1
|
Du C, Zhu La ALT, Gao S, Gao W, Ma L, Bu D, Zhang W. Hepatic Transcriptome Reveals Potential Key Genes Contributing to Differential Milk Production. Genes (Basel) 2024; 15:1229. [PMID: 39336820 PMCID: PMC11431119 DOI: 10.3390/genes15091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the widespread adoption of TMR or PMR and the formulas designed to sufficiently cover the cows' requirements, individual dairy cows' milk production varies significantly. The liver is one of the most important organs in cow lactation metabolism and plays an essential role in the initiation of lactation. OBJECTIVES This study aimed to investigate the potential key genes in the liver contributing to the different milk production. METHODS We enrolled 64 cows and assigned them to high or low milk yield (MY) groups according to their first 3 weeks of milk production. We performed RNAseq for 35 liver samples with 18 from prepartum and 17 from postpartum cows. RESULTS The continuous milk yield observation showed a persistently higher milk yield in high MY cows than low MY cows in the first 3 weeks. High MY cows showed better feed conversion efficiency. We identified 795 differentially expressed genes (DGEs) in the liver of high MY cows compared with low MY cows, with up-regulated genes linked to morphogenesis and development pathways. Weighted gene co-expression network analysis (WGCNA) revealed four gene modules positively correlating with milk yield, and protein and lactose yield (p < 0.05). Using the intersected genes between the four gene modules and DEGs, we constructed the linear mixed-effects models and identified six hub genes positively associated and two hub genes negatively associated with milk yield (Coefficients > 0.25, p < 0.05). Random forest machine learning model training based on these eight hub genes could efficiently predict the milk yield (p < 0.001, R2 = 0.946). Interestingly, the expression patterns of these eight hub genes remained remarkably similar before and after parturition. CONCLUSIONS The present study indicated the critical role of liver in milk production. Activated processes involved in morphogenesis and development in liver may contribute to the higher milk production. Eight hub genes identified in this study may provide genetic research materials for dairy cow breeding.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - A La Teng Zhu La
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shengtao Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Wenshuo Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
| |
Collapse
|
2
|
Golowczyc M, Gomez-Zavaglia A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024; 13:2921. [PMID: 39335850 PMCID: PMC11431016 DOI: 10.3390/foods13182921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The production of healthy animal-derived food entails the effective control of foodborne pathogens and strategies to mitigate microbial threats during rearing. Antibiotics have been traditionally employed in animal farming to manage bacterial infections. However, the prohibition of antibiotic growth promoters in livestock farming has brought significant changes in animal production practices. Although antibiotics are now restricted to treating and preventing bacterial infections, their overuse has caused serious public health issues, including antibiotic resistance and the presence of antibiotic residues in food and wastewater. Therefore, sustainable animal production is crucial in reducing the spread of antibiotic-resistant bacteria. Annually, 40-50% of fruit and vegetable production is discarded worldwide. These discards present significant potential for extracting value-added ingredients, which can reduce costs, decrease waste, and enhance the food economy. This review highlights the negative impacts of antibiotic use in livestock farming and stresses the importance of analyzing the challenges and safety concerns of extracting value-added ingredients from fruit and vegetable co-products at an industrial scale. It also explores the current trends in reducing antibiotic use in livestock, with a focus on Latin American contexts. Finally, the suitability of using value-added ingredients derived from fruit and vegetable co-products for animal feeds is also discussed.
Collapse
Affiliation(s)
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, La Plata RA1900, Argentina;
| |
Collapse
|
3
|
Pasaribu T, Sinurat AP, Silalahi M, Lase JA. Phytogenic cocktails fed in different feeding regimes as alternatives to antibiotics for improving performance, intestinal microbial, and carcass characteristics of slow growth chickens. Vet World 2024; 17:1423-1429. [PMID: 39185039 PMCID: PMC11344117 DOI: 10.14202/vetworld.2024.1423-1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The phytogenic cocktail (PC) is a unique combination of natural plant extracts consisting of coconut shell smoke, clove leaf extract, and mangosteen rind extract, predominantly containing phenol, eugenol, and α-mangostin. Chicken performance can be improved by its antibacterial properties. This study aimed to test PC as a replacement for antibiotic growth promoters (AGPs), assessing its impact on performance, intestinal microbes, and carcass traits in slow growth KUB chickens. Materials and Methods Two hundred and forty KUB chicks were distributed randomly to five dietary groups. Each group constituted six replicates, one replicate contained eight chicks. The treatments included the control diet (CD) with no additives, CD with 50 ppm Zinc bacitracin as an additive (AGPs), CD paired with 198 mL PC/ton feed provided for the initial 12 weeks (PC1), CD with 198 mL PC/ton feed given for the first 4 weeks (PC2), and CD supplied with 198 mL PC/ton feed for the first 8 weeks (PC3). Performance and mortality indicators were assessed during the feeding stage up to 12 weeks of age, while intestinal total microbial count and carcass characteristics were determined at 12 weeks. Duncan's multiple-range test identified differences among the treatments in the randomized experiment. Results The AGPs group weighed significantly more (p < 0.05) than PC2 but not significantly different (p > 0.05) from Control, PC1, and PC3 at 4 weeks. At 8 weeks, there was no significant difference (p > 0.05) in the body weight (BW) between the AGP, CD, and PC groups. The AGPs group had a significantly greater BW than PC1 and PC2 at 12 weeks (p < 0.05), but was comparable to CD and PC3 (p > 0.05). During the starter phase (0-4 weeks), dietary addition of AGPs or PCs significantly reduced feed intake (p < 0.05); however, no significant effect (p > 0.05) was observed during the later feeding periods (0-8 or 0-12 weeks). During the starter period, PC3 yielded the best feed conversion ratio, slightly surpassing AGPs and significantly (p < 0.05) outperforming CD. No significant variations (p > 0.05) were detected in the carcasses among the treatments. The reduction of abdominal fat relative weight was significant (p < 0.05) during the first 8 weeks of PC feeding. After the 12-week trial, no significant difference (p > 0.05) was observed in the proportionate weights of the crop, proventriculus, gizzard, pancreas, cecum, spleen, bursa of Fabricius, heart, and liver. The reduction in the intestinal microbe population due to AGPs or PC was not statistically significant (p > 0.05). About 100% viability was confirmed by the absence of mortality throughout the study. Conclusion PC supplementation in KUB chicken feed enhances their performance. The optimal feeding regimes were effective during the first 8 weeks of age. In the 0-4 week time frame, feeding the PC to the chicken worsened performance whereas no improvement was observed in the 0-12 week period. The application enhanced weight loss, feed efficiency, and reduced abdominal fat. Based on the research findings, the PC can replace AGPs as a feed additive due to comparable or superior improvement results.
Collapse
Affiliation(s)
- Tiurma Pasaribu
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Arnold P. Sinurat
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Marsudin Silalahi
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Jonathan Anugrah Lase
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| |
Collapse
|
4
|
Quagliardi M, Frapiccini E, Marini M, Panfili M, Santanatoglia A, Kouamo Nguefang ML, Roncarati A, Vittori S, Borsetta G. Use of grape by-products in aquaculture: New frontiers for a circular economy application. Heliyon 2024; 10:e27443. [PMID: 38468965 PMCID: PMC10926132 DOI: 10.1016/j.heliyon.2024.e27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Grape by-products have already been used in cosmetics, food industries, but also animal feed industry, especially monogastrics and in aquaculture. Grape by-products have been studied for a long time and their principal activities are antimicrobial and antioxidant. Concerning aquaculture, the great demand and necessity to replace animal sources with vegetable ones, has placed grape by-products as possible new phytonutrients with beneficial properties. The purpose of this review is to describe the use of grape by-products in aquaculture, during the last decade, concerning their effects on: 1) gut health and welfare status; 2) growth performances; 3) quality of fillets and flesh during the rearing cycle and shelf-life products. Although other studies highlighted that the high supplementation of grape by-products could negatively affect fish health and growth, due to antinutritional factors (tannins), grape by-products are proven to be valuable phytonutrients that can be incorporated into fish feed to enhance growth and health during rearing conditions. Even in fish products, their utilization has proven to elongate the properties and shelf-life of fillets and minces. Further studies to evaluate the possible integrations or replacements with grape by-products in fish feed in order to evaluate their effectiveness in aquaculture from a sustainable circular economy perspective will be desirable to enhance the use of these products.
Collapse
Affiliation(s)
- Martina Quagliardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, 62024, Italy
| | - Emanuela Frapiccini
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), Ancona, 60125, Italy
| | - Mauro Marini
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), Ancona, 60125, Italy
| | - Monica Panfili
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), Ancona, 60125, Italy
| | | | | | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, 62024, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, 62032, Italy
| | - Germana Borsetta
- School of Pharmacy, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
5
|
Xu L, He J, Duan M, Chang Y, Gu T, Tian Y, Cai Z, Jiang C, Zeng T, Lu L. Effects of lactic acid bacteria-derived fermented feed on the taste and quality of duck meat. Food Res Int 2023; 174:113679. [PMID: 37981371 DOI: 10.1016/j.foodres.2023.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The present study aimed to examine the impact of lactic acid bacteria- fermented feed (FF) on the taste and quality of duck meat, in addition to elucidating the potential metabolomic mechanism at play. The findings revealed that ducks fed with FF exhibited elevated pH levels and reduced cooking loss in their meat when compared to the control group. In addition, the sensory evaluation and e-tongue analysis revealed that the tenderness, juiciness, umami, richness, saltiness, and sweetness of duck meat were all enhanced by feeding FF. Moreover, an examination of the metabolome using 1H nuclear magnetic resonance (1H NMR) identified the principal differential metabolites that exhibited a correlation with taste, which included 2-aminoadipate, glucose, glycine, N-acetylcysteine, niacinamide, proline, and threonine. Furthermore, the differential metabolites that exhibited the greatest enrichment in duck meat could be primarily traced to glutathione metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism. The potential factors contributing to the effect of FF and basic commercial duck feed (CF) were found to be primarily regulated via the aforementioned metabolic pathways. The study, therefore, offers a viable approach for enhancing the taste and quality of duck meat.
Collapse
Affiliation(s)
- Ligen Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunqing Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
Izadfar F, Belyani S, Pormohammadi M, Alizadeh S, Hashempor M, Emadi E, Sangsefidi ZS, Jalilvand MR, Abdollahi S, Toupchian O. The effects of grapes and their products on immune system: a review. Immunol Med 2023; 46:158-162. [PMID: 37158605 DOI: 10.1080/25785826.2023.2207896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Immune system plays a significant role in preventing and controlling diseases. Some studies reported the beneficial effects of grapes and their products on immunity. However, their results are controversial. This review aimed to discuss the effects of grapes and their products on immune system and their mechanisms of action. Although various in-vio and in-vitro studies and some human studies suggested that grapes and their products may help to improve the immune system's function, clinical trials in this area are limited and inconsistent.In conclusions, although, consumption of grapes and their products may help to having a healthy immune syste, further studies particularly human studies are required to clarify the precise effects of them and their mechanisms regarding immune system.
Collapse
Affiliation(s)
- Fatemeh Izadfar
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Saba Belyani
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Masomeh Pormohammadi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Simin Alizadeh
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mehrara Hashempor
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health ServicesYazd, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mohammad Reza Jalilvand
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Omid Toupchian
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| |
Collapse
|
7
|
Du H, Xing Y, Xu Y, Jin X, Yan S, Shi B. Dietary Artemisia Ordosica Polysaccharide Enhances Spleen and Intestinal Immune Response of Broiler Chickens. BIOLOGY 2023; 12:1390. [PMID: 37997990 PMCID: PMC10669473 DOI: 10.3390/biology12111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
The spleen and small intestines are the primary immune organs that provide important immunity against various diseases. Artemisia ordosica polysaccharide (AOP) could be used as an immunologic enhancer to boost immunity in response to infection. This study was performed to explore the effects of the dietary supplementation of AOP on the growth performance and spleen and small intestine immune function in broilers. A total of 288 AA broilers (1 day old) were randomly assigned into six dietary groups. Each group included six replicates of eight broilers per cage. The broilers were fed with a basal diet supplemented with 0 mg/kg (CON), 50 mg/kg chlortetracycline (CTC), 250, 500, 750, and 1000 mg/kg AOP for 42 d. The results showed that dietary AOP supplementation affected broiler growth performance, with 750 and 1000 mg/kg of AOP being able to significantly improve broiler BWG, and 750 mg/kg of AOP was able to significantly reduce the FCR. The dietary AOP supplementation increased the levels of IgA, IgG, IgM, IL-1β, IL-2, and IL-4 in the spleen and small intestine in a dose-dependent manner (p < 0.05). Meanwhile, we found that AOP can promote the mRNA expression of TLR4/MAPK/NF-κB signaling-pathway-related factors (TLR4, MyD88, P38 MAPK, JNK, NF-κB p50, and IL-1β). In addition, the dietary supplementation of 750 mg/kg AOP provides better immunity in the tissue than the CON group but showed no significant difference from the CTC group. Therefore, AOP has an immunoregulatory action and can modulate the immune function of broilers via the TLR4/ NF-ΚB/MAPK signal pathway. In conclusion, dietary supplementation with 750 mg/kg AOP may be alternatives to antibiotics for enhancing broilers' health, immunity, and growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (Y.X.); (Y.X.); (X.J.); (S.Y.)
| |
Collapse
|
8
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
9
|
Abd El-Hack ME, de Oliveira MC, Attia YA, Kamal M, Almohmadi NH, Youssef IM, Khalifa NE, Moustafa M, Al-Shehri M, Taha AE. The efficacy of polyphenols as an antioxidant agent: An updated review. Int J Biol Macromol 2023; 250:126525. [PMID: 37633567 DOI: 10.1016/j.ijbiomac.2023.126525] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Global production of the two major poultry products, meat and eggs, has increased quickly. This, in turn, indicates both the relatively low cost and the customers' desire for these secure and high-quality products. Natural feed additives have become increasingly popular to preserve and enhance the health and productivity of poultry and livestock. We consume a lot of polyphenols, which are a kind of micronutrient. These are phytochemicals with positive effects on cardiovascular, cognitive, anti-inflammatory, detoxifying, anti-tumor, anti-pathogen, a catalyst for growth, and immunomodulating functions, among extra health advantages. Furthermore, high quantities of polyphenols have unknown and occasionally unfavorable impacts on the digestive tract health, nutrient assimilation, the activity of digestive enzymes, vitamin and mineral assimilation, the performance of the laying hens, and the quality of the eggs. This review clarifies the numerous sources, categories, biological functions, potential limitations on usage, and effects of polyphenols on poultry performance, egg composition, exterior and interior quality traits.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | | | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Animal and Poultry Production, Faculty of Agriculture, Damnahur University, Damanhour 22516, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| |
Collapse
|
10
|
Meng WS, Zou Q, Xiao Y, Ma W, Zhang J, Wang T, Li D. Growth performance and cecal microbiota of broiler chicks as affected by drinking water disinfection and/or herbal extract blend supplementation. Poult Sci 2023; 102:102707. [PMID: 37216884 PMCID: PMC10209021 DOI: 10.1016/j.psj.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental exposures during early life are important for animals' intestinal microbiota composition and their production performance. This experiment investigated the growth performance, hematology parameters, jejunal morphology, and cecal microbiota of broiler chicks as affected by exogenous factors from the aspects of drinking water quality and dietary manipulation. A total of 480-day-old broiler chicks (Arbor acre; 41.59 ± 0.88 g) were randomly assigned into 4 groups (CON, HWGM, CA, CAHWGM). Each group had 6 replicates with 20 birds per replicate. Broiler chicks in CON group were fed with basal diet and drank normal drinking water; in HWGM group were fed with basal diet supplemented with 1.5g/kg herbal extract blend (hops, grape seed, and wheat germ) and drank normal drinking water; in CA group were fed with basal diet and drank sodium dichlorocyanurate (50 mg/L) treated-drinking water; in CAHWGM group were fed with basal diet supplemented with 1.5 g/kg herbal extract blend and drank chlorinated drinking water. The experimental period was 42 d. We found that broiler chicks drank chlorinated drinking water led to an increase in body weight gain and feed efficiency during d 22 to 42 and 1 to 42, as well as a decrease in cecal Dysgonomonas and Providencia abundance. Dietary supplementation of herbal extract blend increased cecal Lactobacillus and Enterococcus abundance, whereas decreased Dysgonomonas abundance. Moreover, we observed that cecal Dysgonomonas abundance synergistically decreased by treating drinking water with sodium dichlorocyanurate and supplementing herbal extract blend to the diet. Therefore, results obtained in this study indicated that providing chlorinated drinking water is an effective strategy to improve the growth performance of broiler chicks by regulating intestinal microbiota. Additionally, dietary supplementation of herbal extract blend alone or combined with chlorinated drinking water is able to regulate cecal microbiota.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiawen Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Jinzhou Zhongke Gene Detection Service Co., Ltd., Jinzhou 121219, China.
| |
Collapse
|
11
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Martelli G, Westendorf J, Ortuño J, Manini P, Pizzo F. Safety and efficacy of a feed additive consisting of a dry grape extract (Nor-Grape® α) for all avian species (Nor-Feed S.A.S.). EFSA J 2023; 21:e07964. [PMID: 37064055 PMCID: PMC10100694 DOI: 10.2903/j.efsa.2023.7964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a feed additive consisting of a dry grape extract (Nor-Grape® α) as a zootechnical feed additive, functional group physiological condition stabilisers - increase antioxidant defences, for all avian species. The additive is already authorised for use as a feed flavouring for all animal species, except dogs. The FEEDAP Panel concluded that the additive is safe for all avian species. The use of the additive in animal nutrition is of no concern for consumer safety. Based on the data submitted, the FEEDAP Panel could not conclude on the potential of the additive to be a skin or eye irritant or a dermal or respiratory sensitiser. However, the Panel considered that exposure through inhalation is likely. The use of the feed additive is considered safe for the environment. The Panel was unable to conclude on the potential of the additive to be efficacious under the proposed conditions of use.
Collapse
|
12
|
Chen WC, Hossen M, Liu W, Yen CH, Huang CH, Hsu YC, Lee JC. Grape Seed Proanthocyanidins Inhibit Replication of the Dengue Virus by Targeting NF-kB and MAPK-Mediated Cyclooxygenase-2 Expression. Viruses 2023; 15:v15040884. [PMID: 37112864 PMCID: PMC10140912 DOI: 10.3390/v15040884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Dengue virus (DENV) infection is a serious global health issue as it causes severe dengue hemorrhagic fever and dengue shock syndrome. Since no approved therapies are available to treat DENV infection, it is necessary to develop new agents or supplements that can do this. In this study, grape seed proanthocyanidins extract (GSPE), which is widely consumed as a dietary supplement, dose-dependently suppressed the replication of four DENV serotypes. The inhibitory mechanism demonstrated that GSPE downregulated DENV-induced aberrant cyclooxygenase-2 (COX-2) expression, revealing that the inhibitory effect of the GSPE on DENV replication involved targeting DENV-induced COX-2 expression. Mechanistic studies on signaling regulation have demonstrated that GSPE significantly reduced COX-2 expression by inactivating NF-κB and ERK/P38 MAPK signaling activities. Administrating GSPE to DENV-infected suckling mice reduced virus replication, mortality, and monocyte infiltration of the brain. In addition, GSPE substantially reduced the expression of DENV-induced inflammatory cytokines associated with severe dengue disease, including tumor necrosis factor-α, nitric oxide synthase, interleukin (IL)-1, IL-6, and IL-8, suggesting that GSPE has potential as a dietary supplement to attenuate DENV infection and severe dengue.
Collapse
|
13
|
Cellulose/Grape-Seed-Extract Composite Films with High Transparency and Ultraviolet Shielding Performance Fabricated from Old Cotton Textiles. Polymers (Basel) 2023; 15:polym15061451. [PMID: 36987229 PMCID: PMC10053784 DOI: 10.3390/polym15061451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Plastics displaying many merits have been indispensable in daily life and they still maintain the strong momentum of development. Nevertheless, petroleum-based plastics possess a stable polymer structure and most of them are incinerated or accumulated in the environment, leading to devastating impacts on our ecology system. Thus, exploiting renewable and biodegradable materials to substitute or replace these traditional petroleum-derived plastics is an urgent and important task. In this work, renewable and biodegradable all-biomass cellulose/grape-seed-extract (GSEs) composite films with high transparency and anti-ultraviolet performance were fabricated successfully from pretreated old cotton textiles (P-OCTs) using a relatively simple, green, yet cost-effective, approach. It is proved that the obtained cellulose/GSEs composite films exhibit good ultraviolet shielding performance without sacrificing their transparency, and their UV-A and UV-B blocking values can reach as high as nearly 100%, indicating the good UV-blocking performance of GSEs. Meanwhile, the cellulose/GSEs film show higher thermal stability and water vapor transmission rate (WVTR) than most common plastics. Moreover, the mechanical property of the cellulose/GSEs film can be adjusted by the addition of a plasticizer. Briefly, the transparent all-biomass cellulose/grape-seed-extracts composite films with high anti-ultraviolet capacity were manufactured successfully and they can be used as potential materials in the packaging field.
Collapse
|
14
|
Performance, blood biochemistry, carcass fatty acids, antioxidant status, and HSP70 gene expressions in Japanese quails reared under high stocking density: the effects of grape seed powder and meal. Trop Anim Health Prod 2023; 55:53. [PMID: 36708502 DOI: 10.1007/s11250-023-03481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Japanese quails reared under high stocking density (SD) were evaluated for the effects of grape seed powder (GSP) and meal (GSM) supplementation on performance, blood biochemistry, thigh and breast muscle fatty acids, antioxidant status, and HSP70 gene expression. We randomly assigned 288 (15-day-old) quail chicks to six treatment groups in a factorial design (2 × 3) with four replicates, involving two density levels [160 cm2/bird (LD) and 80 cm2/bird (HD)] and three feed forms (FFs) [no supplementation, grape seed powder (3% GSP), grape seed meal (3% GSM)]. SD had a significant effect on live weight, but not on weekly feed intake, daily weight gain, and feed conversion ratio. Serum creatinine and aspartate aminotransferase levels were significantly affected by FF and SD × FF (p < 0.05). A high SD reduced the n-3/n-6 ratio of breast muscle and a significant interaction was found between FF (p < 0.001). The SD × FF interaction reduced the Σn-6 ratio in HDM's thigh muscle, whereas in LDM, the ratio increased (p < 0.01). At high SD, neither GSP nor GSM reduced biological markers of oxidative stress (p > 0.05). Compared to GSP, GSM had higher efficacy at reducing HSP70 levels related to high SD levels. Despite this, at high SD, a diet containing 3% of GSP and GSM was not effective in overcoming oxidative stress. Therefore, more studies using different doses of GSM and GSP in quail diets would be beneficial.
Collapse
|
15
|
Chen Y, Lu J, Feng K, Wan L, Ai H. Nutritional metabolism evaluation and image segmentation of the chicken muscle and internal organs for automatic evisceration. J Anim Physiol Anim Nutr (Berl) 2023; 107:228-237. [PMID: 35238075 DOI: 10.1111/jpn.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023]
Abstract
The chicken is rich in various proteins, fatty acids, polysaccharides, trace elements, and other human essential nutrients that contribute to its high nutritional value. In this study, the expression levels of nutrition-related genes (acetyl-CoA acyltransferase, ACAA) of native chicken breeds were investigated. The level of GgalACAA1-2 transcripts expression in the liver of chicken was significantly higher than that of muscle and heart. Moreover, three protein extracts were isolated from the muscle, heart, and liver tissues from the chicken, and their nutritional function was evaluated in the present study. These protein extracts had excellent DPPH and hydroxyl radical scavenging capacities and exhibited significant superoxide anion scavenging ability. Moreover, the protein extracts of muscle tissue showed an important mouse splenocyte proliferation activity and could be used as an immunomodulator of natural origin. In addition, this report presented an automatic visual inspection of chicken viscera using the active contour algorithms and the image processing method for eviscerating by the parallel robot. The recognition and positioning rate of chicken viscera obtained by the proposed method could reach 96.45%. These methods provided basic data for automated poultry slaughter and segmentation, avoiding unnecessary health risks by a pathogenic microorganism, such as avian influenza, Newcastle disease virus, and coronavirus. Moreover, the internal organs of the chicken could be fully harvested by the image segmentation of automatic evisceration, which also facilitated the processing value of these internal organs as by-products of poultry.
Collapse
Affiliation(s)
- Yan Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jianjian Lu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ke Feng
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lili Wan
- School of Electrical and electronic Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Ai
- School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
16
|
Li Z, Liu R, Wang X, Wu H, Yi X, Huang L, Qin Q. Effects of melittin on laying performance and intestinal barrier function of quails. Poult Sci 2022; 102:102355. [PMID: 36502563 PMCID: PMC9763859 DOI: 10.1016/j.psj.2022.102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and β diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.
Collapse
|
17
|
Sánchez CJ, Barrero-Domínguez B, Martínez-Miró S, Madrid J, Baños A, Aguinaga MA, López S, Hernández F. Use of Olive Pulp for Gestating Iberian Sow Feeding: Influence on Performance, Health Status Indicators, and Fecal Microbiota. Animals (Basel) 2022; 12:ani12223178. [PMID: 36428405 PMCID: PMC9686466 DOI: 10.3390/ani12223178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Olive pulp (Olea europaea) inclusion in the diet of Iberian sows (Sus scrofa) is interesting due to fiber and bioactive compounds content and because both productions are located in the same area. The aim of this trial was to study the effect of olive pulp inclusion at 100 g/kg in Iberian sow’s diet on performance, immunoglobulin and serum parameters, antioxidant status, and fecal microbiota. Forty multiparous Iberian sows (body weight (BW) = 149.6 ± 20.2 kg) were assigned either a control diet (CON) or an experimental diet (PUL) with olive pulp at 100 g/kg. The BW and backfat thickness in sows were measured at post-insemination days 42 and 107, and litter performance was measured on the farrowing day. Blood and fecal samples were collected at gestation day 107. In piglets, blood was sampled when they were 10 days old for immunoglobulin analysis. Albumin, total protein, triglyceride, creatinine, urea, glucose, and Trolox equivalent antioxidant capacity in serum were higher (p < 0.05) in PUL sows than in CON sows. The Enterobacteriaceae, Bifidobacterium spp., and Lactobacillus spp. fecal counts were increased (p < 0.05) with olive pulp supplementation compared with the CON sow group. Olive pulp added to gestating Iberian sow’s diet at 100 g/kg has beneficial effects on the fecal microbiota and antioxidant status, without penalizing other gestation parameters.
Collapse
Affiliation(s)
- Cristian Jesús Sánchez
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Murcia, Spain
- Correspondence: ; Tel.: +34-622-540-243
| | | | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Murcia, Spain
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Murcia, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Granada, Spain
| | | | - Silvia López
- Dcoop Sociedad Cooperativa Andaluza, Carretera Córdoba S/N, 29200 Antequera, Málaga, Spain
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Murcia, Spain
| |
Collapse
|
18
|
Alfaia CM, Costa MM, Lopes PA, Pestana JM, Prates JAM. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods 2022; 11:2754. [PMID: 36140881 PMCID: PMC9497639 DOI: 10.3390/foods11182754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Grape by-products could be used in monogastric animals' nutrition to reduce feeding costs with conventional crops (e.g., maize and soybean meal) and to improve meat quality. The main grape by-products with the largest expression worldwide, particularly in the Mediterranean region, are grape pomace, grape seed, grape seed oil and grape skins. These by-products are rich sources of bioactive polyphenols, dietary fiber and polyunsaturated fatty acids (PUFA), more specifically, the beneficial n-3 PUFA, that could be transferred to pork and poultry meat. The potential biological activities, mainly associated with antimicrobial and antioxidant properties, make them putative candidates as feed supplements and/or ingredients capable of enhancing meat quality traits, such as color, lipid oxidation and shelf life. However, grape by-products face several limitations, namely, the high level of lignified cell wall and tannin content, both antinutritional compounds that limit nutrients absorption. Therefore, it is imperative to improve grape by-products' bioavailability, taking advantage of enzyme supplementation or pretreatment processes, to use them as feed alternatives contributing to boost a circular agricultural economy. The present review summarizes the current applications and challenges of using grape by-products from the agro-industrial sector in pig and poultry diets aiming at improving meat quality and nutritional value.
Collapse
Affiliation(s)
- Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
19
|
Grape seed extract supplementation in heat-stressed preweaning dairy calves: I. Effects on antioxidant status, inflammatory response, hematological and physiological parameters. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Costa MM, Alfaia CM, Lopes PA, Pestana JM, Prates JAM. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals (Basel) 2022; 12:ani12172239. [PMID: 36077957 PMCID: PMC9454619 DOI: 10.3390/ani12172239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Grape by-products are exceptional options for replacement of conventional and unsustainable feed sources, since large amounts are generated every year from the winery industry. However, the majority is wasted with severe environmental and economic consequences. The present review aimed to evaluate the effects of grape by-products on pig and poultry growth performance. The most recent literature was reviewed using ScienceDirect and PubMed databases and the results of a total of 16 and 38 papers for pigs and poultry, respectively, were assessed. Fewer studies are documented for pig, but the incorporation of grape by-products up to 9% feed led to an improvement in growth performance with an increase in average daily gain. Conversely, lower levels (<3% feed) are needed to achieve these results in poultry. The beneficial effects of grape by-products on animal performance are mainly due to their antioxidant, antimicrobial, and gut morphology modulator properties, but their high level of cell wall lignification and content of polyphenolic compounds (e.g., tannin) limits nutrient digestion and absorption by monogastric animals. The use of exogenous enzymes or mechanical/chemical processes can provide additional nutritional value to these products by improving nutrient bioavailability. Overall, the valorization of grape by-products is imperative to use them as feed alternatives and intestinal health promoters, thereby contributing to boost circular agricultural economy.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
21
|
Grape seed extract supplementation in heat-stressed preweaning dairy calves: II. Effects on growth performance, blood metabolites, hormonal responses, and fecal fermentation parameters. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Evaluation of a Dietary Grape Extract on Oxidative Status, Intestinal Morphology, Plasma Acute-Phase Proteins and Inflammation Parameters of Weaning Piglets at Various Points of Time. Antioxidants (Basel) 2022; 11:antiox11081428. [PMID: 35892630 PMCID: PMC9394324 DOI: 10.3390/antiox11081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Reports of the underlying mechanisms of dietary grape extract (GE) in overcoming weaning challenges in piglets have been partly inconsistent. Furthermore, evaluations of the effects of GE at weaning in comparison to those of widely used therapeutic antibiotics have been scarce. To explore the mode of action of GE in selected tissues and plasma, we evaluated gut morphology, antioxidant and inflammation indices. Accordingly, 180 weaning piglets were allocated to three treatment groups: negative control (NC), NC and antibiotic treatment for the first 5 days of the trial (positive control, PC), and NC and GE (entire trial). The villus surface was positively affected by GE and PC on day 27/28 of the trial in the jejunum and on day 55/56 of the trial in the ileum. In the colon, NC tended (p < 0.10) to increase crypt parameters compared to PC on day 55/56. The PC group tended (p < 0.10) to increase catalase activity in the ileum and decrease Cu/Zn-SOD activity in the jejunum, both compared to NC. There were no additional effects on antioxidant measurements of tissue and plasma, tissue gene expression, or plasma acute-phase proteins. In conclusion, GE supplementation beneficially affected the villus surface of the small intestine. However, these changes were not linked to the antioxidant and anti-inflammatory properties of GE.
Collapse
|
23
|
Engler P, Desguerets C, Benarbia MEA, Mallem Y. Supplementing young cattle with a rumen-protected grape extract around vaccination increases humoral response and antioxidant defenses. Vet Anim Sci 2022; 15:100232. [PMID: 35079659 PMCID: PMC8777116 DOI: 10.1016/j.vas.2022.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Ji F, Gu L, Rong G, Hu C, Sun W, Wang D, Peng W, Lin D, Liu Q, Wu H, Dai H, Zhou H, Xu T. Using Extract From the Stems and Leaves of Yizhi (Alpiniae oxyphyllae) as Feed Additive Increases Meat Quality and Intestinal Health in Ducks. Front Vet Sci 2022; 8:793698. [PMID: 35174238 PMCID: PMC8841826 DOI: 10.3389/fvets.2021.793698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Yizhi (Alpiniae Oxyphyllae, A. oxyphylla) has been widely used as an important traditional Chinese medicinal herb for centuries. Existing studies have shown that A. oxyphylla has numerous benefits in human and animal health. We hypothesized that extract from the stems and leaves of A. oxyphylla (AOE) as a feed additive may have positive effects on animal health and products. Thus, this study was conducted to evaluate the effects of AOE as a feed additive on growth performance, serum biochemical parameters, intestinal morphology, microbial composition, and meat quality in Jiaji ducks. A total of 240 Jiaji ducks of 42 days old (1675.8 ± 44.2 g, male: female ratio = 1:1) were blocked based on body weight and randomly allocated into four dietary treatments with three replicates that each had 20 duck individuals. The dietary treatments included: basal diet, control group (CK); basal diet supplementation with 30 mg/kg (Y1), 80 mg/kg (Y2), and 130 mg/kg (Y3) AOE, respectively, and lasted for 49 days. The results showed that average daily feed intake from day 42 to day 60 was decreased with the increasing level of AOE (P < 0.05). Compared with the CK group, the groups with AOE supplementation decreased serum LDL-C level (P < 0.05), the addition of 30 mg/kg AOE increased total amino acids, essential amino acids, branched-chain amino acids, nonessential amino acids, and umami taste amino acids (P < 0.05), but decreased selenium and zinc concentrations in breast muscle (P < 0.05). In addition, the supplementation of 30 or 130 mg/kg AOE significantly increased jejunal villus height (P < 0.05) and tended to increase the ratio of villus height to crypt depth in the jejunum (P = 0.092) compared to the CK group. Moreover, the addition of 30 mg/kg AOE showed a higher abundance of genus unclassified Bacteroidales and genus unclassified Ruminococcaceae than the CK group (P < 0.05). Therefore, dietary supplementation with 30 mg/kg AOE increased meat nutrition profile and flavor through promoting amino acid contents in breast muscle, as well as maintained intestine integrity and modulated the microbial composition. In conclusion, AOE as an antibiotic alternative displayed potential in maintaining intestinal health and improving meat quality.
Collapse
Affiliation(s)
- Fengjie Ji
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Guang Rong
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chengjun Hu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiping Sun
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dingfa Wang
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiqi Peng
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dajie Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Hongzhi Wu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Haofu Dai
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hanlin Zhou
| | - Tieshan Xu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Tieshan Xu
| |
Collapse
|
25
|
Maheshwari S, Kumar V, Bhadauria G, Mishra A. Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shruti Maheshwari
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| | - Vivek Kumar
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| | - Geeta Bhadauria
- Kendriya Vidyalaya Kanpur Cantt Kanpur Uttar Pradesh 208004 India
| | - Abhinandan Mishra
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| |
Collapse
|
26
|
Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals (Basel) 2021; 11:ani11123471. [PMID: 34944248 PMCID: PMC8698016 DOI: 10.3390/ani11123471] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Plant secondary metabolites and essential oils also known as phytogenics are biologically active compounds that have recently attracted increased interest as feed additives in poultry production, due to their ability to promote feed efficiency by enhancing the production of digestive secretions and nutrient absorption, reduce pathogenic load in the gut, exert antioxidant properties and decrease the microbial burden on the animal’s immune status. However, the mechanisms are far from being fully elucidated. Better understanding the interaction of phytogenics with gastrointestinal function and health as well as other feed ingredients/additives is crucial to design potentially cost-effective blends. Abstract Phytogenic feed additives have been largely tested in poultry production with the aim to identify their effects on the gastrointestinal function and health, and their implications on the birds’ systemic health and welfare, the production efficiency of flocks, food safety, and environmental impact. These feed additives originating from plants, and consisting of herbs, spices, fruit, and other plant parts, include many different bioactive ingredients. Reviewing published documents about the supplementation of phytogenic feed additives reveals contradictory results regarding their effectiveness in poultry production. This indicates that more effort is still needed to determine the appropriate inclusion levels and fully elucidate their mode of actions. In this frame, this review aimed to sum up the current trends in the use of phytogenic feed additives in poultry with a special focus on their interaction with gut ecosystem, gut function, in vivo oxidative status and immune system as well as other feed additives, especially organic acids.
Collapse
|
27
|
Zhang Y, Mahmood T, Tang Z, Wu Y, Yuan J. Effects of naturally oxidized corn oil on inflammatory reaction and intestinal health of broilers. Poult Sci 2021; 101:101541. [PMID: 34788712 PMCID: PMC8605181 DOI: 10.1016/j.psj.2021.101541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effects of naturally oxidized corn oil on the inflammatory reaction and intestinal health of broilers. Total 450, one-day-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicate cages (15 birds in each replicate cage). The dietary treatment array consisted of the varying ratio of nonoxidized corn oil to naturally oxidized corn oil from 0:100, 25:75, 50:50, 75:25, and 100:0, respectively. The experimental period was 42 d. Serum, jejunum, and contents of cecum samples were taken at the age of 42 d of broilers. The results showed no significant difference in the body weight gain (BWG) with a different proportion of oxidized corn oil compared with the 0% oxidized oil group on d 42. The feed intake (FI), the concentration of immunoglobulin G (IgG), interferon-γ (IFN-γ), and interleukin-10 (IL10) in serum showed a significant quadratic response with the increase of oxidized oil concentration on d 42. The serum's concentration of IgG, IFN-γ, and IL-10 reached the highest value at 75% oxidized corn oil. In addition, the mRNA expression levels of interleukin-1β (IL-1β), IFN-γ, nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), and myeloid differentiation factor-88 (MyD88) in the jejunum were significantly affected by different proportions of oxidized corn oil, and the gene expression levels were highest at 75% oxidized corn oil on d 42. The mRNA expression of Bcl2-associated X (Bax) in the jejunum showed a significantly quadratic curve with the increase of oxidized oil concentration, and its gene expression was the highest after adding 50% oxidized corn oil according to the regression equation on d 42. The villus height/crypt depth and goblet cells of jejunum decreased linearly with the increasing proportion of oxidized corn oil and reached the lowest point after adding 100% oxidized corn oil on d 42. The β diversity showed the remarkable differentiation of microbial communities among 5 groups, and the microbial community of the 0% oxidized oil group was significantly separated from that of 75 and 100% oxidized oil groups in the cecum. Taken together, these results showed that a low dose of naturally oxidized corn oil is not harmful to the growth of broilers, while a high dose of oxidized corn oil will trigger the inflammatory response and adversely affect the gut health of broilers.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo Animal Nutrition, Dubai 00000, United Arab Emirates
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
29
|
Efenberger-Szmechtyk M, Gałązka-Czarnecka I, Otlewska A, Czyżowska A, Nowak A. Aronia melanocarpa (Michx.) Elliot, Chaenomeles superba Lindl. and Cornus mas L. Leaf Extracts as Natural Preservatives for Pork Meat Products. Molecules 2021; 26:molecules26103009. [PMID: 34070170 PMCID: PMC8158479 DOI: 10.3390/molecules26103009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the possibility of using Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts as natural preservatives for pork meat products. Pork sausages were stored in modified atmosphere packaging (MAP) (80% N2 and 20% CO2) at 4 °C for 29 days. The total psychrotrophic counts (TPC) were determined during the storage period, along with the numbers of Enterobacteriaceae and lactic acid bacteria (LAB). The extracts improved the microbial quality of the meat products but to a lesser extent than sodium nitrate (III). They reduced the amounts of Enterobacteriaceae and LAB. The A.melanocarpa leaf extract showed the strongest preservative effect. The bacterial biodiversity of the meat products was investigated based on high-throughput sequencing of the 16S rRNA gene. Two predominant bacteria phyla were identified, Proteobacteria and Firmucutes, mostly consisting of genera Photobacterium, Brochothrix, and Carnobacterium. The extracts also influenced microbial community in sausages decreasing or increasing bacterial relative abundance. The extracts significantly inhibited lipid oxidation and improved the water-holding capacity of the meat, with C. superba extract showing the strongest influence. In addition, A. melanocarpa and C. superba improved the redness (a*) of the sausages. The results of this study show that A. melanocarpa, C. superba, and C. mas leaf extracts can extend the shelf life of meat products stored in MAP at 4 °C.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
- Correspondence:
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| |
Collapse
|
30
|
Mahfuz S, Shang Q, Piao X. Phenolic compounds as natural feed additives in poultry and swine diets: a review. J Anim Sci Biotechnol 2021; 12:48. [PMID: 33823919 PMCID: PMC8025492 DOI: 10.1186/s40104-021-00565-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Due to ban on using antibiotics in feed industry, awareness of using natural feed additives have led to a great demand. The interest of plants phenolic compounds as a potential natural antioxidant source has been considered in research community due to their predictable potential role as feed additives in poultry and swine production. However, the mode of action for their functional role and dosage recommendation in animal diets are still remain indistinct. Taking into account, the present review study highlights an outline about the mode of action of phenolic compound and their experimental uses in poultry and swine focusing on the growth performance, antioxidant function, immune function, antimicrobial role and overall health status, justified with the past findings till to date. Finally, the present review study concluded that supplementation of phenolic compounds as natural feed additives may have a role on the antioxidant, immunity, antimicrobial and overall production performance in poultry and swine.
Collapse
Affiliation(s)
- Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Chitosan coating incorporated with grape seed extract and Origanum vulgare essential oil: an active packaging for turkey meat preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00867-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|