1
|
Bertholet J, Guyer G, Mueller S, Loebner HA, Volken W, Aebersold DM, Manser P, Fix MK. Robust optimization and assessment of dynamic trajectory and mixed-beam arc radiotherapy: a preliminary study. Phys Med Biol 2024; 69:165032. [PMID: 39079553 DOI: 10.1088/1361-6560/ad6950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Objective.Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.Approach.Cases for different treatment sites and clinical target volume (CTV) to planning target volume (PTV) margins,m, were investigated. Dynamic gantry-table-collimator photon paths were optimized to minimize PTV/organ-at-risk (OAR) overlap in beam's-eye-view and minimize potential photon multileaf collimator (MLC) travel. For DYMBARC plans, non-isocentric partial electron arcs or static fields with shortened source-to-surface distance (80 cm) were added. Direct aperture optimization (DAO) was used to simultaneously optimize MLC-based intensity modulation for both photon and electron beams yielding deliverable PTV-based DTRT&DYMBARC plans. Robust-optimized plans used the same paths/arcs/fields. DAO with stochastic programming was used for set-up uncertainties with equal weights in all translational directions and magnitudeδsuch thatm= 0.7δ. Robust analysis considered random errors in all directions with or without an additional systematic error in the worst 3D direction for the adjacent OARs.Main results.Electron contribution was 7%-41% of target dose depending on the case and optimization strategy for DYMBARC. All techniques achieved similar CTV coverage in the nominal (no error) scenario. OAR sparing was overall better in the DYMBARC plans than in the DTRT plans and DYMBARC plans were generally more robust to the considered uncertainties. OAR sparing was better in the PTV-based than in robust-optimized plans for OARs abutting or overlapping with the target volume, but more affected by uncertainties.Significance.Better plan robustness can be achieved with robust optimization than with margins. Combining electron arcs/fields with non-coplanar photon trajectories further improves robustness and OAR sparing.
Collapse
Affiliation(s)
- Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Hannes A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Daniel M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Qiu C, Gu W, Yan H, Sun W, Wang Y, Wen Q, Sheng K, Liu W. Robust treatment planning for small animal radio-neuromodulation using focused kV x-ray beams. Med Phys 2024; 51:5020-5031. [PMID: 38461033 DOI: 10.1002/mp.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND In preclinical radio-neuromodulation research, small animal experiments are pivotal for unraveling radiobiological mechanism, investigating prescription and planning techniques, and assessing treatment effects and toxicities. However, the target size inside a rat brain is typically in the order of sub-millimeters. The small target inside the visual cortex neural region in rat brain with a diameter of around 1 mm was focused in this work to observe the physiological change of this region. Delivering uniform doses to the small target while sparing health tissues is challenging. Focused kV x-ray technique based on modern x-ray polycapillary focusing lens is a promising modality for small animal radio-neuromodulation. PURPOSE The current manual planning method could lead to sub-optimal plans, and the positioning uncertainties due to mechanical accuracy limitations, animal immobilization, and robotic arm motion are not considered. This work aims to design a robust inverse planning method to optimize the intensities of focused kV x-ray beams located in beam trajectories to irradiate small mm-sized targets in rat brains for radio-neuromodulation. METHODS Focused kV x-ray beams were generated through polycapillary x-ray focusing lenses on achieving small (≤0.3 mm) focus perpendicular to the beam. The beam trajectories were manually designed in 3D space in scanning-while-rotating mode. Geant4 Monte Carlo (MC) simulation generated a dose calculation matrix for each focused kV x-ray beam located in beam trajectories. In the proposed robust inverse planning method, an objective function combining a voxel-wise stochastic programming approach and L1 norm regularization was established to overcome the positioning uncertainties and obtain a high-quality plan. The fast iterative shrinkage thresholding algorithm (FISTA) was utilized to solve the objective function and obtain the optimal intensities. Four cases were employed to validate the feasibility and effectiveness of the proposed method. The manual and non-robust inverse planning methods were also implemented for comparison. RESULTS The proposed robust inverse planning method achieved superior dose homogeneity and higher robustness against positioning uncertainties. On average, the clinical target volume (CTV) homogeneity index (HI) of robust inverse plan improved to 13.3 from 22.9 in non-robust inverse plan and 53.8 in manual plan if positioning uncertainties were also present. The average bandwidth at D90 was reduced by 6.5 Gy in the robust inverse plan, compared to 9.6 Gy in non-robust inverse plan and 12.5 Gy in manual plan. The average bandwidth at D80 was reduced by 3.4 Gy in robust inverse plan, compared to 5.5 Gy in non-robust inverse plan and 8.5 Gy in manual plan. Moreover, the dose delivery time of manual plan was reduced by an average reduction of 54.7% with robust inverse plan and 29.0% with non-robust inverse plan. CONCLUSION Compared to manual and non-robust inverse planning methods, the robust inverse planning method improved the dose homogeneity and delivery efficiency and was resistant to the uncertainties, which are crucial for radio-neuromodulation utilizing focused kV x-rays.
Collapse
Affiliation(s)
- Chenhui Qiu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, USA
| | - Wenbo Gu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huagang Yan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Weiyuan Sun
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, USA
| | - Yuanyuan Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Qiang Wen
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California-San Francisco, San Francisco, California, USA
| | - Wu Liu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Rayn K, Clark R, Hoxha K, Magliari A, Neylon J, Xiang MH, O'Connell DP. An IMRT planning technique for treating whole breast or chest wall with regional lymph nodes on Halcyon and Ethos. J Appl Clin Med Phys 2024; 25:e14295. [PMID: 38335253 PMCID: PMC11087171 DOI: 10.1002/acm2.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE/OBJECTIVE Field size limitations on Halcyon and Ethos treatment machines largely preclude use of the conventional monoisocentric three-field technique for breast/chest wall and regional lymph nodes. We present an alternative, IMRT-based planning approach that facilitates treatment on Halcyon and Ethos while preserving plan quality. MATERIALS/METHODS Eight breast and regional node cases (four left-sided, four right-sided) were planned for an Ethos machine using a 15-17 field IMRT technique. Institutional plan quality metrics for CTV and PTV coverage and OAR sparing were assessed. Five plans (four right-sided, one left-sided) were also planned using a hybrid 3D multisocenter technique. CTV coverage and OAR sparing were compared to the IMRT plans. Eclipse scripting tools were developed to aid in beam placement and plan evaluation through a set of dosimetric scorecards, and both are shared publicly. RESULTS On average, the IMRT plans achieved breast CTV and PTV coverage at 50 Gy of 97.9% and 95.7%, respectively. Supraclavicular CTV and PTV coverages at 45 Gy were 100% and 95.5%. Axillary lymph node CTV and PTV coverages at 45 Gy were 100% and 97.1%, and IMN CTV coverage at 45 Gy was 99.2%. Mean ipsilateral lung V20 Gy was 19.3%, and average mean heart dose was 1.6 Gy for right-sided cases and 3.0 Gy for left-sided. In comparison to the hybrid 3D plans, IMRT plans achieved higher breast and supraclavicular CTV coverage (99.9% vs. 98.6% and 99.9% vs. 93.4%), higher IMN coverage (99.6% vs. 78.2%), and lower ipsilateral lung V20 Gy (19.6% vs. 28.2%). CONCLUSION Institutional plan quality benchmarks were achieved for all eight cases using the IMRT-based planning approach. The IMRT-based planning approach offered superior conformity and OAR sparing than a competing hybrid 3D approach.
Collapse
Affiliation(s)
- Kareem Rayn
- Varian Medical AffairsPalo AltoCaliforniaUSA
| | - Ryan Clark
- Varian Medical AffairsPalo AltoCaliforniaUSA
| | - Klea Hoxha
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Jack Neylon
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Michael H. Xiang
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Dylan P. O'Connell
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Song YC, Hu ZH, Yan XN, Fang H, Tang Y, Jing H, Men K, Zhang N, Zhang J, Jin J, Zhong QZ, Ma J, Yang WF, Zhong YH, Dong LH, Wang XH, Wu HF, Du XH, Hou XR, Tie J, Lu YF, Zhao LN, Li YX, Wang SL. Quality assurance in a phase III, multicenter, randomized trial of POstmastectomy radioThErapy in Node posiTive breast cancer with or without Internal mAmmary nodaL irradiation (POTENTIAL): a planning benchmark case. Radiat Oncol 2023; 18:194. [PMID: 38031125 PMCID: PMC10685528 DOI: 10.1186/s13014-023-02379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE To report the planning benchmark case results of the POTENTIAL trial-a multicenter, randomized, phase 3 trial-to evaluate the value of internal mammary nodal (IMN) irradiation for patients with high-risk breast cancer. METHODS All participating institutions were provided the outlines of one benchmark case, and they generated radiation therapy plans per protocol. The plans were evaluated by a quality assurance team, after which the institutions resubmitted their revised plans. The information on beams arrangement, skin flash, inhomogeneity corrections, and protocol compliance was assessed in the first and final submission. RESULTS The plans from 26 institutions were analyzed. Some major deviations were found in the first submission. The protocol compliance rates of dose coverage for the planning target volume of chest wall, supraclavicular fossa plus axilla, and IMN region (PTVim) were all significantly improved in the final submission, which were 96.2% vs. 69.2%, 100% vs. 76.9%, and 88.4% vs. 53.8%, respectively. For OARs, the compliance rates of heart Dmean, left anterior descending coronary artery V40Gy, ipsilateral lung V5Gy, and stomach V5Gy were significantly improved. In the first and final submission, the mean values of PTVim V100% were 79.9% vs. 92.7%; the mean values of heart Dmean were 11.5 Gy vs. 9.7 Gy for hypofractionated radiation therapy and 11.5 Gy vs. 11.0 Gy for conventional fractionated radiation therapy, respectively. CONCLUSION The major deviations were corrected and protocol compliance was significantly improved after revision, which highlighted the importance of planning benchmark case to guarantee the planning quality for multicenter trials.
Collapse
Affiliation(s)
- Yu-Chun Song
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Zhi-Hui Hu
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Xue-Na Yan
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Hui Fang
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Yu Tang
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China
| | - Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jun Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital &Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qiu-Zi Zhong
- Department of Radiation Oncology, Beijing Hospital, Ministry of Health, Beijing, China
| | - Jun Ma
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Fang Yang
- Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Ya-Hua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, China
| | - Li-Hua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xiao-Hong Wang
- Department of Radiochemotherapy, Tangshan People's Hospital, Tangshan, China
| | - Hong-Fen Wu
- Department of Radiation Oncology, Cancer Hospital of Jilin Province, Changchun, China
| | - Xiang-Hui Du
- Department of Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Xiao-Rong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jian Tie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100048, China.
| | - Yu-Fei Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450003, China.
| | - Li-Na Zhao
- Department of Radiation Oncology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, China.
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China.
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan jia yuan nan li, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
5
|
Chan RCK, Ng CKC, Hung RHM, Li YTY, Tam YTY, Wong BYL, Yu JCK, Leung VWS. Comparative Study of Plan Robustness for Breast Radiotherapy: Volumetric Modulated Arc Therapy Plans with Robust Optimization versus Manual Flash Approach. Diagnostics (Basel) 2023; 13:3395. [PMID: 37998531 PMCID: PMC10670672 DOI: 10.3390/diagnostics13223395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
A previous study investigated robustness of manual flash (MF) and robust optimized (RO) volumetric modulated arc therapy plans for breast radiotherapy based on five patients in 2020 and indicated that the RO was more robust than the MF, although the MF is still current standard practice. The purpose of this study was to compare their plan robustness in terms of dose variation to clinical target volume (CTV) and organs at risk (OARs) based on a larger sample size. This was a retrospective study involving 34 female patients. Their plan robustness was evaluated based on measured volume/dose difference between nominal and worst scenarios (ΔV/ΔD) for each CTV and OARs parameter, with a smaller difference representing greater robustness. Paired sample t-test was used to compare their robustness values. All parameters (except CTV ΔD98%) of the RO approach had smaller ΔV/ΔD values than those of the MF. Also, the RO approach had statistically significantly smaller ΔV/ΔD values (p < 0.001-0.012) for all CTV parameters except the CTV ΔV95% and ΔD98% and heart ΔDmean. This study's results confirm that the RO approach was more robust than the MF in general. Although both techniques were able to generate clinically acceptable plans for breast radiotherapy, the RO could potentially improve workflow efficiency due to its simpler planning process.
Collapse
Affiliation(s)
- Ray C. K. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rico H. M. Hung
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China;
| | - Yoyo T. Y. Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Yuki T. Y. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Blossom Y. L. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Jacky C. K. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| |
Collapse
|
6
|
Chen K, Sun W, Han T, Yan L, Sun M, Xia W, Wang L, Shi Y, Ge C, Yang X, Li Y, Wang H. Robustness of hypofractionated breast radiotherapy after breast-conserving surgery with free breathing. Front Oncol 2023; 13:1259851. [PMID: 38023210 PMCID: PMC10644368 DOI: 10.3389/fonc.2023.1259851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to evaluate the robustness with respect to the positional variations of five planning strategies in free-breathing breast hypofractionated radiotherapy (HFRT) for patients after breast-conserving surgery. Methods Twenty patients who received breast HFRT with 42.72 Gy in 16 fractions were retrospectively analyzed. Five treatment planning strategies were utilized for each patient, including 1) intensity-modulated radiation therapy (IMRT) planning (IMRTpure); 2) IMRT planning with skin flash tool extending and filling the fluence outside the skin by 2 cm (IMRTflash); 3) IMRT planning with planning target volume (PTV) extended outside the skin by 2 cm in the computed tomography dataset (IMRTePTV); 4) hybrid planning, i.e., 2 Gy/fraction three-dimensional conformal radiation therapy combined with 0.67 Gy/fraction IMRT (IMRThybrid); and 5) hybrid planning with skin flash (IMRThybrid-flash). All plans were normalized to 95% PTV receiving 100% of the prescription dose. Six additional plans were created with different isocenter shifts for each plan, which were 1 mm, 2 mm, 3 mm, 5 mm, 7 mm, and 10 mm distally in the X (left-right) and Y (anterior-posterior) directions, namely, (X,Y), to assess their robustness, and the corresponding doses were recalculated. Variation of dosimetric parameters with increasing isocenter shift was evaluated. Results All plans were clinically acceptable. In terms of robustness to isocenter shifts, the five planning strategies followed the pattern IMRTePTV, IMRThybrid-flash, IMRTflash, IMRThybrid, and IMRTpure in descending order. V 95% of IMRTePTV maintained at 99.6% ± 0.3% with a (5,5) shift, which further reduced to 98.2% ± 2.0% with a (10,10) shift. IMRThybrid-flash yielded the robustness second to IMRTePTV with less risk from dose hotspots, and the corresponding V 95% maintained >95% up until (5,5). Conclusion Considering the dosimetric distribution and robustness in breast radiotherapy, IMRTePTV performed best at maintaining high target coverage with increasing isocenter shift, while IMRThybrid-flash would be adequate with positional uncertainty<5 mm.
Collapse
Affiliation(s)
- Kunzhi Chen
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Wuji Sun
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Tao Han
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Lei Yan
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Minghui Sun
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Wenming Xia
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Libo Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Shi
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Chao Ge
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Xu Yang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yu Li
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Huidong Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
7
|
Gleeson I. Comparing the robustness of different skin flash approaches using wide tangents, manual flash VMAT, and simulated organ motion robust optimization VMAT in breast and nodal radiotherapy. Med Dosim 2022; 47:264-272. [DOI: 10.1016/j.meddos.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
|
8
|
Marc L, Fabiano S, Wahl N, Linsenmeier C, Lomax AJ, Unkelbach J. Combined proton-photon treatment for breast cancer. Phys Med Biol 2021; 66. [PMID: 34736246 DOI: 10.1088/1361-6560/ac36a3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proton therapy remains a limited resource due to gantry size and its cost. Recently, a new design without a gantry has been suggested. It may enable combined proton-photon therapy (CPPT) in conventional bunkers and allow the widespread use of protons. In this work, we explore this concept for breast cancer.Methods.The treatment room consists of a LINAC for intensity modulated radiation therapy (IMRT), a fixed proton beamline (FBL) with beam scanning and a motorized couch for treatments in lying positions with accurate patient setup. Thereby, proton and photon beams are delivered in the same fraction. Treatment planning is performed by simultaneously optimizing IMRT and IMPT plans based on the cumulative dose. The concept is investigated for three breast cancers where the goal is to minimize mean dose to the heart and lung while delivering 40.05 Gy in 15 fractions to the PTV with a SIB of 48 Gy to the tumor bed. The probabilistic approach is applied to mitigate the sensitivity to range uncertainties.Results. CPPT is particularly advantageous for irradiating concave target volumes that wrap around a curved chest wall. There, protons may deliver dose to the peripheral and medial parts of the target volume including lymph nodes. Thereby, the mean dose in normal tissues is reduced compared to single-modality IMRT. However, tangential photon beams may treat parts of the target volume near the interface to the lung. To ensure target coverage for range undershoot in an IMPT plan, proton beams have to deliberately overshoot into the lung tissue-a problem that can be mitigated via the photon component which ensures plan conformity and robustness.Conclusion.CPPT using an FBL may represent a realistic approach to make protons available to more patients. In addition, CPPT may generally improve treatment quality compared to both single-modality proton and photon treatments.
Collapse
Affiliation(s)
- Louise Marc
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| |
Collapse
|
9
|
Biston MC, Liang X, Li Z. Robust optimization should be used to replace PTV in radiotherapy treatment planning. Med Phys 2021; 48:7565-7567. [PMID: 34554590 DOI: 10.1002/mp.15249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Xiaoying Liang
- Radiation Oncology Department, Mayo Clinic, Jacksonville, Florida, USA
| | - Zuofeng Li
- Radiation Oncology Department, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Biston MC, Chiavassa S, Grégoire V, Thariat J, Lacornerie T. Time of PTV is ending, robust optimization comes next. Cancer Radiother 2020; 24:676-686. [PMID: 32861608 DOI: 10.1016/j.canrad.2020.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Continuous improvements have been made in the way to prescribe, record and report dose distributions since the therapeutic use of ionizing radiations. The international commission for radiation units and measurement (ICRU) has provided a common language for physicians and physicists to plan and evaluate their treatments. The PTV concept has been used for more than two decades but is becoming obsolete as the CTV-to-PTV margin creates a static dose cloud that does not properly recapitulate all planning vs. delivery uncertainties. The robust optimization concept has recently emerged to overcome the limitations of the PTV concept. This concept is integrated in the inverse planning process and minimizes deviations to planned dose distribution through integration of uncertainties in the planning objectives. It appears critical to account for the uncertainties that are specific to protons and should be accounted for to better exploit the clinical potential of proton therapy. It may also improve treatment quality particularly in hypofractionated photon plans of mobile tumors and more widely to photon radiotherapy. However, in contrast to the PTV concept, a posteriori evaluation of plan quality, called robust evaluation, using error-based scenarios is still warranted. Robust optimization metrics are warranted. These metrics are necessary to compare PTV-based photon and robustly optimized proton plans in general and in model-based NTCP approaches. Assessment of computational demand and approximations of robust optimization algorithms along with metrics to evaluate plan quality are needed but a step further to better prescribe radiotherapy may has been achieved.
Collapse
Affiliation(s)
- M-C Biston
- Department of Radiation Oncology, centre Léon-Bérard, 28, rue Laennec 69373 Lyon cedex 08, France; Creatis, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.
| | - S Chiavassa
- Department of Medical Physics, Institut de cancérologie de l'Ouest, Saint-Herblain, France
| | - V Grégoire
- Department of Radiation Oncology, centre Léon-Bérard, 28, rue Laennec 69373 Lyon cedex 08, France
| | - J Thariat
- Department of radiation oncology, centre François-Baclesse/ARCHADE, Laboratoire de physique corpusculaire IN2P3/ENSICAEN-UMR6534, Unicaen, Normandie Universite, Caen, France
| | - T Lacornerie
- Department of Medical Physics, centre Oscar-Lambret, Lille, France
| |
Collapse
|