1
|
Chen X, Ai C, Liu Z, Wang G. Neuroimaging studies of resting-state functional magnetic resonance imaging in eating disorders. BMC Med Imaging 2024; 24:265. [PMID: 39375605 PMCID: PMC11460144 DOI: 10.1186/s12880-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), binge-eating disorder (BED), and pica, are psychobehavioral conditions characterized by abnormal eating behaviors and an excessive preoccupation with weight and body shape. This review examines changes in brain regions and functional connectivity in ED patients over the past decade (2013-2023) using resting-state functional magnetic resonance imaging (rs-fMRI). Key findings highlight alterations in brain networks such as the default mode network (DMN), central executive network (CEN), and emotion regulation network (ERN). In individuals with AN, there is reduced functional connectivity in areas associated with facial information processing and social cognition, alongside increased connectivity in regions linked to sensory stimulation, aesthetic judgment, and social anxiety. Conversely, BED patients show diminished connectivity in the dorsal anterior cingulate cortex within the salience network and increased connectivity in the posterior cingulate cortex and medial prefrontal cortex within the DMN. These findings suggest that rs-fMRI could serve as a valuable biomarker for assessing brain function and predicting treatment outcomes in EDs, paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiong Chen
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chunqi Ai
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhongchun Liu
- RenMin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gang Wang
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China.
| |
Collapse
|
2
|
Collantoni E, Meregalli V, Manara R, Meneguzzo P, Tenconi E, Favaro A. Volume and complexity of the thalamus in Anorexia Nervosa: An exploratory evaluation. EUROPEAN EATING DISORDERS REVIEW 2023; 31:349-359. [PMID: 36573401 DOI: 10.1002/erv.2965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Recent neuroscientific findings have highlighted the role of the thalamus in several cognitive functions, ranging from perception to cognitive flexibility, memory, and body representation. Since some of these functions may be involved in the pathophysiology of Anorexia Nervosa (AN), this study aims at exploring thalamic structure in different phases of the disorder. METHOD The sample included 38 patients with acute AN, 20 patients who fully recovered from AN (recAN), and 38 healthy controls (HC), all female. All participants underwent high-resolution MRI. The volumes of the whole thalamus and 25 thalamic nuclei were extracted using an automated segmentation algorithm, and thalamic fractal dimension was estimated using the calcFD toolbox. RESULTS Patients with acute AN, compared to HC, displayed reduced thalamic volume and complexity both at the whole level and at the level of specific nuclei. In patients recAN, instead, alterations were observed only at the level of the right laterodorsal and central lateral nuclei. CONCLUSIONS In the acute phase of the disorder patients with AN present a widespread reduction in thalamic volume and complexity. However, these alterations seem to normalise almost completely following weight restoration, thus suggesting the involvement of malnutrition-related mechanisms.
Collapse
Affiliation(s)
- Enrico Collantoni
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Valentina Meregalli
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Renzo Manara
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Elena Tenconi
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| |
Collapse
|
3
|
Mattatia J, Gaha N, Cottin L, Mattatia D, Morelle Q, Truong R, Saussé-Corbière L, Yi MK. Anorexie mentale et médiations somatiques : évaluations croisées de l’ostéopathie et de la psychomotricité sur les préoccupations corporelles. ANNALES MÉDICO-PSYCHOLOGIQUES, REVUE PSYCHIATRIQUE 2023. [DOI: 10.1016/j.amp.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Foerde K, Schebendach JE, Davis L, Daw N, Walsh BT, Shohamy D, Steinglass JE. Restrictive eating across a spectrum from healthy to unhealthy: behavioral and neural mechanisms. Psychol Med 2022; 52:1755-1764. [PMID: 33046142 PMCID: PMC8449514 DOI: 10.1017/s0033291720003542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Restriction of food intake is a central feature of anorexia nervosa (AN) and other eating disorders, yet also occurs in the absence of psychopathology. The neural mechanisms of restrictive eating in health and disease are unclear. METHODS This study examined behavioral and neural mechanisms associated with restrictive eating among individuals with and without eating disorders. Dietary restriction was examined in four groups of women (n = 110): healthy controls, dieting healthy controls, patients with subthreshold (non-low weight) AN, and patients with AN. A Food Choice Task was administered during fMRI scanning to examine neural activation associated with food choices, and a laboratory meal was conducted. RESULTS Behavioral findings distinguished between healthy and ill participants. Healthy individuals, both dieting and non-dieting, chose significantly more high-fat foods than patients with AN or subthreshold AN. Among healthy individuals, choice was primarily influenced by tastiness, whereas, among both patient groups, healthiness played a larger role. Dorsal striatal activation associated with choice was most pronounced among individuals with AN and was significantly associated with selecting fewer high-fat choices in the task and lower caloric intake in the meal the following day. CONCLUSIONS A continuous spectrum of behavior was suggested by the increasing amount of weight loss across groups. Yet, data from this Food Choice Task with fMRI suggest there is a behavioral distinction between illness and health, and that the neural mechanisms underlying food choice in AN are distinct. These behavioral and neural mechanisms of restrictive eating may be useful targets for treatment development.
Collapse
Affiliation(s)
- Karin Foerde
- Department of Psychiatry, New York State Psychiatric Institute, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Janet E. Schebendach
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Lauren Davis
- Department of Psychiatry, New York State Psychiatric Institute, New York, USA
| | - Nathaniel Daw
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - B. Timothy Walsh
- Department of Psychiatry, New York State Psychiatric Institute, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Daphna Shohamy
- Psychology Department and Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, USA
| | - Joanna E. Steinglass
- Department of Psychiatry, New York State Psychiatric Institute, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
5
|
Gupta A, Bhatt RR, Rivera-Cancel A, Makkar R, Kragel PA, Rodriguez T, Graner JL, Alaverdyan A, Hamadani K, Vora P, Naliboff B, Labus JS, LaBar KS, Mayer EA, Zucker N. Complex functional brain network properties in anorexia nervosa. J Eat Disord 2022; 10:13. [PMID: 35123579 PMCID: PMC8817538 DOI: 10.1186/s40337-022-00534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is a disorder characterized by an incapacitating fear of weight gain and by a disturbance in the way the body is experienced, facets that motivate dangerous weight loss behaviors. Multimodal neuroimaging studies highlight atypical neural activity in brain networks involved in interoceptive awareness and reward processing. METHODS The current study used resting-state neuroimaging to model the architecture of large-scale functional brain networks and characterize network properties of individual brain regions to clinical measures. Resting-state neuroimaging was conducted in 62 adolescents, 22 (21 female) with a history of AN and 40 (39 female) healthy controls (HCs). Sensorimotor and basal ganglia regions, as part of a 165-region whole-brain network, were investigated. Subject-specific functional brain networks were computed to index centrality. A contrast analysis within the general linear model covarying for age was performed. Correlations between network properties and behavioral measures were conducted (significance q < .05). RESULTS Compared to HCs, AN had lower connectivity from sensorimotor regions, and greater connectivity from the left caudate nucleus to the right postcentral gyrus. AN demonstrated lower sensorimotor centrality, but higher basal ganglia centrality. Sensorimotor connectivity dyads and centrality exhibited negative correlations with body dissatisfaction and drive for thinness, two essential features of AN. CONCLUSIONS These findings suggest that AN is associated with greater communication from the basal ganglia, and lower information propagation in sensorimotor cortices. This is consistent with the clinical presentation of AN, where individuals exhibit patterns of rigid habitual behavior that is not responsive to bodily needs, and seem "disconnected" from their bodies.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA. .,David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA. .,Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, 90095, USA.
| | - Ravi R Bhatt
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA.,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine at USC, University of Southern California, Los Angeles, USA
| | | | - Rishi Makkar
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA
| | | | - Thomas Rodriguez
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA
| | - John L Graner
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| | - Anita Alaverdyan
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA
| | - Kareem Hamadani
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA
| | - Priten Vora
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA
| | - Bruce Naliboff
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.,Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer S Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.,Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, 90095, USA
| | - Kevin S LaBar
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.,Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, 90095, USA.,Ahmanson-Lovelace Brain Mapping Center, UCLA, Los Angeles, CA, 90095, USA
| | - Nancy Zucker
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, USA.,Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
6
|
Myrvang AD, Vangberg TR, Linnman C, Stedal K, Rø Ø, Endestad T, Rosenvinge JH, Aslaksen PM. Altered functional connectivity in adolescent anorexia nervosa is related to age and cortical thickness. BMC Psychiatry 2021; 21:490. [PMID: 34615497 PMCID: PMC8496064 DOI: 10.1186/s12888-021-03497-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Functional networks develop throughout adolescence when anorexia nervosa (AN) normally debuts. In AN, cerebral structural alterations are found in most brain regions and may be related to the observed functional brain changes. Few studies have investigated the functional networks of the brain in adolescent AN patients.. The aim of this explorative study was to investigate multiple functional networks in adolescent AN patients compared to healthy age-matched controls (HC) and the relationship with age, eating disorder symptoms and structural alterations. METHODS Included were 29 female inpatients with restrictive AN, and 27 HC. All participants were between the ages of 12 to 18 years. Independent component analysis (ICA) identified 21 functional networks that were analyzed with multivariate and univariate analyses of components and group affiliation (AN vs HC). Age, age × group interaction and AN symptoms were included as covariates. Follow-up correlational analyses of selected components and structural measures (cortical thickness and subcortical volume) were carried out. RESULTS Decreased functional connectivity (FC) in AN patients was found in one cortical network, involving mainly the precuneus, and identified as a default mode network (DMN). Cortical thickness in the precuneus was significantly correlated with functional connectivity in this network. Significant group differences were also found in two subcortical networks involving mainly the hippocampus and the amygdala respectively, and a significant interaction effect of age and group was found in both these networks. There were no significant associations between FC and the clinical measures used in the study. CONCLUSION The findings from the present study may imply that functional alterations are related to structural alterations in selected regions and that the restricted food intake in AN patients disrupt normal age-related development of functional networks involving the amygdala and hippocampus.
Collapse
Affiliation(s)
- Anna D. Myrvang
- grid.10919.300000000122595234Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Huginbakken 32, N-9037 Tromsø, Norway
| | - Torgil R. Vangberg
- grid.10919.300000000122595234Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway ,grid.412244.50000 0004 4689 5540PET Center, University Hospital of North Norway, Tromsø, Norway
| | - Clas Linnman
- grid.416228.b0000 0004 0451 8771Spaulding Rehabilitation Hospital, Boston, USA
| | - Kristin Stedal
- grid.55325.340000 0004 0389 8485Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Øyvind Rø
- grid.55325.340000 0004 0389 8485Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Tor Endestad
- grid.5510.10000 0004 1936 8921Department of psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway ,Helgelandssykehuset, Mosjøen, Norway
| | - Jan H. Rosenvinge
- grid.10919.300000000122595234Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Huginbakken 32, N-9037 Tromsø, Norway
| | - Per M. Aslaksen
- grid.10919.300000000122595234Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Huginbakken 32, N-9037 Tromsø, Norway ,grid.412244.50000 0004 4689 5540Regional Center for Eating Disorders, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
7
|
Brodrick BB, Adler-Neal AL, Palka JM, Mishra V, Aslan S, McAdams CJ. Structural brain differences in recovering and weight-recovered adult outpatient women with anorexia nervosa. J Eat Disord 2021; 9:108. [PMID: 34479625 PMCID: PMC8414694 DOI: 10.1186/s40337-021-00466-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Anorexia nervosa is a complex psychiatric illness that includes severe low body weight with cognitive distortions and altered eating behaviors. Brain structures, including cortical thicknesses in many regions, are reduced in underweight patients who are acutely ill with anorexia nervosa. However, few studies have examined adult outpatients in the process of recovering from anorexia nervosa. Evaluating neurobiological problems at different physiological stages of anorexia nervosa may facilitate our understanding of the recovery process. METHODS Magnetic resonance imaging (MRI) images from 37 partially weight-restored women with anorexia nervosa (pwAN), 32 women with a history of anorexia nervosa maintaining weight restoration (wrAN), and 41 healthy control women were analyzed using FreeSurfer. Group differences in brain structure, including cortical thickness, areas, and volumes, were compared using a series of factorial f-tests, including age as a covariate, and correcting for multiple comparisons with the False Discovery Rate method. RESULTS The pwAN and wrAN cohorts differed from each other in body mass index, eating disorder symptoms, and social problem solving orientations, but not depression or self-esteem. Relative to the HC cohort, eight cortical thicknesses were thinner for the pwAN cohort; these regions were predominately right-sided and in the cingulate and frontal lobe. One of these regions, the right pars orbitalis, was also thinner for the wrAN cohort. One region, the right parahippocampal gyrus, was thicker in the pwAN cohort. One volume, the right cerebellar white matter, was reduced in the pwAN cohort. There were no differences in global white matter, gray matter, or subcortical volumes across the cohorts. CONCLUSIONS Many regional structural differences were observed in the pwAN cohort with minimal differences in the wrAN cohort. These data support a treatment focus on achieving and sustaining full weight restoration to mitigate possible neurobiological sequela of AN. In addition, the regions showing cortical thinning are similar to structural changes reported elsewhere for suicide attempts, anxiety disorders, and autistic spectrum disorder. Understanding how brain structure and function are related to clinical symptoms expressed during the course of recovering from AN is needed.
Collapse
Affiliation(s)
- Brooks B Brodrick
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9070, USA
| | - Adrienne L Adler-Neal
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
| | - Jayme M Palka
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
| | | | - Sina Aslan
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA
- Advance MRI LLC, Frisco, TX, 75034, USA
| | - Carrie J McAdams
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite BL6.110, Dallas, TX, 75390-9070, USA.
| |
Collapse
|
8
|
Kappou K, Ntougia M, Kourtesi A, Panagouli E, Vlachopapadopoulou E, Michalacos S, Gonidakis F, Mastorakos G, Psaltopoulou T, Tsolia M, Bacopoulou F, Sergentanis TN, Tsitsika A. Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2021; 8:137. [PMID: 33673193 PMCID: PMC7918703 DOI: 10.3390/children8020137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is a serious, multifactorial mental disorder affecting predominantly young females. This systematic review examines neuroimaging findings in adolescents and young adults up to 24 years old, in order to explore alterations associated with disease pathophysiology. METHODS Eligible studies on structural and functional brain neuroimaging were sought systematically in PubMed, CENTRAL and EMBASE databases up to 5 October 2020. RESULTS Thirty-three studies were included, investigating a total of 587 patients with a current diagnosis of AN and 663 healthy controls (HC). Global and regional grey matter (GM) volume reduction as well as white matter (WM) microstructure alterations were detected. The mainly affected regions were the prefrontal, parietal and temporal cortex, hippocampus, amygdala, insula, thalamus and cerebellum as well as various WM tracts such as corona radiata and superior longitudinal fasciculus (SLF). Regarding functional imaging, alterations were pointed out in large-scale brain networks, such as default mode network (DMN), executive control network (ECN) and salience network (SN). Most findings appear to reverse after weight restoration. Specific limitations of neuroimaging studies in still developing individuals are also discussed. CONCLUSIONS Structural and functional alterations are present in the early course of the disease, most of them being partially or totally reversible. Nonetheless, neuroimaging findings have been open to many biological interpretations. Thus, more studies are needed to clarify their clinical significance.
Collapse
Affiliation(s)
- Kalliopi Kappou
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Myrto Ntougia
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Aikaterini Kourtesi
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Eleni Panagouli
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Elpis Vlachopapadopoulou
- Department of Endocrinology-Growth and Development, “P. & A. Kyriakou” Children’s Hospital, 115 27 Athens, Greece; (E.V.); (S.M.)
| | - Stefanos Michalacos
- Department of Endocrinology-Growth and Development, “P. & A. Kyriakou” Children’s Hospital, 115 27 Athens, Greece; (E.V.); (S.M.)
| | - Fragiskos Gonidakis
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 115 28 Athens, Greece;
| | - Georgios Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Theodora Psaltopoulou
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Maria Tsolia
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair Adolescent Health Care, First Department of Pediatrics, “Agia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Theodoros N. Sergentanis
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Artemis Tsitsika
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| |
Collapse
|
9
|
Alfano V, Mele G, Cotugno A, Longarzo M. Multimodal neuroimaging in anorexia nervosa. J Neurosci Res 2020; 98:2178-2207. [PMID: 32770570 DOI: 10.1002/jnr.24674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Anorexia nervosa (AN) is a severe and complex psychiatric disorder characterized by intense fear about weight gain and finalized to food-related control behaviors. Growing interest has been demonstrated about neurobiological processes subtend to AN physiopathology. The present review aimed to collect neurostructural and neurofunctional available data from 2010 to 2019. Results have been organized according to the neuroimaging technique employed, also including a specific section on electroencephalographic results, mostly neglected in previous reviews. Diffuse cerebral vulnerability has been demonstrated and the contribution of several structures has been identified. Insula, cingulate cortex, parietal and frontal areas are primarily involved both by structural and functional perspectives. Moreover, consistent alterations in white matter integrity and brain electrical activity have been reported. Neuroimaging findings give a substantial contribution to AN pathophysiological description, also in order to understand altered but reversible processes in the passage from acute illness phase to disorder's remission, useful also for defining therapy.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This article reviews new research in the context of existing literature to identify approaches that will advance understanding of the persistence of anorexia nervosa. RECENT FINDINGS Neuroscience research in anorexia nervosa has yielded disparate findings: no definitive neural mechanism underlying illness vulnerability or persistence has been identified and no clear neural target for intervention has emerged. Recent advances using structural and functional neuroimaging research, as well as new techniques for applying and combining these approaches, have led to a refined understanding of changes in neural architecture among individuals who are acutely ill, have undergone renourishment, or are in recovery/remission. In particular, advances have come from the incorporation of computational and translational approaches, as well as efforts to link experimental paradigms with illness-relevant behavior. Recent findings converge to suggest abnormalities in systems involved in reward learning and processing among individuals with anorexia nervosa. SUMMARY Anorexia nervosa is associated with neurobiological abnormalities. Aberrant learning and reward processing may contribute to the persistence of illness. To better utilize new techniques to understand the neural mechanisms of persistent anorexia nervosa, it may help to distinguish stages of illness and to link neurobiology with maladaptive behavior.
Collapse
|