kaplan-Meier survival analysis, Cox single-factor and multifactor regression models. In comparison, the analyses were also performed for GC patients from public databases (407 patients from TCGA and 433 patients from GEO, respectively). RESULTS (1) The expression levels of IL-6, p-Stat3, PD-1 and PD-L1 in GC tissues were significantly higher than adjacent normal tissues (ANT) (81.01% vs. 52.78%, P<0.001; 100% vs. 93.41%, P<0.001; 58.58% vs. 40.12%, P<0.001; 38.20% vs. 26.90%, P = 0.025, respectively). The mean optical density (MOD) values of IL-6, p-Stat3, PD-1 and PD-L1 were significantly higher in GC tissues. (2) The higher the levels of IL-6 (P<0.001), p-Stat3 (P<0.001), and PD-L1 (P = 0.003) were, the worse the survival prognoses were observed, respectively, among GC patients. The expression of PD-1 was not correlated with the prognosis of GC patients (P>0.05). The lower the degree of cell differentiation (P<0.001) was, the worse the survival prognoses were observed among GC patients. (3) Independent risk factors for postoperative prognosis in GC patients included age (≥60 years old), poor cell differentiation, invasion depth (T3/T4), lymph node metastasis (N1-3), distant metastasis (M1), and high levels of IL-6 (2+/3+). (4) A multi-factor combination (cell differentiation+IL-6+p-Stat3+PD-1+PD-L1) appeared to be the best survival predictor for GC patients as indicated by AUC (AUC 0.782, 95% CI = 0.709, 0.856, P<0.001). This combination may be the optimal predictor for postoperative survival of GC patients. (5) The levels of IL-6, p-Stat3, PD-1 and PD-L1 correlated with the infiltration levels of various tumor-infiltrating immune cells. (6) The analyses of ROC curves, calibration, DCA and Kaplan-Meier (KM) survival curves in TCGA dataset confirmed that the nomogram model could accurately predict the prognosis in GC patients. CONCLUSIONS (1) The expressed levels of IL-6, p-Stat3, PD-1 and PD-L1 are higher in GC tissues than in adjacent normal tissues. (2) The high levels of IL-6, p-Stat3 and PD-L1 are correlated with poor survival in GC patients. (3) The high levels of IL-6, p-Stat3, PD-1 and PD-L1 have influences in GC tumor microenvironment. (4) The multi-predictor combination of "IL-6+p-Stat3+PD-1+cell differentiation" serves as an optimal survival predictor for postoperative GC patients and better than the TNM staging system. As these molecules can be examined in preoperative biopsies, these observations may provide a useful guide for clinicians to strategize individualized surgical plans for GC patients before surgery.
Collapse
Affiliation(s)
- Xiao Ning Li
- Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yun Hong Peng
- Department of Physical Examination, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wen Yue
- Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, the Affiliated Oncology Hospital, Fudan University School of Medicine, Shanghai, China
| | - Lin Tao
- Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wen Jie Zhang
- Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- * E-mail: ,
| |
Collapse
|
14
|
Gao Q, Chen Y, Yue L, Li Z, Wang M. Knockdown of TMEM132A restrains the malignant phenotype of gastric cancer cells via inhibiting Wnt signaling. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:343-357. [PMID: 36441075 DOI: 10.1080/15257770.2022.2148692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane protein 132 A (TMEM132A) has been recently reported to be a novel regulator of the Wnt signaling pathway, which is a cancer-associated cascade. However, the role of TMEM132A in cancer is not well characterized. Here, we used bioinformatics analysis to analyze the differential expression of TMEM132A in gastric cancer (GC) tissues and determine its diagnostic and prognostic value. Results showed that TMEM132A expression was upregulated in GC tissues. TMEM132A was also found to have diagnostic and prognostic roles in patient with GC. Furthermore, as evaluated by in vitro assays, knockdown of TMEM132A restrained cell proliferation, migration, and invasion of GC cells, while overexpression of TMEM132A exerted opposite effects. However, the effects of TMEM132A silencing and overexpression on GC cells were reversed by treatment with LiCl and ICG-001 (the Wnt signaling activator and inhibitor), respectively. In addition, in vivo assays showed that knockdown of TMEM132A suppressed GC tumorigenesis. Hence, our results provide new insights into the oncogenic role of TMEM132A in regulating GC cell proliferation, migration, and invasion, as well as its prognostic and therapeutic roles in patients with GC. These data highlight the diagnostic, prognostic, and therapeutic potential of TMEM132A in GC.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Yufang Chen
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Lingping Yue
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Ziyan Li
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Meihua Wang
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| |
Collapse
|
15
|
Zhang R, Meng Z, Wu X, Zhang M, Piao Z, Jin T. PD‐L1
/
p‐STAT3
promotes the progression of
NSCLC
cells by regulating
TAM
polarization. J Cell Mol Med 2022; 26:5872-5886. [DOI: 10.1111/jcmm.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rui Zhang
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Ziqi Meng
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Meihua Zhang
- Department of Health Examination Centre Yanbian University Hospital Yanji China
| | - Zhengri Piao
- Department of radiology Yanbian University Hospital Yanji China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| |
Collapse
|
16
|
Overexpression of KITLG predicts unfavorable clinical outcomes and promotes lymph node metastasis via the JAK/STAT pathway in nasopharyngeal carcinoma. J Transl Med 2022; 102:1257-1267. [PMID: 36775451 DOI: 10.1038/s41374-022-00817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Lymph node metastasis (LNM) is an early clinical sign and a contributor to the treatment failure in patients with nasopharyngeal carcinoma (NPC). The molecular mechanisms of LNM in NPC remain unclear. We aimed to identify and validate the possible key genes that play a crucial role in the LNM of NPC. The study included a discovery and validation phase. In the discovery phase, the key gene was identified by bioinformatics analysis. In the validation phase, the mRNA and protein expression of the key gene was detected by RT-PCR in NPC cells and by immunohistochemistry in a tissue microarray. Then, the effect of the key gene expression on cell invasion and migration was explored in vitro and in vivo. As a result, KITLG was identified as the key gene. The overexpression of KITLG was detected in NPC cells, which was correlated with neck lymph node metastasis and poor prognosis in patients with NPC. The suppression of KITLG inhibited the proliferation, invasion, and metastasis of NPC cells in vitro and in vivo. JAK/STAT signaling pathway might mediate the enhancement of cell invasion and metastasis caused by KITLG. In summary, the overexpression of KITLG in NPC cells might play a crucial role in the LNM of NPC, raising the possibility of KITLG as a prognostic factor and a potential target for NPC treatment.
Collapse
|
17
|
Thakur K, Janjua D, Shishodia G, Chhokar A, Aggarwal N, Yadav J, Tripathi T, Chaudhary A, Senrung A, Bharti AC. Investigation of molecular mechanisms underlying JAK/STAT signaling pathway in HPV-induced cervical carcinogenesis using 'omics' approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:255. [PMID: 36224441 DOI: 10.1007/s12032-022-01854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
The precise mechanism of action of Janus Kinases (JAK)/Signal Transducer and activator of Transcription (STAT) signaling in human papillomavirus (HPV)-associated cervical cancer (CaCx) is poorly defined. The present study dissected the underlying components of JAK/STAT signaling in HPV-positive cervical neoplasms. Whole transcriptome profile of CaCx cohort from TCGA database revealed elevated STAT3 and its impact on CaCx patients' survival. Using the RT2 Profiler PCR Array, we analyzed 84 genes of interest associated with JAK/STAT signaling in mRNA derived from HPV-negative and HPV-positive cervical lesions which revealed 21 differentially expressed genes (DEGs). Analyses of DEGs using the Database for Annotation, Visualization and Integrated Discovery tool indicated maximum genes enriched in immune response and negative regulation of apoptotic process. Protein-protein network analysis indicated IL4, STAT5A, STAT4, and JAK3 to be the key genes in the interaction network. Further, 7 key DEGs (IL4R, IRF1, EGFR, OAS1, PIAS1, STAT4, and STAT5A) were validated in TCGA cohort using R2 platform. These genes were differentially expressed among HPV-positive cervical tissues and their correlation with STAT3 was established. EGFR and IL4R showed a comparatively strong correlation with STAT3 that supports their involvement in pathogenesis of CaCx. Finally, the Kaplan-Meier analysis established the prognostic association of the key DEGs, in CaCx cohort. The STAT3 and associated key genes discovered from our study establish a strong pathogenic role of JAK/STAT3 pathway in HPV-mediated cervical carcinogenesis.
Collapse
Affiliation(s)
- Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Gauri Shishodia
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India. .,Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India.
| |
Collapse
|