1
|
Dörper A, Berman HM, Gort G, van Harn J, Dicke M, Veldkamp T. Effects of different black soldier fly larvae products on slow-growing broiler performance and carcass characteristics. Poult Sci 2024; 103:103481. [PMID: 38340663 PMCID: PMC10869907 DOI: 10.1016/j.psj.2024.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Black soldier fly (BSF) larvae have gained significant attention as ingredients for poultry feed to improve value chain circularity and sustainability. Black soldier fly larvae contain bioactive compounds which can potentially improve broiler health and thereby performance. However, the functionality of bioactive compounds likely depends on how larvae are processed prior to feeding and to which extent larvae products are included in the diet. This may explain the variable results reported in literature on broiler performance and carcass characteristics when feeding them different types of BSF larvae products at different inclusion levels. Therefore, the present research aimed to investigate the effects of different BSF larvae products and inclusion levels in diets on performance and carcass characteristics of slow-growing broilers. The experiment started with 1,728 one-day-old slow-growing male broilers (Hubbard JA757). Nine dietary treatments were used, each replicated eight times. One group of broilers was given a control diet. The following BSF larvae products were investigated: live larvae, a combination of BSF larvae meal and oil mimicking the nutritional composition of the live larvae, and BSF larvae meal and oil separately. All insect products were tested at two inclusion levels. All diet programs were nutritionally comparable (isoenergetic and based on balanced levels of digestible essential amino acids). During the 7-wk trial, several performance parameters and carcass characteristics were measured. The results show that comparable or better broiler performance was achieved with the inclusion of BSF larvae products in the diets compared to the control. Based on the feed conversion ratio (FCR), the unprocessed larvae product and the highest inclusion level led to the most favorable results. Carcass characteristics remained unchanged when BSF larvae products were used in the diets compared to the control group, indicating favorable production output. The BSF larvae products investigated seem suitable feed ingredients for broilers at the current levels tested, generating performance benefits.
Collapse
Affiliation(s)
- Anna Dörper
- Laboratory of Entomology, Wageningen University & Research, Wageningen, 6700AA, the Netherlands.
| | - Henrieke M Berman
- Laboratory of Entomology, Wageningen University & Research, Wageningen, 6700AA, the Netherlands; Animal Nutrition Group, Wageningen University & Research, Wageningen, 6700AH, the Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University & Research, Wageningen, 6700AA, the Netherlands
| | - Jan van Harn
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, 6700AH, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, 6700AA, the Netherlands
| | - Teun Veldkamp
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, 6700AH, the Netherlands
| |
Collapse
|
2
|
Salahuddin M, Abdel-Wareth AAA, Hiramatsu K, Tomberlin JK, Luza D, Lohakare J. Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals (Basel) 2024; 14:510. [PMID: 38338153 PMCID: PMC10854853 DOI: 10.3390/ani14030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Black soldier fly larvae (BSFL), Hermetia illucens (L.) (Diptera: Stratiomyidae), have emerged as a promising feed ingredient in broiler chicken diets, known for their high protein content, nutritional richness, and environmental sustainability. This review examines the effects of integrating BSFL into broiler feeds, focusing on aspects such as growth performance, nutrient digestibility, physiological responses, and immune health. The ability of BSFL to transform waste into valuable biomass rich in proteins and lipids underscores their efficiency and ecological benefits. Protein levels in BSFL can range from 32% to 53%, varying with growth stage and diet, offering a robust source of amino acids essential for muscle development and growth in broilers. While the chitin in BSFL poses questions regarding digestibility, the overall impact on nutrient utilization is generally favorable. The inclusion of BSFL in diets has been shown to enhance growth rates, feed efficiency, and carcass quality in broilers, with the larvae's balanced amino acid profile being particularly advantageous for muscle development. BSFL may also support gut health and immunity in broilers due to its bioactive components, potentially influencing the gut's microbial composition and enhancing nutrient absorption and overall health. Moreover, the capacity of BSFL to efficiently convert organic waste into protein highlights their role as an environmentally sustainable protein source for broiler nutrition. Nonetheless, further research is necessary to fully understand the long-term effects of BSFL, ideal inclusion rates, and the impact of varying larval diets and rearing conditions. It is crucial for poultry producers to consult nutritionists and comply with local regulations when incorporating new feed ingredients like BSFL into poultry diets.
Collapse
Affiliation(s)
- Md Salahuddin
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); (D.L.)
| | - Ahmed A. A. Abdel-Wareth
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); (D.L.)
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan;
| | - Jeffery K. Tomberlin
- Center for Environmental Sustainability through Insect Farming, Texas A&M AgriLife, College Station, TX 77843, USA;
| | - Daylan Luza
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); (D.L.)
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); (D.L.)
| |
Collapse
|
3
|
Dalmoro YK, Franceschi CH, Stefanello C. A Systematic Review and Metanalysis on the Use of Hermetia illucens and Tenebrio molitor in Diets for Poultry. Vet Sci 2023; 10:702. [PMID: 38133252 PMCID: PMC10747995 DOI: 10.3390/vetsci10120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Insect meal as a protein source has been considered a sustainable way to feed animals. H. illucens and T. molitor larvae meal are considered high-protein sources for poultry, also presenting considerable amounts of fatty acids, vitamins, and minerals. However, other potential components in insect meal and insect oil have been more extensively studied in recent years. Chitin, lauric acid, and antimicrobial peptides can present antimicrobial and prebiotic functions, indicating that low levels of their inclusion in insect meal can beneficially affect broilers' health and immune responses. This systematic review was developed to study the impact of insect products on the health parameters of broilers, and a metanalysis was conducted to evaluate the effects on performance. A database was obtained based on a selection of manuscripts from January 2016 to January 2023, following the mentioned parameters. Both H. illucens and T. molitor meal or oil products had positive effects on poultry health status, especially on the ileal and cecal microbiota population, immune responses, and antimicrobial properties. The average daily gain was greater in broilers fed T. molitor meal compared to H. illucens meal (p = 0.002). The results suggest that low levels of insect meal are suitable for broilers, without resulting in negative effects on body weight gain and the feed conversion ratio, while the insect oil can totally replace soybean oil without negative impacts.
Collapse
Affiliation(s)
- Yuri Katagiri Dalmoro
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Carolina H. Franceschi
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil;
| | - Catarina Stefanello
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
4
|
Zhao J, Ban T, Miyawaki H, Hirayasu H, Izumo A, Iwase SI, Kasai K, Kawasaki K. Long-Term Dietary Fish Meal Substitution with the Black Soldier Fly Larval Meal Modifies the Caecal Microbiota and Microbial Pathway in Laying Hens. Animals (Basel) 2023; 13:2629. [PMID: 37627424 PMCID: PMC10451910 DOI: 10.3390/ani13162629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Feeding laying hens with black soldier fly larval (BSFL) meal improves their performance. However, the beneficial mechanism of BSFL meals in improving the performance of laying hens remains unclear. This study investigated the effects of the BSFL diet on liver metabolism, gut physiology, and gut microbiota in laying hens. Eighty-seven Julia hens were randomly assigned to three groups based on their diets and fed maize grain-and soybean meal-based diets mixed with either 3% fish meal (control diet), 1.5% fish and 1.5% BSFL meals, or 3% BSFL meal for 52 weeks. No significant differences were observed in biochemical parameters, hepatic amino acid and saturated fatty acid contents, intestinal mucosal disaccharidase activity, and intestinal morphology between BSFL diet-fed and control diet-fed laying hens. However, the BSFL diet significantly increased the abundance of acetic and propionic acid-producing bacteria, caecal short-chain fatty acids, and modified the caecal microbial pathways that are associated with bile acid metabolism. These findings indicate that consuming a diet containing BSFL meal has minimal effects on plasma and liver nutritional metabolism in laying hens; however, it can alter the gut microbiota associated with short-chain fatty acid production as well as the microbial pathways involved in intestinal fat metabolism. In conclusion, this study provides evidence that BSFL can enhance enterocyte metabolism and gut homeostasis in laying hens.
Collapse
Affiliation(s)
- Junliang Zhao
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Takuma Ban
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Hironori Miyawaki
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Hirofumi Hirayasu
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Akihisa Izumo
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Shun-ichiro Iwase
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Koji Kasai
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Kiyonori Kawasaki
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| |
Collapse
|
5
|
Nutritional quality of meat from hen fed diet with full-fat black soldier fly (Hermetia illucens) larvae meal as a substitute to fish meal. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
6
|
Ndotono EW, Khamis FM, Bargul JL, Tanga CM. Insights into the Gut Microbial Communities of Broiler Chicken Fed Black Soldier Fly Larvae- Desmodium-Based Meal as a Dietary Protein Source. Microorganisms 2022; 10:1351. [PMID: 35889070 PMCID: PMC9319420 DOI: 10.3390/microorganisms10071351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The utilization of insect-based diets to improve gastrointestinal function and gut health in poultry is gaining global attention as a promising feed additive. The objective of this study was to determine the optimal inclusion level of the full-fat black soldier fly larvae (BSFL) and Desmodium intortum (DI) in broiler chicken diets and to evaluate their impact on the microbial community in the gut. The bacterial communities were characterized using Oxford nanopore sequencing of the full-length bacterial 16S rRNA gene. Four dietary treatments, T1 (25% DI + 75% BSFL), T2 (50% DI + 50% BSFL), T3 (75% DI + 25% BSFL) and T4 (100% fishmeal + 0% DI + BSFL), were fed to the broiler chickens for a period of 42 days. Out of the 395,034 classified reads analyzed, the most predominant phyla identified across all the four dietary treatments were Firmicutes (94%), Bacteroidetes (3%), and Proteobacteria (2%). The T1 diet showed the highest alpha diversity and richness according to the Chao1 and Shannon indices. Beta diversity assessment revealed a significant influence of diet on the abundance of the microbiome. There was an increase in beneficial lactic acid bacteria with increasing inclusion of BSFL in the diets. Our findings strongly support the inclusion of BSFL into poultry diet as a promising protein source to reshape the gut microbiota for improved gut health, immune response, and food safety.
Collapse
Affiliation(s)
- Evalyne W. Ndotono
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya; (E.W.N.); (J.L.B.); (C.M.T.)
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya; (E.W.N.); (J.L.B.); (C.M.T.)
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya; (E.W.N.); (J.L.B.); (C.M.T.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Kiambu P.O. Box 62000-00200, Kenya
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya; (E.W.N.); (J.L.B.); (C.M.T.)
| |
Collapse
|
7
|
Mazanko MS, Popov IV, Prazdnova EV, Refeld AG, Bren AB, Zelenkova GA, Chistyakov VA, Algburi A, Weeks RM, Ermakov AM, Chikindas ML. Beneficial Effects of Spore-Forming Bacillus Probiotic Bacteria Isolated From Poultry Microbiota on Broilers' Health, Growth Performance, and Immune System. Front Vet Sci 2022; 9:877360. [PMID: 35711797 PMCID: PMC9194945 DOI: 10.3389/fvets.2022.877360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.
Collapse
Affiliation(s)
- Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V. Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- *Correspondence: Igor V. Popov
| | - Evgeniya V. Prazdnova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G. Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- ChemBio Cluster, ITMO University, Saint Petersburg, Russia
| | - Anzhelica B. Bren
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Galina A. Zelenkova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A. Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ammar Algburi
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Richard M. Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|