1
|
Qiu M, Zhang Z, Zhu S, Liu S, Peng H, Xiong X, Chen J, Hu C, Yang L, Song X, Xia B, Yu C, Yang C. Transcriptome Sequencing and Mass Spectrometry Reveal Genes Involved in the Non-mendelian Inheritance-Mediated Feather Growth Rate in Chicken. Biochem Genet 2024; 62:4120-4136. [PMID: 38280152 PMCID: PMC11427531 DOI: 10.1007/s10528-023-10643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/29/2024]
Abstract
The feather growth rate in chickens included early and late feathering. We attempted to characterize the genes and pathways associated with the feather growth rate in chickens that are not in agreement with Mendelian inheritance. Gene expression profiles in the hair follicle tissues of late-feathering cocks (LC), early-feathering cocks (EC), late-feathering hens (LH), and early-feathering hens (EH) were acquired using RNA sequencing (RNA-seq), mass spectrometry (MS), and quantitative reverse transcription PCR (qRT‑PCR). A total of 188 differentially expressed genes (DEGs) were ascertained in EC vs. LC and 538 DEGs were identified in EH vs. LH. We observed that 14 up-regulated genes and 9 down-regulated genes were screened both in EC vs. LC and EH vs. LH. MS revealed that 41 and 138 differentially expressed proteins (DEPs) were screened out in EC vs. LC and EH vs. LH, respectively. Moreover, these DEGs and DEPs were enriched in multiple feather-related pathways, including JAK-STAT, MAPK, WNT, TGF-β, and calcium signaling pathways. qRT-PCR assay showed that the expression of WNT8A was decreased in LC compared with EC, while ALK and GRM4 expression were significantly up-regulated in EH relative to LH. This study helps to elucidate the potential mechanism of the feather growth rate in chickens that do not conform to genetic law.
Collapse
Affiliation(s)
- Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Shiliang Zhu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Siyang Liu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Han Peng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Xia Xiong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Jialei Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Chenming Hu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Li Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Xiaoyan Song
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Bo Xia
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China.
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
2
|
Ndunguru SF, Reda GK, Csernus B, Knop R, Lugata JK, Szabó C, Lendvai ÁZ, Czeglédi L. Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails. Animals (Basel) 2024; 14:2596. [PMID: 39272381 PMCID: PMC11394045 DOI: 10.3390/ani14172596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Nutritional cues during embryonic development can alter developmental trajectories and affect postnatal growth. However, the specific mechanisms by which nutrients influence avian growth remain largely unknown. Amino acids can directly interact with the nutrient-sensing pathways, such as the insulin-like growth factor 1 (IGF-1)/mechanistic target of rapamycin (mTOR) pathways, which are known to regulate growth. We examined the effects of embryonic leucine on gene expression and phenotypic growth in Japanese quails by injecting 2.5 mg leucine or saline (control) into Japanese quail eggs on the tenth day of incubation and incubating them under standard conditions. The treatment groups had similar hatching success and size at hatching. However, between 3 and 7 days post-hatching, quails treated with embryonic leucine showed increased growth in body mass and wing, tarsus, head, and intestinal lengths, lasting up to 21 days. The hepatic expression of IGF1, IGF1R, mTOR, and RPS6K1 was upregulated in leucine-treated quails, while the expression of FOXO1 remained unaffected. In conclusion, a subtle increase in embryonic leucine may induce developmental programming effects in Japanese quail by interacting with the IGF-1/mTOR nutrient-sensing pathway to promote growth. This study highlights the role of embryonic amino acids as crucial nutrients for enhancing growth. It provides valuable insight into nutrient intervention strategies during embryonic development to potentially improve poultry growth performance.
Collapse
Affiliation(s)
- Sawadi F Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gebrehaweria K Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - James K Lugata
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Animal Nutrition and Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Wang J, Xing C, Wang H, Zhang H, Wei W, Xu J, Liu Y, Guo X, Jiang R. Identification of key modules and hub genes involved in regulating the feather follicle development of Wannan chickens using WGCNA. Poult Sci 2024; 103:103903. [PMID: 38908121 PMCID: PMC11253687 DOI: 10.1016/j.psj.2024.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Carcass appearance is important economic trait, which affects customers in making purchase decisions. Both density and diameter of feather follicles are two important indicators of carcass appearance. However, the regulatory network and key genes be involved in feather follicle development remain poorly understood. To identify key genes and modules that involved in feather follicle development in chickens, 16 transcriptome datasets of Wannan chickens skin tissue (3 birds at the E9, E11, and E14, respectively, and 7 birds at the 12W) were used for weighted gene co-expression network analysis (WGCNA) analysis, and 12 skin tissue samples (3 birds for each stage) were selected for DEGs analysis. A total of 5,025, 2,337, and 10,623 DEGs were identified in 3 comparison groups, including the E9 vs. E11, the E11 vs. E14, and the E14 vs. 12W. Additionally, 31 co-expression gene modules were identified by WGCNA and the dark-orange, cyan, and blue module were found to be significantly associated with feather follicle development (p < 0.01). In total, 92,898 and 8,448 hub genes were obtained in the dark-orange, cyan, and blue modules, respectively. We focused on the cyan and blue modules, as 6 and 336 hub genes of these modules were identified to overlap with the DEGs of the three comparison groups, respectively. The 6 overlapped genes such as LAMC2, COL6A3, and COL6A2 etc., were over-represented in 12 categories such as focal adhesion and ECM-receptor interaction signaling pathway. Among the 336 genes that overlapped between the blue module and different DEGs comparison groups several genes including WNT7A and WNT9B were enriched in Wnt and ECM-receptor interaction signaling pathway. These results suggested that the LAMC2, COL6A3, COL6A2, WNT7A, and WNT9B genes may play a crucial role in the regulation of feather follicle development in Wannan chickens. Our results provided a reference for the molecular regulatory network and key genes in the development of feather follicles and contribute to molecular breeding for carcass appearance traits in chickens.
Collapse
Affiliation(s)
- Jiangxian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chaohui Xing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Qiu M, Yu C, Zhu S, Hu C, Yang L, Song X, Xia B, Jiang X, Du H, Li Q, Zhang Z, Yang C. Characterization of circRNA expression profiles associated with non-Mendelian inheritance in feather growth of chickens. Br Poult Sci 2024; 65:371-377. [PMID: 38717938 DOI: 10.1080/00071668.2024.2339485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 07/27/2024]
Abstract
1. Non-coding RNAs, such as miRNAs, play a crucial role in chicken feather growth rate. However, circular RNA (circRNA) expression profiles in fast- and slow-feathering chickens that follow and do not follow Mendelian inheritance are unclear.2. The circRNA expression profiles was analysed by RNA sequencing of hair follicles of slow-feathering chickens that follow genetic rules and fast-feathering chickens that did not follow genetic rules. Differentially expressed circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was then constructed and the key factors and regulation mechanisms controlling feather growth rate were identified.3. The results revealed that 67 circRNAs were significantly differentially expressed in hens, including 22 up-regulated and 45 down-regulated circRNAs in non-Mendelian inheritance-mediated fast-feathering hens compared with Mendelian inheritance-mediated slow-feathering hens. In addition, 16 significantly differentially expressed circRNAs were identified in cockerels, including nine up-regulated and seven down-regulated circRNAs in non-Mendelian inheritance-mediated fast- compared with Mendelian inheritance-mediated slow-feathering cocks. Moreover, circRNA-mediated ceRNA regulation of hair follicle formation was particularly abundant in the Jak-STAT, Wnt and Toll-like receptor signalling pathways. Furthermore, circABI3BP was seen to be a crucial circRNA in regulating feather growth rate, by binding with gga-miR-1649-5p to regulate SSTR2 expression.4. In conclusion, this study analysed circRNA expression profiles in fast- and slow-feathering chickens that follow and do not follow Mendelian inheritance, which laid the foundation for understanding the role of circRNA in chicken feather growth rate.
Collapse
Affiliation(s)
- M Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - C Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - S Zhu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - C Hu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - L Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - X Song
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - B Xia
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - X Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - H Du
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Q Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Z Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - C Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
5
|
Wang Y, Wang S, Mabrouk I, Zhou Y, Fu X, Song Y, Ma J, Hu X, Yang Z, Liu F, Hou J, Yu J, Sun Y. In ovo injection of AZD6244 suppresses feather follicle development by the inhibition of ERK and Wnt/β-catenin pathways in goose embryos ( Anser cygnoides). Br Poult Sci 2024; 65:307-314. [PMID: 38393940 DOI: 10.1080/00071668.2024.2309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
1. Feathers are an important product from poultry, and the state of feather growth and development plays an important role in their economic value.2. In total, 120 eggs were selected for immunoblotting and immunolocalisation experiments of ERK and β-catenin proteins in different developmental stages of goose embryos. The ERK protein was highly expressed in the early stage of goose embryo development, while β-catenin protein was highly expressed in the middle stage of embryo development.3. The 120 eggs were divided into four treatment groups, including an uninjected group (BLANK), a group injected with 100 µl of cosolvent (CK), a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 5 mg/kg AZD6244 containing cosolvent (AZD5) and a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 15 mg/kg AZD6244 containing cosolvent (AZD15). The eggs were injected on the ninth day of embryonic development (E9). Samples were collected at E21.5 to observe feather width, feather follicle diameter, ERK and Wnt/β-catenin pathway protein expression.4. The AZD5 and AZD15 doses were within the embryonic safety range compared to the BLANK and CK groups and had no significant effect on the survival rate and weight at the inflection point, but significantly reduced the feather width and feather follicle diameter (p < 0.05). The AZD6244 treatment inhibited ERK protein phosphorylation levels and blocked the Wnt/β-catenin pathway, which in turn significantly down-regulated the expression levels of FZD4, β-catenin, TCF4 and LEF1 (p < 0.05), with an inhibitory effect in the AZD15 group being more significant. The immunohistochemical results of β-catenin and p-ERK were consistent with Western blot results.5. The small molecule inhibitor AZD6244 regulated the growth and development of feather follicles in goose embryos by the ERK and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - S Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - I Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Yuan C, Jiang Y, Wang Z, Chen G, Chang G, Bai H. Effects of Sex on Growth Performance, Carcass Traits, Blood Biochemical Parameters, and Meat Quality of XueShan Chickens. Animals (Basel) 2024; 14:1556. [PMID: 38891603 PMCID: PMC11171365 DOI: 10.3390/ani14111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The demand for high-quality chilled chicken has continued to increase in China. Chickens are sexually dimorphic, and to better understand the specific differences in chicken production based on sex, we examined how sex affects growth performance, carcass traits, and meat quality of yellow-feathered chickens. Male and female Xueshan chickens were used as the experimental model. Although males exhibited better growth performance, including body weight (BW), body slope, keel, shank length, and shank girth (p < 0.05), as well as carcass traits, such as dressed weight, leg muscle, and lean meat, females had higher carcass and breast muscle yields (p < 0.05). Males had higher follicle density and yellowness (b*) of the skin and better skin than females (p < 0.05). Among blood biochemical parameters, the serum content of corticosterone (CORT) was higher in males, while those of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), and catalase (CAT) were lower in males than in females (p < 0.05). The pH levels, shear force, and moisture content quality were better in male breast meat, while the intramuscular fat content (IMF) was lower in males than in females (p < 0.05). The redness (a*) and moisture content were higher in male leg meat, while the pH, water-loss rate (WLR), lightness (L*), and IMF were lower (p < 0.05). The muscle fiber diameter and cross-sectional area were also higher in males (p < 0.05). Consumers felt that soup of male chicken was better than female (p < 0.05), while mouthfeel and tenderness acceptance of breast meat were different between the sexes. These results indicate that female chickens can be marketed as a whole carcass, while males are more suitable for processed carcass products. This study provides significant insights into the production and processing methodologies of yellow-feathered chickens.
Collapse
Affiliation(s)
- Chunyou Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
| |
Collapse
|
7
|
Lugata JK, Ndunguru SF, Reda GK, Ozsváth XE, Angyal E, Czeglédi L, Gulyás G, Knop R, Oláh J, Mészár Z, Varga R, Csernus B, Szabó C. Methionine sources and genotype affect embryonic intestinal development, antioxidants, tight junctions, and growth-related gene expression in chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:218-230. [PMID: 38362512 PMCID: PMC10867599 DOI: 10.1016/j.aninu.2023.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Methionine (Met) is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth. The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health. Fertilized eggs of the two genotypes, TETRA-SL layer hybrid (TSL) - commercial layer hybrid and Hungarian Partridge colored hen breed (HPC) - a native genotype, were randomly distributed into four treatments for each genotype. The treatment groups include the following: 1) control non-injected eggs (NoIn); 2) saline-injected (SaIn); 3) DL-Met injected (DLM); and 4) L-Met injected (LM). The in ovo injection was carried out on 17.5 d of embryonic development; after hatching, eight chicks per group were sacrificed, and the jejunum was extracted for analysis. The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width, villus height, and villus area (P < 0.05) compared to the control. The DLM group had significantly reduced crypt depth, glutathione content (GSH), glutathione S-transferase 3 alpha (GST3), occludin (OCLN) gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group (P < 0.05). The HPC genotype has overexpressed insulin-like growth factor 1 (IGF1) gene, tricellulin (MD2), occludin (OCLN), superoxide dismutase 1 (SOD1), and GST3 genes than the TSL genotype (P < 0.05). In conclusion, these findings showed that in ovo injection of Met enhanced intestinal development, and function, with genotypes responding differently under normal conditions. Genotypes also influenced the expression of intestinal antioxidants, tight junction, and growth-related genes.
Collapse
Affiliation(s)
- James K. Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
| | - Sawadi F. Ndunguru
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gebrehaweria K. Reda
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Xénia E. Ozsváth
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Eszter Angyal
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rita Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Lugata JK, Ndunguru SF, Reda GK, Gulyás G, Knop R, Oláh J, Czeglédi L, Szabó C. In ovo feeding of methionine affects antioxidant status and growth-related gene expression of TETRA SL and Hungarian indigenous chicks. Sci Rep 2024; 14:4387. [PMID: 38388769 PMCID: PMC10884004 DOI: 10.1038/s41598-024-54891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Methionine (Met) plays a substantial role in poultry due to its involvement in several pathways, including enhancing antioxidant status and improving growth performance and health status. This study examined how in ovo feeding of Met affects hatching performance, antioxidant status, and hepatic gene expression related to growth and immunity in the TETRA-SL LL hybrid (TSL) commercial layer and Hungarian partridge colored hen (HPC) indigenous genotypes. The eggs were injected with saline, DL-Met, and L-Met on 17.5 days of embryonic development. The results showed that the in ovo feeding of DL-Met significantly increased the hatching weight and ferric reducing the ability of the plasma (FRAP) compared with L-Met. The in ovo feeding of either Met source enhanced the liver health and function and hepatic antioxidant status of the chicks. The genotype's differences were significant; the TSL genotype had better hatching weight, an antioxidant defense system, and downregulated growth-related gene expression than the HPC genotype. In ovo feeding of either Met source enhanced the chicks' health status and antioxidant status, and DL-Met improved the hatching weight of the chicks more than L-Met. Genotype differences were significantly evident in the responses of growth performance, antioxidant status, blood biochemical parameters, and gene expression to Met sources.
Collapse
Affiliation(s)
- James K Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Faculty of Science and Technology, Egyetem Street 1, 4032, Debrecen, Hungary
| | - Gebrehaweria K Reda
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Faculty of Science and Technology, Egyetem Street 1, 4032, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| |
Collapse
|
9
|
Du W, Yang Z, Xiao C, Liu Y, Peng J, Li J, Li F, Yang X. Identification of genes involved in regulating the development of feathered feet in chicken embryo. Poult Sci 2023; 102:102837. [PMID: 37390552 PMCID: PMC10331478 DOI: 10.1016/j.psj.2023.102837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
The genetic and developmental factors driving the diverse distribution and morphogenesis of feathers and scales on bird feet are yet unclear. Within a single species, Guangxi domestic chickens exhibit dramatic variety in feathered feet, making them an accessible model for research into the molecular basis of variations in skin appendages. In this study, we used H&E staining to observe the morphogenesis of feathered feet, scaled feet and wings skin at different embryonic stages in Longsheng-Feng chickens and Guangxi Partridge chickens. We selected 4 periods (E6, E7, E8, and E12) that play an important role in feather development and performed transcriptome sequencing to screen for candidate genes associated with feathered feet. Through comparison and analysis of transcriptome data, we identified a set of differently expressed genes (DGEs), which were enriched in appendage organ development, hindlimb morphogenesis, activation of transcription factor binding, and binding of sequence-specific DNA in the cis-regulatory region. In addition, we identified some feathered feet-related genes by analyzing the classical signaling pathways that regulate feather development. Finally, we identified candidate genes that regulate feathered feet formation, which include TBX5, PITX1, ZIC1, FGF20, WNT11, WNT7A, WNT16, and SHH. Interestingly, we found that TBX5 was significantly overexpressed in the skin of the feathered feet and had the highest expression at E7 (P < 0.01), whereas PITX1 expression was significantly reduced at E7(P < 0.01). It is hypothesized that TBX5 and PITX1 regulate the development of hair follicles through the Wnt/β-catenin signaling pathway at E7. Our results provide a theoretical basis for investigating the molecular regulatory mechanisms underlying the formation of chicken feathered feet.
Collapse
Affiliation(s)
- Wenya Du
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongcui Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiashuo Peng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianneng Li
- Guangxi Gangfeng Agriculture & Animal Husbandry Co., Ltd, Guigang 537000, China
| | - Fuqiu Li
- Guangxi Gangfeng Agriculture & Animal Husbandry Co., Ltd, Guigang 537000, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
10
|
Kachungwa Lugata J, Oláh J, Ozsváth XE, Knop R, Angyal E, Szabó C. Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1-28 Days of Age. Animals (Basel) 2022; 12:ani12151928. [PMID: 35953916 PMCID: PMC9367603 DOI: 10.3390/ani12151928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The study was carried out to determine whether sources or levels of methionine (Met) affect the health status of Tetra-SL (TSL) chicks by examining growth performance, feather growth, and hematological parameters. A total of ninety-six (96) day-old (44.2 ± 0.18 g lw) TSL chicks were randomly allotted to six treatment groups (three levels for each DL and L-Met source) with four replicates of four chicks each. Chicks were fed ad libitum diets supplemented with 90, 100, and 110% of methionine requirements for four weeks after hatch. The parameters examined are bodyweight (BW), average daily gain (ADG), feather length (FL), and hematological parameters, including: red blood cell (RBC) count, hemoglobin (Hb) concentration in the blood, hematocrit (Ht; %), number of white blood cells (WBC), platelet count, mean corpuscular volume of red blood cells (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), lymphocyte (LYM), mid-range (MID), and granulocyte (GRAN). There was no significant effect of Met sources and levels on BW, ADG, and FL of TSL chicks for the first four weeks of rearing. The RBC, Hb, Ht, WBC, LYM, MID, and GRAN values of TSL chicks were statistically influenced by dietary Met sources and Met levels (p < 0.05). Among the treatment groups, the number of white blood cells (WBC) on 90% DL−Met was the lowest. WBC, RBC, Hb, and Ht were higher from chicks that received 100% DL-Met than all other levels, regardless of the Met sources. The MCV, MCH, and MCHC values were not affected by either Met source or levels or their interactions. Met source and level interactively affected the Ht, WBC, LYM %, and GRAN values of TSL chicks (p < 0.05). The platelet number was affected by Met source only (p < 0.05) with chicks receiving L-Met source having more than twofold higher platelet values than DL-Met source. In conclusion, varying Met levels by ±10% of the requirement does not adversely affect the growth performance, feather growth, and hematological parameters of TSL chicks reared for up to four weeks of age. DL-Met increased the body weight and improved the white blood cells, red blood cells, and hematocrit at 28 days after hatch. DL-Met showed similar biological efficacy as L-Met for body weight and feather growth but not for the hematological parameters.
Collapse
Affiliation(s)
- James Kachungwa Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (X.E.O.); (E.A.)
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Xénia Erika Ozsváth
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (X.E.O.); (E.A.)
- Department of Animal Husbandry, Faculty of Agriculture and Food Science and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Science and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Eszter Angyal
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (X.E.O.); (E.A.)
- Department of Animal Husbandry, Faculty of Agriculture and Food Science and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
11
|
Feng Z, Mabrouk I, Msuthwana P, Zhou Y, Song Y, Gong H, Li S, Min C, Ju A, Duan A, Niu J, Fu J, Yan X, Xu X, Li C, Sun Y. In ovo injection of CHIR-99021 promotes feather follicles development via activating Wnt/β-catenin signaling pathway during chick embryonic period. Poult Sci 2022; 101:101825. [PMID: 35381530 PMCID: PMC8980496 DOI: 10.1016/j.psj.2022.101825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
The Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway plays an important role in embryonic development and affects the physiological development processes of feather follicles. To investigate the role of Wnt/β-catenin pathway in regulating feather follicles morphogenesis, in ovo injection of CHIR-99021, an activator of the Wnt/β-catenin signaling pathway, was conducted in chick embryo model. Initially, a total of 40 embryos were used to assess feather follicles morphogenesis and the expression of β-catenin (E9–E17). The histological results showed that feather follicle morphogenesis was mainly completed from E9 to E17. β-catenin was involved in the processing of the appearance of dermal cell condensation (E9) and the completion of the feather follicles morphogenesis (E17). Next, a total of 160 fertilized eggs were randomly divided into 8 groups for in ovo injection at E9, including a Normal Saline injected group (CON) and the 500, 1,000, 2,000, 5,000, 10,000, 50,000, and 100,000 ng CHIR-99021 groups. Dorsal skin tissue samples were collected at E17 for investigating feather follicles morphology and expressions of β-catenin and lymphoid enhancerbinding factor-1 (LEF1) at gene and protein levels. The results showed that feather follicle diameter in the injected groups were significantly (P < 0.05) increased with limit dose-independence compared to the CON group. CHIR-99021 significantly (P < 0.05) influenced the mRNA expressions of catenin beta-1 (CTNNB1) and downstream target LEF1. In ovo injection of CHIR-99021 caused that β-catenin and LEF1 were significantly (P < 0.05) increased followed the increased doses as determined by western blotting. The immunochemical results showed that β-catenin was detected in the dermal papilla of feather follicles. Given these results, this study suggests to developmental biology that in ovo injection of CHIR-99021 promoted feather follicles morphogenesis and development via activating Wnt/β-catenin signaling pathway and upregulating downstream target LEF1 during embryonic period in chick embryo model. Moreover, CHIR-99021 may be a strong candidate to promote the animal feather/hair industry, especially as a reference for bird feather production.
Collapse
|
12
|
Feng Z, Gong H, Fu J, Xu X, Song Y, Yan X, Mabrouk I, Zhou Y, Wang Y, Fu X, Sui Y, Liu T, Li C, Liu Z, Tian X, Sun L, Guo K, Sun Y, Hu J. In Ovo Injection of CHIR-99021 Promotes Feather Follicle Development via Modulating the Wnt Signaling Pathway and Transcriptome in Goose Embryos ( Anser cygnoides). Front Physiol 2022; 13:858274. [PMID: 35669574 PMCID: PMC9164139 DOI: 10.3389/fphys.2022.858274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3β. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.
Collapse
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tuoya Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| |
Collapse
|
13
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Zhu Y, Yang L. Exogenous Linoleic Acid Intervention Alters Hepatic Glucose Metabolism in an Avian Embryo Model. Front Physiol 2022; 13:844148. [PMID: 35264980 PMCID: PMC8899105 DOI: 10.3389/fphys.2022.844148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
In the present study, developmental changes of gluconeogenesis and glycolysis in an avian model were measured, and then the intervention effects of in ovo feeding (IOF) linoleic acid (LA) on hepatic glucose metabolism were evaluated. In Experiment 1, thirty fertilized eggs were sampled on embryonic days (E) of 16, 19, 22, 25, 28, 31, and thirty newly-hatched ducklings at hatch (E34 and E35). In Experiment 2, a total of 120 fertilized eggs (60 eggs for each group) were injected into the yolk sac with PBS as the control group and LA as the IOF LA group on E25. Twelve eggs were selected for sample collection on E28 and E31. Serum contents of glucose, pyruvate, and lactate increased ( p < 0.05) linearly or quadratically from E16 to hatch, as well as hepatic glycogen and pyruvate contents. Hepatic mRNA expression related to energy homeostasis, gluconeogenesis, and glycolysis increased ( p < 0.05) in embryogenesis, and the plateau period was presented on E25–E31. IOF LA decreased ( p < 0.05) serum contents of glucose, triacylglycerol, cholesterol, and hepatic oleic acid, unsaturated fatty acids on E28, as well as the gene expression relative to gluconeogenesis. IOF LA increased ( p < 0.05) pyruvate content in serum and liver, and hepatic gene expression relative to glycolysis on E31. In summary, hepatic gluconeogenesis and glycolysis were enhanced to meet the increasing energy demands of embryonic development during E25 – hatch. Exogenous LA intervention on E25 could inhibit hepatic gluconeogenesis and enhance glycolysis during the later developmental period, disrupting glucose embryonic homeostasis and energy status.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chuang Liu
- Wen’s Food Group Co., Ltd., Yunfu, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xin Zuo
- Wen’s Food Group Co., Ltd., Yunfu, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
- Yongwen Zhu,
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lin Yang,
| |
Collapse
|
14
|
Mróz E, Jankowski J, Skowroński M, Mikulski D. Plumage Response of Young Turkeys to Diets with Increased Methionine to Lysine Ratios at Three Dietary Arginine Levels. Animals (Basel) 2022; 12:ani12020172. [PMID: 35049795 PMCID: PMC8772563 DOI: 10.3390/ani12020172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary An adequate supply of essential amino acids through the diet is critical for maintaining a fast growth rate, good health, and proper immune function as well as feather-cover development in poultry species. Feathers contain about 90% of protein, therefore the optimal ratios of limiting amino acids, in particular the sulfur-containing amino acids are indicated as necessary for the synthesis of feather keratin. This study evaluated the effects of different dietary methionine (Met) and arginine (Arg) levels on plumage development in young turkeys. An increased supply of sulfur-containing amino acids via supplemental Met promoted feather growth in turkeys at 16 weeks of age. Different concentrations of Arg (90%, 100%, and 110% of lysine content) had no influence on plumage development. The data on feather growth can contribute to a better understanding of the amino acid requirements in modern commercial turkey-farming systems. Abstract A 2 × 3 factorial experiment was conducted to evaluate the effects of two dietary methionine levels (Met; 30% and 45% of Lys content) and three arginine levels (Arg; 90%, 100%, and 110% of Lys content) on plumage development in 4- and 16-week-old female turkeys. One-day-old turkey poults were assigned to six groups (eight replicate pens per group and 18 birds per pen) and fed experimental diets containing 1.6%, 1.5%, 1.3%, and 1.0% of Lys in four successive four-week periods. After weeks 4 and 16 of feeding, eight turkeys per group were selected for plumage evaluation. Feathers were collected from the outer side of one thigh and from an area of 4 cm2 in the interscapular region. Plumage was evaluated based on an established pattern of five feather development stages in turkeys, from stage I (pinfeathers covered in sheaths) to stage V (mature feathers). An increase in the Met inclusion rate to 45% of Lys content had no significant effect on feather growth in 4-week-old turkeys, but it accelerated the development of feathers in 16-week-old birds. A lower percentage of stage II (p = 0.035), stage III (p = 0.019), and stage IV (p = 0.003) immature feathers, and a higher percentage of stage V (mature) feathers (p = 0.001) were observed. Methionine exerted a greater effect on the development of thigh feathers (p = 0.001) than interscapular feathers (p = 0.074). Unlike Met, different Arg concentrations had no influence on plumage development in turkeys. Overall, the present results indicate that supplemental Met has a potential for accelerating feather development in 16-week-old turkeys via an increased supply of total sulfur amino acids.
Collapse
|
15
|
Chen MJ, Zhou JY, Chen YJ, Wang XQ, Yan HC, Gao CQ. The in ovo injection of methionine improves intestinal cell proliferation and differentiation in chick embryos by activating the JAK2/STAT3 signaling pathway. ACTA ACUST UNITED AC 2021; 7:1031-1038. [PMID: 34738033 PMCID: PMC8536505 DOI: 10.1016/j.aninu.2021.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
The intestinal health of chick embryos is vital for their life-long growth, and exogenous nutrition intervention may provide sufficient nutrition for embryonic development. In the present study, we investigated the effect of in ovo injection of L-methionine (L-Met) on the intestinal structure and barrier function of chick embryos. There were 4 groups of treatments: the control (CON) group injected with phosphate-buffered saline (PBS) and the other 3 groups injected with 5, 10, and 20 mg L-Met/egg, respectively. The injection was performed on embryonic day 9 (E9), and intestinal samples were collected on the day of hatching for analysis. The results showed that, compared with the CON group, the groups administered an in ovo injection of L-Met increased relative weights of the duodenum, jejunum, and ileum (P < 0.05). Hematoxylin and eosin (H&E) staining showed that the groups injected with 5, 10, and 20 mg L-Met significantly increased villus height and crypt depth (P < 0.05). Moreover, in ovo injection of 10 mg L-Met also increased the transepithelial electrical resistance (TEER) of the jejunum (P < 0.05). Injection with 10 and 20 mg L-Met increased the expression of the tight junction proteins (ZO-1 and claudin-1) and the fluorescence signal intensity of Ki67 and villin proteins (P < 0.05). Further, the protein expression of phospho-Janus kinase 2 (p-JAK2) and phospho-signal transducer and activator of transcription 3 (p-STAT3) was significantly increased by 10 or 20 mg L-Met injection (P < 0.05). In conclusion, the injection of L-Met, especially at a dose of 10 mg, showed beneficial effects on the intestinal integrity of chick embryos due to the activation of the JAK2/STAT3 signaling pathway. Our results may provide new insights for regulating the intestinal development of embryonic chicks and the rapid growth of chicks after hatching.
Collapse
|
16
|
Xu HM, Zhang KY, Bai SP, Ding XM, Wang JP, Peng HW, Xuan Y, Su ZW, Gang T, Zeng QF. Dietary resistant potato starch improves growth performance and feather development in Pekin ducks fed a low phosphorus diet. Poult Sci 2021; 100:100947. [PMID: 33518311 PMCID: PMC7936172 DOI: 10.1016/j.psj.2020.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022] Open
Abstract
This study investigated whether dietary resistant potato starch (RPS) inclusion could ameliorate the negative impact of a low nonphytate phosphorus (nPP) diet on growth performance, feather growth, feather follicles (FF) development, and carcass traits by improving nutrient utilization and cecal microbiome fermentation capacity in Pekin ducks. The experiment was performed with a 2 × 2 randomized block design with 2 levels of RPS (0 or 12%) and 2 levels of nPP (low or normal, low: 0.22% at 1–14 d and 0.18% at 15–35 d of age; normal: 0.40% at 1–14 d and 0.35% at 15–35 d of age) for a total of 4 treatments, each with 8 replicate pens per treatment of 12 birds per pen. As regards growth performance and carcass traits, RPS inclusion markedly increased (P < 0.05) BW of 14 and 35 d, BWG and FI of 1–14 d, 15–35 d, and 1–35 d as well as abdominal fat and breast meat percentage of 35 d in ducks fed low nPP diets; moreover, RSP inclusion significantly reduced (P < 0.05) mortality in ducks fed low nPP diets. As regards feather growth and follicles development of 35 d, RPS inclusion significantly increased (P < 0.05) the fourth primary feather length, absolute feather weight, and the density of primary FF in the back skin in ducks fed low nPP diets. In regard to nutrition utilization, RPS supplementation significantly increased (P < 0.05) the availability of DM, CP, and energy, as well as dietary AME at 35 d of age in ducks fed low nPP diets. However, RPS supplementation had no effect (P > 0.05) on the concentration of cecal short-chain fatty acids and the activities of cecal phytase and cellulase in ducks fed low nPP diets. These results indicate that RPS can improve nutrient availability to ameliorate the negative effects on performance and feather development caused by a low nPP diet in Pekin ducks.
Collapse
Affiliation(s)
- H M Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - H W Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - Z W Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - T Gang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130.
| |
Collapse
|