1
|
Zhang L, Zhu C, Guo C, Yin F, Xie Q, Tao M. Study on the Role of microRNA-138-5p Through Sorbin and SH3 Domain-Containing Protein 2 in Breast Cancer. J Biochem Mol Toxicol 2024; 38:e70081. [PMID: 39655702 DOI: 10.1002/jbt.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Breast cancer (BRCA) is one of the major threats to women's health worldwide. This study focuses on the roles of sorbin and SH3 domain-containing protein 2 (SORBS2) protein and microRNA-138-5p in the progression of BRCA, analyzing their regulatory effects on cancer cell proliferation, cell cycle, and migration ability. Using bioinformatics tools and experimental methods, the study found that SORBS2 is commonly underexpressed in BRCA. Additionally, it demonstrated that microRNA-138-5p can significantly inhibit tumor growth by suppressing SORBS2 expression, providing new molecular targets for BRCA treatment.
Collapse
Affiliation(s)
- LiGong Zhang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chao Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chenxu Guo
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - FaXiang Yin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiang Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
2
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
3
|
Fan T, Jiang L, Zhou X, Chi H, Zeng X. Deciphering the dual roles of PHD finger proteins from oncogenic drivers to tumor suppressors. Front Cell Dev Biol 2024; 12:1403396. [PMID: 38813086 PMCID: PMC11133592 DOI: 10.3389/fcell.2024.1403396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
PHD (plant homeodomain) finger proteins emerge as central epigenetic readers and modulators in cancer biology, orchestrating a broad spectrum of cellular processes pivotal to oncogenesis and tumor suppression. This review delineates the dualistic roles of PHD fingers in cancer, highlighting their involvement in chromatin remodeling, gene expression regulation, and interactions with cellular signaling networks. PHD fingers' ability to interpret specific histone modifications underscores their influence on gene expression patterns, impacting crucial cancer-related processes such as cell proliferation, DNA repair, and apoptosis. The review delves into the oncogenic potential of certain PHD finger proteins, exemplified by PHF1 and PHF8, which promote tumor progression through epigenetic dysregulation and modulation of signaling pathways like Wnt and TGFβ. Conversely, it discusses the tumor-suppressive functions of PHD finger proteins, such as PHF2 and members of the ING family, which uphold genomic stability and inhibit tumor growth through their interactions with chromatin and transcriptional regulators. Additionally, the review explores the therapeutic potential of targeting PHD finger proteins in cancer treatment, considering their pivotal roles in regulating cancer stem cells and influencing the immune response to cancer therapy. Through a comprehensive synthesis of current insights, this review underscores the complex but promising landscape of PHD finger proteins in cancer biology, advocating for further research to unlock novel therapeutic avenues that leverage their unique cellular roles.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Chalise JP, Hu Z, Li M, Shepphird JK, Gu Z, Gyawali P, Itakura K, Larson GP. Identification of an alternative short ARID5B isoform associated with B-ALL survival. Biochem Biophys Res Commun 2024; 703:149659. [PMID: 38382358 DOI: 10.1016/j.bbrc.2024.149659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Utilizing RNA sequence (RNA-Seq) splice junction data from a cohort of 1841 B-cell acute lymphoblastic leukemia (B-ALL) patients we define transcriptionally distinct isoforms of ARID5B, a risk-associated gene identified in genome wide association studies (GWAS), which associate with disease survival. Short (S) and long (L) ARID5B transcripts, which differ in an encoded BAH-like chromatin interaction domain, show remarkable correlation to the isoform splicing pattern. Testing of the ARID5B proximal promoter of the S & L isoforms indicated that both are functionally independent in luciferase reporter assays. Increased short isoform expression is associated with decreased event-free and overall survival. The abundance of short and long transcripts strongly correlates to B-ALL prognostic stratification, where B-ALL subtypes with poor outcomes express a higher proportion of the S-isoform. These data demonstrate that the analysis of independent promoters and alternative splicing events are essential for improved risk stratification and a more complete understanding of disease pathology.
Collapse
Affiliation(s)
- Jaya P Chalise
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Min Li
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Jennifer K Shepphird
- Clinical Translational Project Development, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA; Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Purnima Gyawali
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Garrett P Larson
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|