1
|
The molecular genetic basis of creativity: a mini review and perspectives. PSYCHOLOGICAL RESEARCH 2023; 87:1-16. [PMID: 35217895 DOI: 10.1007/s00426-022-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/16/2022] [Indexed: 01/27/2023]
Abstract
Although creativity is one of the defining features of human species, it is just the beginning of an ambitious attempt for psychologists to understand its genetic basis. With ongoing efforts, great progress has been achieved in molecular genetic studies of creativity. In this mini review, we highlighted recent molecular genetic findings for both domain-general and domain-specific creativity, and provided some perspectives for future studies. It is expected that this work will provide an update on the knowledge regarding the molecular genetic basis of creativity, and contribute to the further development of this field.
Collapse
|
2
|
Klein PC, Ettinger U, Schirner M, Ritter P, Rujescu D, Falkai P, Koutsouleris N, Kambeitz-Ilankovic L, Kambeitz J. Brain Network Simulations Indicate Effects of Neuregulin-1 Genotype on Excitation-Inhibition Balance in Cortical Dynamics. Cereb Cortex 2021; 31:2013-2025. [PMID: 33279967 DOI: 10.1093/cercor/bhaa339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking. In this work, we demonstrate the application of computational, biophysical network models to advance our understanding of the interaction between cortical activity observed in neuroimaging and the underlying neurobiology. We employed a biophysical neuronal model to simulate large-scale brain dynamics and to investigate the role of polymorphisms in the NRG1 gene (rs35753505, rs3924999) in n = 96 healthy adults. Our results show that G/G-carriers (rs3924999) exhibit a significant difference in global coupling (P = 0.048) and multiple parameters determining E/I-balance such as excitatory synaptic coupling (P = 0.047), local excitatory recurrence (P = 0.032) and inhibitory synaptic coupling (P = 0.028). This indicates that NRG1 may be related to excitatory recurrence or excitatory synaptic coupling potentially resulting in altered E/I-balance. Moreover, we suggest that computational modeling is a suitable tool to investigate specific biological mechanisms in health and disease.
Collapse
Affiliation(s)
- Pedro Costa Klein
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, 53111, Germany
| | - Michael Schirner
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, 10117, Germany.,Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin 10115, Germany
| | - Petra Ritter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, 10117, Germany.,Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin 10115, Germany
| | - Dan Rujescu
- University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University, Halle-Wittenberg, 06112, Germany
| | - Peter Falkai
- Department of Psychiatry, Ludwig Maximilians Universität München, 80336, Germany
| | | | - Lana Kambeitz-Ilankovic
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany.,Department of Psychiatry, Ludwig Maximilians Universität München, 80336, Germany
| | - Joseph Kambeitz
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| |
Collapse
|
3
|
Wang D, Guo T, Guo Q, Zhang S, Zhang J, Luo J. The Association Between Schizophrenia Risk Variants and Creativity in Healthy Han Chinese Subjects. Front Psychol 2019; 10:2218. [PMID: 31649580 PMCID: PMC6792478 DOI: 10.3389/fpsyg.2019.02218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/17/2019] [Indexed: 11/14/2022] Open
Abstract
Although previous evidence has suggested that there is a genetic link between schizophrenia and creativity, the specific genetic variants that underlie the link are still largely unknown. To further explore the potential genetic link between schizophrenia and creativity, in a sample of 580 healthy Han Chinese subjects, this study aimed to (1) validate the role of Neuregulin 1 (NRG1) rs6994992 (one schizophrenia risk variant that has been previously linked to creativity in the European population) in the relationship between schizophrenia and creativity and (2) explore the associations between 10 other schizophrenia risk variants and creativity. For NRG1 rs6994992, the result validated its association with creativity measures. However, since NRG1 rs6994992 is not a schizophrenia risk variant in the Han Chinese population, the validated association suggested that ethnic difference may exist in the relationship between NRG1 rs6994992, schizophrenia and creativity. For other schizophrenia risk variants, the result only demonstrated a nominal association between ZNF536 rs2053079 and creativity measures which would not survive correction for multiple testing. No association between polygenic risk score for these 10 schizophrenia risk variants and creativity measures was observed. In conclusion, this study provides limited evidence for the associations between these schizophrenia risk variants and creativity in healthy Han Chinese subjects. Future studies are warranted to better understand the potential genetic link between schizophrenia and creativity.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Tingting Guo
- Beijing Gese Technology Co., Ltd., Beijing, China
| | - Qi Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Shun Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | | |
Collapse
|