1
|
Nasir SAR, Zeeshan M, Ghanchi N, Saeed N, Ghayas H, Zaka S, Ashraf J, Jabeen K, Farooqi J, Hasan Z, Fatima T, Rezwan F, Mahmood SF, Arshad M, Khan E, Ozer EA, Hasan R. Linezolid-resistant Enterococcus faecium clinical isolates from Pakistan: a genomic analysis. BMC Microbiol 2024; 24:347. [PMID: 39277715 PMCID: PMC11401331 DOI: 10.1186/s12866-024-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Linezolid-resistant Enterococcus faecium (LRE) is a global priority pathogen. Thirteen LRE were reported from clinical specimens between November 2021 and April 2023 at two laboratories in Karachi, Pakistan. We aimed to investigate the strain types and genes associated with linezolid resistance among these isolates. Whole genome sequencing (WGS) was performed and analyzed by multilocus sequence typing (MLST). The presence of linezolid resistance genes was identified using ResFinder v4.1.11 and the LRE-finder tool. RESULTS Twelve isolates belonged to clonal complex 17 (CC17); ST80 (n = 10), ST612 (n = 1) and ST1380 (n = 1). Six isolates showed the presence of optrA gene and G2576T mutations in the 23S rRNA gene, while six showed poxtA and cfr(D) genes. One isolate showed the combination of optrA, cfr(D) and poxtA genes. CONCLUSION Our findings show the circulation of CC17 sequence types with a known outbreak potential and we identified molecular mechanisms of resistance that were not previously reported from Pakistan.
Collapse
Affiliation(s)
| | | | - Najia Ghanchi
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
- National Institute of Cardiovascular Diseases, Karachi, Sindh, Pakistan
| | - Noureen Saeed
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Hassan Ghayas
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Sadaf Zaka
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | | | - Kauser Jabeen
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | | | - Zahra Hasan
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Tazeen Fatima
- National Institute of Cardiovascular Diseases, Karachi, Sindh, Pakistan
| | - Faiza Rezwan
- National Institute of Cardiovascular Diseases, Karachi, Sindh, Pakistan
| | | | | | - Erum Khan
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Egon A Ozer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rumina Hasan
- Aga Khan University Hospital, Karachi, Sindh, Pakistan.
- Microbiology lab, Sopariwala building, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
2
|
Cagnoli G, Di Paolo A, Bertelloni F, Salvucci S, Buccioni A, Marzoni Fecia di Cossato M, Ebani VV. Occurrence of Antimicrobial-Resistant Enterococcus spp. in Healthy Chickens Never Exposed to Antimicrobial Agents in Central Italy. Antibiotics (Basel) 2024; 13:417. [PMID: 38786145 PMCID: PMC11117291 DOI: 10.3390/antibiotics13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Enterococci are part of the natural flora of the gastrointestinal tract of mammals, including humans, birds and invertebrates. They can cause infection, mainly among hospitalized patients, as well as acquire and transfer antimicrobial resistance genes. The present study allowed the isolation of 98 Enterococcus (73.47% E. faecium, 23.47% E. faecalis, 3.06% E. avium) strains from 120-day-old healthy chickens that had never been treated with antimicrobials. Their antimicrobial resistance was evaluated by the agar disk diffusion method; high-level aminoglycoside (streptomycin and gentamicin) and vancomycin resistance were established using the microbroth dilution method. The highest percentages of resistant isolates were detected with quinupristin-dalfopristin (88.78%), rifampicin (64.29%), tetracyclines (45.92%), and enrofloxacin (41.84%). High percentages of susceptible strains were found with teicoplanin (100%), amoxicillin-clavulanic acid (97.96%), nitrofurantoin (94.90%), ampicillin (92.86%), chloramphenicol (90.82%), and linezolid (88.78%). About 60% of the strains were classified as MDR (multidrug-resistant). Moreover, PCR was carried out to investigate genes encoding for tetracyclines resistance determinants: tet(M), tet(L), tet(O), tet(K), and Int-Tn. Genes were detected in 68 (69.38%) strains: 36 were shown to be resistant with the agar disk diffusion method, while 28 were intermediate, and 2 were susceptible. The present study showed that chickens never treated with antimicrobials potentially harbor enterococci having phenotypic and genotypic characters of antimicrobial resistance.
Collapse
Affiliation(s)
- Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Alessia Di Paolo
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Sonia Salvucci
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144 Florence, Italy;
| | - Margherita Marzoni Fecia di Cossato
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
3
|
Ben Yahia H, Trabelsi I, Arous F, García-Vela S, Torres C, Ben Slama K. Detection of linezolid and vancomycin resistant Enterococcus isolates collected from healthy chicken caecum. J Appl Microbiol 2024; 135:lxae027. [PMID: 38317636 DOI: 10.1093/jambio/lxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
AIM The poultry industry represents an important economic sector in Tunisia. This study aims to determine the antimicrobial resistance phenotypes and genotypes and virulence factors of enterococci collected from chicken caecum in Tunisia. METHODS AND RESULTS Forty-nine composite chicken caecum samples were recovered in 49 different Tunisian farms (December 2019-March 2020). Each composite sample corresponds to six individual caecum from each farm. Composite samples were plated on Slanetz-Bartley agar both supplemented (SB-Van) and not supplemented (SB) with vancomycin and isolates were identified by matrix-assisted laser desorption/ionization time-of-flight. Antibiotic resistance and virulence genes were tested by Polymerase Chain Reaction (PCR) and sequencing and multilocus-sequence-typing of selected enterococci was performed. One hundred sixty seven enterococci of six different species were recovered. Acquired linezolid resistance was detected in 6 enterococci of 4/49 samples (8.1%): (A) four optrA-carrying Enterococcus faecalis isolates assigned to ST792, ST478, and ST968 lineages; (B) two poxtA-carrying Enterococcus faecium assigned to ST2315 and new ST2330. Plasmid typing highlighted the presence of the rep10, rep14, rep7, rep8, and pLG1 in these strains. One vancomycin-resistant E. faecium isolate (typed as ST1091) with vanA gene (included in Tn1546) was detected in SB-Van plates. The gelE, agg, esp, and hyl virulence genes were found in linezolid- and vancomycin-resistant enterococci. High resistance rates were identified in the enterococci recovered in SB plates: tetracycline [74.8%, tet(M) and tet(L) genes], erythromycin [65.9%, erm(B)], and gentamicin [37.1%, aac(6')-Ie-aph(2″)-Ia]. CONCLUSION The detection of emerging mechanisms of resistance related to linezolid and vancomycin in the fecal enterococci of poultry farms has public health implications, and further surveillance should be carried out to control their dissemination by the food chain.
Collapse
Affiliation(s)
- Houssem Ben Yahia
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Islem Trabelsi
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Fatma Arous
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Sara García-Vela
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain
- Department of Food Science, University of Laval, QC G1V 0A6 Quebec, Canada
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain
| | - Karim Ben Slama
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| |
Collapse
|
4
|
Ha HTA, Nguyen PTL, Hung TTM, Tuan LA, Thuy BT, Lien THM, Thai PD, Thanh NH, Bich VTN, Anh TH, Hanh NTH, Minh NT, Thanh DP, Mai SNT, The HC, Trung NV, Thu NH, Duong TN, Anh DD, Ngoc PT, Bañuls AL, Choisy M, van Doorn HR, Suzuki M, Hoang TH. Prevalence and Associated Factors of optrA-Positive- Enterococcus faecalis in Different Reservoirs around Farms in Vietnam. Antibiotics (Basel) 2023; 12:954. [PMID: 37370273 PMCID: PMC10294904 DOI: 10.3390/antibiotics12060954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Linezolid is an antibiotic of last resort for the treatment of infections caused by Gram-positive bacteria, including vancomycin-resistant enterococci. Enterococcus faecalis, a member of enterococci, is a significant pathogen in nosocomial infections. E. faecalis resistance to linezolid is frequently related to the presence of optrA, which is often co-carried with fex, phenicol exporter genes, and erm genes encoding macrolide resistance. Therefore, the common use of antibiotics in veterinary might promote the occurrence of optrA in livestock settings. This is a cross-sectional study aiming to investigate the prevalence of optrA positive E. faecalis (OPEfs) in 6 reservoirs in farms in Ha Nam province, Vietnam, and its associated factors and to explore genetic relationships of OPEfs isolates. Among 639 collected samples, the prevalence of OPEfs was highest in flies, 46.8% (51/109), followed by chickens 37.3% (72/193), dogs 33.3% (17/51), humans 18.7% (26/139), wastewater 16.4% (11/67) and pigs 11.3%, (14/80). The total feeding area and total livestock unit of the farm were associated with the presence of OPEfs in chickens, flies, and wastewater. Among 186 OPEfs strains, 86% were resistant to linezolid. The presence of optrA was also related to the resistant phenotype against linezolid and levofloxacin of E. faecalis isolates. Close genotypic relationships identified by Pulsed Field Gel Electrophoresis between OPEfs isolates recovered from flies and other reservoirs including chickens, pigs, dogs, and wastewater suggested the role of flies in the transmission of antibiotic-resistant pathogens. These results provided warnings of linezolid resistance although it is not used in livestock.
Collapse
Affiliation(s)
- Hoang Thi An Ha
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
- Department of Microbiology, Vinh Medical University, Vinh 431000, Vietnam
| | - Phuong Thi Lan Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Tran Thi Mai Hung
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Le Anh Tuan
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Bui Thanh Thuy
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Tran Hoang My Lien
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Pham Duy Thai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Nguyen Ha Thanh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Vu Thi Ngoc Bich
- Oxford University Clinical Research Unit, Hanoi 100000, Vietnam; (V.T.N.B.); (H.R.v.D.)
| | - Tran Hai Anh
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
| | - Ngo Thi Hong Hanh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Nguyen Thi Minh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Duy Pham Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Si-Nguyen T. Mai
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Nguyen Vu Trung
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | | | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Pham Thi Ngoc
- National Institute of Veterinary Research, Hanoi 100000, Vietnam;
| | - Anne-Laure Bañuls
- MIVEGEC (IRD-CNRS-Université de Montpellier), LMI DRISA, Centre IRD, 34394 Montpellier, France;
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi 100000, Vietnam; (V.T.N.B.); (H.R.v.D.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Masato Suzuki
- National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Tran Huy Hoang
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| |
Collapse
|
5
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Mudenda S, Matafwali SK, Malama S, Munyeme M, Yamba K, Katemangwe P, Siluchali G, Mainda G, Mukuma M, Bumbangi FN, Mirisho R, Muma JB. Prevalence and antimicrobial resistance patterns of Enterococcus species isolated from laying hens in Lusaka and Copperbelt provinces of Zambia: a call for AMR surveillance in the poultry sector. JAC Antimicrob Resist 2022; 4:dlac126. [PMID: 36570686 PMCID: PMC9772873 DOI: 10.1093/jacamr/dlac126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of antimicrobials in layer poultry production for improved production, growth promotion, prophylaxis and treatment purposes has contributed to the development of antimicrobial resistance (AMR) in poultry. In Zambia, there is a paucity of information on the prevalence and AMR patterns of Enterococcus species isolated from laying hens. Objectives This study investigated the prevalence and AMR patterns of enterococci isolated in layer hens in Lusaka and Copperbelt provinces of Zambia. Methods A cross-sectional study was conducted from September 2020 to April 2021. Three hundred and sixty-five pooled cloacal swab samples were collected from 77 layer poultry farms. Enterococci identification and confirmation were performed using Analytical Profile Index (API 20 STREP) and 16S rRNA sequencing, respectively. A panel of nine antibiotics was used for antibiotic susceptibility testing and interpreted according to the CLSI 2020 guidelines. Data were analysed using SPSS version 23 and WHONET 2020. Results A total of 308 (83%) single Enterococcus species isolates were obtained and showed resistance to tetracycline (80.5%), erythromycin (53.6%), quinupristin/dalfopristin (53.2%), ampicillin (36.72%), vancomycin (32.8%), linezolid (30.2%), ciprofloxacin (11.0%), nitrofurantoin (6.5%) and chloramphenicol (3.9%). The prevalence of enterococci resistant to at least one antibiotic was 99.4% (n = 306), of which 86% (n = 265) were MDR. Conclusions This study found a high prevalence of antimicrobial-resistant enterococci. The presence of MDR requires urgent intervention and implementation of AMR surveillance strategies and antimicrobial stewardship programmes in layer poultry production in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sydney Malama
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Patrick Katemangwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Department of Veterinary Services, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine, School of Medicine, Eden University, P.O. Box 37727, Lusaka, Zambia
| | - Robert Mirisho
- Department of Public Health, St Francis University College of Health and Allied Sciences, Ifakara, Tanzania
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
7
|
Sun W, Liu H, Liu J, Jiang Q, Pan Y, Yang Y, Zhu X, Ge J. Detection of optrA and poxtA genes in linezolid resistant Enterococcus isolates from fur animals in China. Lett Appl Microbiol 2022; 75:1590-1595. [PMID: 36056605 DOI: 10.1111/lam.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
The emergence of linezolid-resistant (LR) enterococci found in food of animal origin arouses attention, but little is known about LR enterococci in fur animals. A total of 342 E. faecalis and 265 E. faecium strains isolated from fur animals in China from 2015 to 2017 were investigated to determine if linezolid-resistant (LR) enterococci (≥16 μg ml-1 ) are present. Overall, two E. faecalis and twelve E. faecium among these isolates were resistant to linezolid. In addition, all LR isolates were classified as multidrug-resistant (MDR) isolates. We further explore the resistance genes of the LR enterococci, four E. faecalis and two E. faecium isolates contained optrA gene. Two of them co-harbored optrA and poxtA genes. We detected virulence genes in LR enterococci were the following: asa1, cylA, esp, gelE and hyl, among which the highest carrying rate gene was asa1. Besides, all of the LR enterococci we tested had the biofilm-forming ability. It is worth noting that we detected a novel ST type ST2010 from E. faecium 82-2. These data show LR enterococci exist in fur animals and have unique characteristics.
Collapse
Affiliation(s)
- Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingqin Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China
| |
Collapse
|
8
|
Rajendiran S, Veloo Y, Thahir SSA, Shaharudin R. Resistance towards Critically Important Antimicrobials among Enterococcus faecalis and E. faecium in Poultry Farm Environments in Selangor, Malaysia. Antibiotics (Basel) 2022; 11:antibiotics11081118. [PMID: 36009987 PMCID: PMC9405032 DOI: 10.3390/antibiotics11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistant (MDR) enterococci pose significant public health challenges. However, the extent of resistance in the environment is less explored. This study aimed to determine the antibiotic resistance in a poultry farm environment. Eighty enterococcal isolates recovered from the soil and effluent water of 28 poultry farms in Selangor state were included in the study for further bacterial identification and antibiotic susceptibility testing using a VITEK 2 system. Data were analyzed using Statistical Package for Social Science (SPSS) version 27. The resistance rate and MDR of enterococcal isolates were reported. Out of 80 isolates recovered, 72 (90%) exhibited resistance to at least one antibiotic, with 50 isolates (62.5%) being found to be MDR. All linezolid-resistant enterococci (LRE) exhibit MDR, which constituted 40% of resistance among all the isolates recovered from poultry environment. Since linezolid is listed as critically important antibiotics for clinical use by the World Health Organization (WHO), the higher resistance towards it and other critically important antibiotic for human use is a serious concern. Hence, relevant agencies need to investigate the use of clinically important antimicrobials in poultry farms paying special attention towards linezolid or any other antibiotics that can facilitate the development of LRE.
Collapse
|
9
|
Habib I, Lakshmi GB, Mohamed MYI, Ghazawi A, Khan M, Li D. Enumeration, Antimicrobial Resistance, and Virulence Genes Screening of Enterococcus spp. Isolated from Retail Chicken Carcasses in the United Arab Emirates. Foodborne Pathog Dis 2022; 19:590-597. [PMID: 35749143 DOI: 10.1089/fpd.2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterococci have recently emerged as nosocomial pathogens worldwide. Their ubiquitous nature determines their frequent finding in foods as contaminants. In this study, we aimed to determine the counts, species diversity, antimicrobial resistance profile, and to screen for a set of virulence genes among enterococci. Enterococcus were identified from 75.7% (125/165) of chilled chicken carcasses, belonging to seven companies, sampled from retail markets in Abu Dhabi Emirate, United Arab Emirates (U.A.E.). Overall, the samples, with a mean Enterococcus count of 2.58 log10 colony-forming unit (CFU)/g with a standard deviation of ±1.17 log10 CFU/g. Among the characterized Enterococcus isolates (n = 90), Enterococcus faecalis was the predominant species (51.1%), followed by Enterococcus faecium (37.8%). Using Vitek2 automated antimicrobial sensitivity panel, we found none of the E. faecalis nor E. faecium to be resistant to ampicillin, teicoplanin, vancomycin, or tigecycline. A third of the E. faecalis (28.3%) and E. faecium (35.3%) were resistant to high-level gentamicin. Over half of E. faecalis (54.3%) were resistant to ciprofloxacin, and the same was in about a third of E. faecium isolates (29.4%). Linezolid resistance was identified in 10 E. faecalis and 7 E. faecium isolates belonging to samples from three companies. All of the linezolid-resistant isolates harbored oxazolidinone resistance optrA gene. Virulence-associated genes (asa1 and gelE) were significantly (p < 0.05) more detected among E. faecalis compared to E. faecium isolates recovered in this study. Over half of the E. faecalis (25/46) and E. faecium (20/34) isolates were identified as multidrug-resistant. This study provides further insight into virulence genes and their association with the dissemination of multidrug-resistant E. faecalis and E. faecium in supermarket chicken meat in the U.A.E. This is probably the first description of the optrA gene in enterococci from supermarket chicken meat in the U.A.E. and from Arab countries. This study adds to the regional and global understanding of antimicrobial resistance spread in foods of animal origin.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain, United Arab Emirates.,Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Glindya Bhagya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mushtaq Khan
- Department of Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
de Souza Rodrigues D, Lannes‐Costa PS, da Silva Santos G, Ribeiro RL, Langoni H, Teixeira LM, Nagao PE. Antimicrobial resistance, biofilm production and invasion of mammary epithelial cells by
Enterococcus faecalis
and
Enterococcus mundtii
strains isolated from bovine subclinical mastitis in Brazil. Lett Appl Microbiol 2022; 75:184-194. [DOI: 10.1111/lam.13718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Dayane de Souza Rodrigues
- Laboratório de Biologia Molecular e Fisiologia de Estreptococos Instituto de Biologia Roberto Alcantara Gomes Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro RJ Brazil
| | - Pamella Silva Lannes‐Costa
- Laboratório de Biologia Molecular e Fisiologia de Estreptococos Instituto de Biologia Roberto Alcantara Gomes Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro RJ Brazil
| | - Gabriela da Silva Santos
- Laboratório de Biologia Molecular e Fisiologia de Estreptococos Instituto de Biologia Roberto Alcantara Gomes Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro RJ Brazil
| | - Rachel Leite Ribeiro
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Helio Langoni
- Departamento de Higiene Veterinária e Saúde Pública Faculdade de Medicina Veterinária e Zootecnia Universidade do Estado de São Paulo Botucatu, São Paulo Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Prescilla Emy Nagao
- Laboratório de Biologia Molecular e Fisiologia de Estreptococos Instituto de Biologia Roberto Alcantara Gomes Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro RJ Brazil
| |
Collapse
|
11
|
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics (Basel) 2022; 11:antibiotics11030380. [PMID: 35326843 PMCID: PMC8944505 DOI: 10.3390/antibiotics11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1–2, rep3, rep5–6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.
Collapse
|
12
|
Kim DG, Kim K, Bae SH, Jung HR, Kang HJ, Lee YJ, Seo KW, Lee YJ. Comparison of antimicrobial resistance and molecular characterization of Escherichia coli isolates from layer breeder farms in Korea. Poult Sci 2021; 101:101571. [PMID: 34844113 PMCID: PMC8633676 DOI: 10.1016/j.psj.2021.101571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
In Korea, 4 big layer companies that possess one grandparent and 3 parent stocks are in charge of 100% of the layer chicken industry. In this study, we investigated the antimicrobial resistance of commensal 578 E. coli isolated from 20 flocks of 4-layer breeder farms (A, B, C, and D), moreover, compared the characteristics of their resistance and virulence genes. Isolates from farms B and D showed significantly higher resistance to the β-lactam antimicrobials (amoxicillin, ampicillin, and 1st-, 2nd-, and 3rd-generation cephalosporins). However, resistance to ciprofloxacin, nalidixic acid, and tetracycline was significantly higher in the isolates from farm A (P < 0.05). Interestingly, the isolates from farm C showed significantly lower resistance to most antimicrobials tested in this study. The isolates from farms B, C, and D showed the high multiple resistance to the 3 antimicrobial classes. Furthermore, the isolates from farm A showed the highest multiple resistance against the 5 classes. Among the 412 β-lactam-resistant isolates, 123 (29.9%) carried blaTEM-1, but the distribution was significantly different among the farms from 17.5% to 51.4% (P < 0.05). Similarly, the most prevalent tetracycline resistance gene in the isolates from farms B, C, and D was tetA (50.0–77.0%); however, the isolates from farm A showed the highest prevalence in tetB (70.6%). The distribution of quinolone (qnrB, qnrD, and qnrS) and sulfonamide (su12)-resistant genes were also significantly different among the farms but that of chloramphenicol (catA1)- and aminoglycoside (aac [3]-II, and aac [6′]-Ib)-resistant genes possessed no significant difference among the farms. Moreover, the isolates from farm C showed significantly higher prevalence in virulence genes (iroN, ompT, hlyF, and iss) than the other 3 farms (P < 0.05). Furthermore, the phenotypic and genotypic characteristics of E. coli isolates were significantly different among the farms, and improved management protocols are required to control of horizontal and vertical transmission of avian disease, including the dissemination of resistant bacteria in breeder flocks.
Collapse
Affiliation(s)
- Dong Gyu Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Koeun Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hyun Bae
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyo Jung Kang
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu Jin Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Yoon S, Lee YJ. Molecular Characteristics of Enterococcus faecalis and Enterococcus faecium from Bulk Tank Milk in Korea. Animals (Basel) 2021; 11:661. [PMID: 33801463 PMCID: PMC7998752 DOI: 10.3390/ani11030661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Enterococci are considered to be environmental mastitis-causing pathogens that can easily spread antimicrobial resistance or virulence genes via horizontal transfer. In this study, the molecular characteristics of enterococci from bulk tank milk were investigated to assess the importance of dairy herd management. A total of 338 enterococci (305 Enterococcus faecalis and 33 Enterococcus faecium) were isolated from 1584 batches of bulk tank milk samples from 396 farms affiliated with four dairy companies in Korea, and significant differences (40.6-79.7%) (p < 0.05) in the prevalence of enterococci were observed in the samples from different companies. Enterococci showed the highest resistance to tetracycline (TET) (73.4%), followed by doxycycline (DOX) (49.7%) and erythromycin (ERY) (46.2%), while two enterococci isolates showed resistance to vancomycin (VAN). Among 146 tetracycline (TET) and ERY-resistant enterococci, each 50 (19.4%) enterococci carried combination-resistance and transposon gene types erm(B) + tet(M) + IntTn and erm(B) + tet(L) + tet(M) + IntTn, respectively. The virulence genes such as ace (99.0%), efaA (97.7%), cad1 (95.7%), and gelE (85.9%) were highly conserved in E. faecalis and significantly predominated over E. faecium (p < 0.001). Our results indicate that pathogens from bulk tank milk can also become a reservoir for the dissemination of antimicrobial resistance and virulence factors through cross-contamination processes.
Collapse
Affiliation(s)
- Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|