1
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Tavassoli A, Soleymani S, Housaindokht MR. Nucleotide sequence characterization, amino acid variations and 3D structural analysis of HN protein of the NDV VIId genotype. Vet Med Sci 2024; 10:e1491. [PMID: 39031626 PMCID: PMC11190948 DOI: 10.1002/vms3.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/20/2023] [Accepted: 05/17/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Haemagglutinin-neuraminidase (HN) is one of the membrane proteins of Newcastle disease virus (NDV) that plays a significant role during host viral infection. Therefore, antibodies against HN are vital for the host's ability to protect itself against NDV infection due to their critical functions in viral infection. As a result, HN has been a candidate protein in vaccine development against the Newcastle disease virus. METHODS This report used the full-length sequence of the HN protein of NDV isolated in Iran (VIId subgenotype). We characterize and identify amino acid substitutions in comparison to other more prevalent NDV genotypes, VII subgenotypes and vaccine strains. Furthermore, bioinformatics tools were applied to determine the three-dimensional structure, molecular dynamics simulation and prediction of B-cell antigenic epitopes. RESULTS The results showed that the antigenic regions of our isolate are quite comparable to the other VII subgenotypes of NDV isolated from different geographical places. Moreover, by employing the final 3D structure of our HN protein, the amino acid residues are proposed as a B-cell epitope by epitope prediction servers, which leads to the introduction of linear and conformational antigenic sites. CONCLUSIONS Immunoinformatic vaccine design principles currently exhibit tremendous potential for developing a new generation of candidate vaccines quickly and economically to eradicate infectious viruses, including the NDV. In order to accomplish this, focus is directed on residues that might be considered antigenic.
Collapse
Affiliation(s)
- Amin Tavassoli
- Research and Technology Center of BiomoleculesFaculty of Science, Ferdowsi University of MashhadMashhadIran
- Department of ChemistryFaculty of Sciences, Ferdowsi University of MashhadMashhadIran
| | - Safoura Soleymani
- Research and Technology Center of BiomoleculesFaculty of Science, Ferdowsi University of MashhadMashhadIran
- Department of ChemistryFaculty of Sciences, Ferdowsi University of MashhadMashhadIran
| | - Mohammad Reza Housaindokht
- Research and Technology Center of BiomoleculesFaculty of Science, Ferdowsi University of MashhadMashhadIran
- Department of ChemistryFaculty of Sciences, Ferdowsi University of MashhadMashhadIran
| |
Collapse
|
3
|
Lu X, Zhan T, Zhou Q, Yang W, Liu K, Chen Y, Gao R, Hu J, Gu M, Hu S, Jiao XA, Wang X, Liu X, Liu X. The haemagglutinin-neuraminidase protein of velogenic Newcastle disease virus enhances viral infection through NF-κB-mediated programmed cell death. Vet Res 2024; 55:58. [PMID: 38715081 PMCID: PMC11077864 DOI: 10.1186/s13567-024-01312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Qiwen Zhou
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Wenhao Yang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Xin-An Jiao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
4
|
Zeng T, Xie L, Xie Z, Huang J, Xie Z, Huang Q, Luo S, Wang S, Li M, Hua J, Zhang Y, Zhang M. Phylogeny and Pathogenicity of Subtype XIIb NDVs from Francolins in Southwestern China and Effective Protection by an Inactivated Vaccine. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/1317784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Most genotype XII newcastle disease viruses (NDVs) were isolated from poultry, chickens, or geese, with the exception of one subtype, XIIa NDV, which was isolated from a peacock. Here, two subtype XIIb NDVs, francolin/China/GX01/2017 and francolin/China/GX02/2017 (GX01 and GX02 hereafter), were isolated from francolins, which are resident birds in southern China. GX01 and GX02 were characterized as velogenic NDVs. Based on the weaker pathogenicity of these viruses in chickens, the amino acid sequences of seven proteins from genotype XII NDVs were compared, which revealed 17, 40, 15, 7, 32, 25, and 31 variations in the NP, P, M, F, HN, L, and V proteins, respectively, some of which could be responsible for this decreased pathogenicity. Epidemiological and phylogenetic analyses suggest that subtype XIIb NDVs have multiple transmission chains, and that resident birds may be involved in this process as intermediate hosts in which viruses keep evolving. Because of the increased pathogenicity of subtype XIIb NDVs, the protective efficacy of GX01 as an inactivated vaccine was evaluated and compared with that of two commercial inactivated vaccines in chickens. The results showed that the subtype XIIb NDVs could be candidate genotype-matched vaccine strains against genotype XII NDVs.
Collapse
Affiliation(s)
- Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Qinghong Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- College of Animal Science and Technology, Guangxi University, Nanning 530000, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- College of Animal Science and Technology, Guangxi University, Nanning 530000, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Jun Hua
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530000, Guangxi, China
- College of Animal Science and Technology, Guangxi University, Nanning 530000, Guangxi, China
| |
Collapse
|
5
|
Biological Significance of Dual Mutations A494D and E495K of the Genotype III Newcastle Disease Virus Hemagglutinin-Neuraminidase In Vitro and In Vivo. Viruses 2022; 14:v14112338. [PMID: 36366435 PMCID: PMC9696791 DOI: 10.3390/v14112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 02/01/2023] Open
Abstract
As a multifunctional protein, the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is involved in various biological functions. A velogenic genotype III NDV JS/7/05/Ch evolving from the mesogenic vaccine strain Mukteswar showed major amino acid (aa) mutations in the HN protein. However, the precise biological significance of the mutant HN protein remains unclear. This study sought to investigate the effects of the mutant HN protein on biological activities in vitro and in vivo. The mutant HN protein (JS/7/05/Ch-type HN) significantly enhanced the hemadsorption (HAd) and fusion promotion activities but impaired the neuraminidase (NA) activity compared with the original HN protein (Mukteswar-type HN). Notably, A494D and E495K in HN exhibited a synergistic role in regulating biological activities. Moreover, the mutant HN protein, especially A494D and E495K in HN, enhanced the F protein cleavage level, which can contribute to the activation of the F protein. In vitro infection assays further showed that NDVs bearing A494D and E495K in HN markedly impaired the cell viability. Simultaneously, A494D and E495K in HN enhanced virus replication levels at the early stage of infection but weakened later in infection, which might be associated with the attenuated NA activity and cell viability. Furthermore, the animal experiments showed that A494D and E495K in HN enhanced case fatality rates, virus shedding, virus circulation, and histopathological damages in NDV-infected chickens. Overall, these findings highlight the importance of crucial aa mutations in HN in regulating biological activities of NDV and expand the understanding of the enhanced pathogenicity of the genotype III NDV.
Collapse
|
6
|
Lu X, Liu X, Song Q, Wang X, Hu S, Liu X. Amino Acid Mutations in Hemagglutinin-Neuraminidase Enhance the Virulence and Pathogenicity of the Genotype III Newcastle Disease Vaccine Strain After Intravenous Inoculation. Front Vet Sci 2022; 9:890657. [PMID: 35711809 PMCID: PMC9196742 DOI: 10.3389/fvets.2022.890657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease virus (NDV), the causative agent that generally causes severe disease in poultry, continues to mutate and has thus evolved into 21 genotypes. We previously isolated a velogenic genotype III NDV JS/7/05/Ch that evolved from the vaccine strain Mukteswar, accompanying by amino acid mutations in Hemagglutinin-Neuraminidase (HN). Here, we sought to investigate the role of the mutant HN protein in NDV virulence. The HN genes of Mukteswar and JS/7/05/Ch were replaced reciprocally via reverse genetics, yielding two recombinant viruses rJS/MHN and rMu/JHN, respectively. rMu/JHN, in which the endogenous HN protein was replaced with the HN protein of JS/7/05/Ch, had a higher intravenous pathogenicity index (IVPI) value in chickens. Moreover, dual aa mutations (A494D and E495K from JS/7/05/Ch-type HN) were introduced into the HN protein of Mukteswar to generate the recombinant virus rMukHN494+495JS. This virus showed an equivalent IVPI value to that of rJS/7/05/Ch (generated from parental JS/7/05/Ch via reverse genetics). In vitro and in vivo assays further showed that A494D and E495K in HN induced antigenic changes, a higher replication level and a more intense inflammatory response. Taken together, these findings indicate that aa mutations in HN are crucial for the virulence of the genotype III Newcastle disease (ND) vaccine strain after intravenous inoculation. Our study further highlights that close surveillance is needed to monitor the genetic variation of ND vaccine strains.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Qingqing Song
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Shafaati M, Ghorbani M, Mahmoodi M, Ebadi M, Jalalirad R. Expression and characterization of hemagglutinin-neuraminidase protein from Newcastle disease virus in Bacillus subtilis WB800. J Genet Eng Biotechnol 2022; 20:77. [PMID: 35608724 PMCID: PMC9130408 DOI: 10.1186/s43141-022-00357-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Background Newcastle disease virus (NDV) belongs to the genus Avaluvirus and Paramyxoviridae family, and it can cause acute, highly contagious Newcastle disease in poultry. The two proteins, haemagglutinin neuraminidase (HN) and Fusion (F), are the main virulence factor of the virus and play an essential role in immunogenicity against the virus. In most paramyxoviruses, the F protein requires HN protein to fuse the membrane, and HN proteins substantially enhance the viruses’ fusion activity. Results The present study describes the successful cloning and expression of HN protein from NDV in Bacillus subtilis WB800 using the modified shuttle vector pHT43. HN coding sequence was cloned into the pGet II vector. It was then subcloned into the PHT43 shuttle vector and transferred to Escherichia coli for replication. The recombinant plasmid was extracted from E. coli and used to transform B. subtilis by electroporation. After induction of recombinant B. subtilis by IPTG, total cell protein and the protein secreted into the media were analysed through a time course using SDS-PAGE. The expressed HN protein was purified using cation exchange chromatography followed by metal affinity chromatography, using the 6× His epitope introduced at the carboxyl terminus of the recombinant protein. The accuracy of the PHT43-HN construct was confirmed by sequencing and enzymatic digestion. SDS-PAGE results showed that the recombinant HN protein was successfully expressed and secreted into the medium. Moreover, the purified HN protein showed neuraminidase activity with characteristics similar to the indigenous HN NDV protein. B. subtilis is a free endotoxin host that could be a favourite prokaryotic platform for producing the recombinant HN protein. Conclusion The establishment of this expression and purification system has allowed us to explore further the biochemical characteristics of HN protein and obtain material that could be suitable for a new production of NDV candidate vaccine with high immunogenicity.
Collapse
Affiliation(s)
- Mohammadreza Shafaati
- Department of Cellular & Molecular Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Masoud Ghorbani
- Pasteur Institute of Iran, Production and Research Complex, Department of Research and Development, Kilometre 25 Karaj-Tehran Highway, Karaj, Alborz, 31599, Iran.
| | - Minoo Mahmoodi
- Department of Cellular & Molecular Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Sciences, Damaghan Branch, Islamic Azad University, Damghan, Semnan, Iran
| | - Reza Jalalirad
- Pasteur Institute of Iran, Production and Research Complex, Department of Research and Development, Kilometre 25 Karaj-Tehran Highway, Karaj, Alborz, 31599, Iran
| |
Collapse
|
8
|
Feng H, Shang Y, Li L, Sun X, Fan S, Ren X, Xu Y, Zeng Z, Hu X, Cheng G, Wen G. Fusion Protein Cleavage Site Containing Three Basic Amino Acids Attenuates Newcastle Disease Virus in Chicken Embryos: Use as an in ovo Vaccine. Front Microbiol 2022; 13:812289. [PMID: 35387070 PMCID: PMC8978892 DOI: 10.3389/fmicb.2022.812289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
In ovo vaccination is an attractive immunization strategy for the poultry industry. However, although most live Newcastle disease virus (NDV) vaccine strains, such as LaSota and V4, can be used after hatching, they are pathogenic to chicken embryos when administered in ovo. We have previously reported that NDV strain TS09-C is a safe in ovo vaccine in specific-pathogen-free and commercial chicken embryos because it is attenuated in chicken embryos. However, the molecular basis of its attenuation is poorly understood. In this study, we firstly evaluated the safety of chimeric NDV strains after exchanging genes between strains TS09-C and LaSota as in ovo vaccines, and demonstrated that the attenuation of NDV in chicken embryos was dependent upon the origin of the fusion (F) protein. Next, by comparing the F protein sequences of TS09-C strain with those of LaSota and V4 strain, the R115 in cleavage site and F379 were found to be unique to TS09-C strain. The mutant viruses were generated by substituting one or two amino acids at position 115 and 379 in the F protein, and their safety as in ovo vaccine was evaluated. Mutation in residue 379 did not affect the viral embryonic pathogenicity. While the mutant virus rTS-2B (R115G mutation based on the backbone of TS09-C strain) with two basic amino acids in F cleavage site, was pathogenic to chicken embryos and similar with rLaSota in its tissue tropism, differing markedly from rTS09-C with three basic amino acids in F cleavage site. Together, these findings indicate that the F protein cleavage site containing three basic amino acids is the crucial determinant of the attenuation of TS09-C in chicken embryos. This study extends our understanding of the pathogenicity of NDV in chicken embryos and should expedite the development of in ovo vaccines against NDV.
Collapse
Affiliation(s)
- Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Yu Shang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sanling Fan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xiangfei Ren
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Yingying Xu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Zhe Zeng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xingxing Hu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| |
Collapse
|