1
|
da Silva J, Andrade L, Rodrigues P, Cordeiro L, Lima G, Lopes J, Castillo E, Martins R, Assunção A, Vieira J, Busalaf M, Adamec J, Sartori J, Padilha P. Plasma Proteome Alterations of Laying Hens Subjected to Heat Stress and Fed a Diet Supplemented with Pequi Oil ( Caryocar brasiliense Camb.): New Insights in the Identification of Heat Stress Biomarkers. Biomolecules 2024; 14:1424. [PMID: 39595600 PMCID: PMC11591700 DOI: 10.3390/biom14111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Heat stress can disrupt the balance between the heat poultry release into the environment and the heat they generate. Pequi oil has antioxidant properties, which may mitigate the heat stress effects. This study aimed to investigate the response of laying hens to pequi oil supplementation under heat stress using a proteomic approach. A total of 96 Lohmann White laying hens with 26 weeks old were housed in a completely randomized design with a 2 × 2 factorial arrangement. They were housed in two climate chambers, thermal comfort temperature ± 24.04 °C with the relative humidity ± 66.35 and heat stress (HS) ± 31.26 °C with the relative humidity ± 60.62. They were fed two diets: a control diet (CON), basal diet (BD) without additives, and with Pequi oil (PO), BD + 0.6% PO. After 84 days, plasma samples were analyzed using Shotgun and LC-MS/MS. Proteins related to anti-inflammation, transport, and the immune system were differentially expressed in hens fed PO and CON under heat stress compared to those in thermoneutral environments. This helps protect against oxidative stress and may support the body's ability to manage heat-induced damage, stabilizing protein expression under stress conditions. The ovotransferrin proteins, fibrinogen isoforms, apolipoprotein A-I, Proteasome activator subunit 4, Transthyretin, and the enzyme serine Peptidase Inhibitor_Kazal Type 5, which presented Upregulated (Up) equal to 1, present characteristics that may be crucial for enhancing the adaptive responses of hens to thermal stress, thereby increasing their tolerance and minimizing the negative effects of heat on egg production. The data presented in this manuscript provides new insights into the plasma proteome alterations of laying hens fed a diet supplemented with pequi oil during heat stress challenges.
Collapse
Affiliation(s)
- Joyce da Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Luane Andrade
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Paola Rodrigues
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Laís Cordeiro
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Gabrieli Lima
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Júlia Lopes
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Elis Castillo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Renata Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Andrey Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - José Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| | - Marília Busalaf
- Faculty of Dentistry of Bauru (FOB), University of São Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - José Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Pedro Padilha
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
3
|
Li S, Wu P, Han B, Yang Q, Wang X, Li J, Deng N, Han B, Liao Y, Liu Y, Zhang Z. Deltamethrin induces apoptosis in cerebrum neurons of quail via promoting endoplasmic reticulum stress and mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2022; 37:2033-2043. [PMID: 35446475 DOI: 10.1002/tox.23548] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.
Collapse
Affiliation(s)
- Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuge Liao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Han B, Lv Z, Han X, Li S, Han B, Yang Q, Wang X, Wu P, Li J, Deng N, Zhang Z. Harmful Effects of Inorganic Mercury Exposure on Kidney Cells: Mitochondrial Dynamics Disorder and Excessive Oxidative Stress. Biol Trace Elem Res 2022; 200:1591-1597. [PMID: 34060062 DOI: 10.1007/s12011-021-02766-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Mercury is widely used in industry and has caused global environmental pollution. Inorganic mercury accumulates in the body causes damage to many organs, and the kidney is the most susceptible to the toxic effects of mercury. However, the underlying specific molecular mechanism of renal injury induced by inorganic mercury remains unclear at the cellular level. Therefore, in order to understand its molecular mechanism, we used in vitro method. We established experimental models by treating human embryonic kidney epithelial cell line (HEK-293 T) cells with HgCl2 (0, 1.25, 5, and 20 µmol/L). We found that HgCl2 can lead to a decrease in cell viability and oxidative stress of HEK-293 T, which may be mediated by upregulation mitochondrial fission. In addition, HgCl2 exposure resulted in the mitochondrial disorder of HEK-293 T cells, which was mediated by downregulating the expression of silent information regulator two ortholog 1 (Sirt1)/peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) signaling pathway. In summary, our results suggest that HgCl2 induces HEK-293 T cell toxicity through promoting Sirt1/PGC-1α axis-mediated mitochondrial dynamics disorder and oxidative stress. Sirt1/PGC-1α may be an appealing pharmaceutical target curing HgCl2-induced kidney injury.
Collapse
Affiliation(s)
- Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Xuemin Han
- Center for Animal Disease Control and Prevention of Chifeng, Chifeng, 024000, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
5
|
Liu J, Liu D, Wu X, Pan C, Wang S, Ma L. TMT Quantitative Proteomics Analysis Reveals the Effects of Transport Stress on Iron Metabolism in the Liver of Chicken. Animals (Basel) 2021; 12:ani12010052. [PMID: 35011158 PMCID: PMC8749932 DOI: 10.3390/ani12010052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Transport stress (TS) can impact the physiology and psychology of broilers, and this can be an important factor affecting liver iron metabolism in broilers. By establishing a transport model group, broilers (n = 144) reared under the same conditions were allocated into six groups and transported duration for 0, 0.5, 1, 2, 4, and 6 h. The results showed that the enrichment of iron content in the liver was the highest at a transport duration of 4 h, so the effect of transport duration of 4 h on iron metabolism was further investigated using TMT quantitative proteomic analysis. It was found that TS caused the enrichment of iron ions in the liver, TMT identified FTH1, IREB2, and HEPH as key proteins affecting iron metabolism, and key genes regulating iron homeostasis were validated using RT-PCR. Abstract Abnormal iron metabolism can cause oxidative stress in broilers, and transport stress (TS) may potentially influence iron metabolism. However, the mechanisms by which TS affects iron metabolism are unclear. This study used quantitative proteome analysis based on tandem mass tag (TMT) to investigate the effects of TS on liver iron metabolism in broilers. Broilers (n = 24) reared under the same conditions were selected randomly into the transported group for 4 h (T2) and non-transported group (T1). Results showed that the serum iron level and total iron-binding capacity of broilers in the T2 were significantly higher than those in the T1 (p < 0.05). The liver iron content of broilers in the T2 (0.498 ± 0.058 mg·gprot−1) was significantly higher than that in the T1 (0.357 ± 0.035 mg·gprot−1), and the iron-stained sections showed that TS caused the enrichment of iron in the liver. We identified 1139 differentially expressed proteins (DEPs). Twelve DEPs associated with iron metabolism were identified, of which eight were up-regulated, and four were down-regulated in T2 compared with T1. Prediction of the protein interaction network for DEPs showed that FTH1, IREB2, and HEPH play vital roles in this network. The results provide new insights into the effects of TS on broilers’ liver iron metabolism.
Collapse
Affiliation(s)
- Jun Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Dunhua Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- School of Food & Wine, Ningxia University, Yinchuan 750021, China;
- Correspondence: or ; Tel.: +86-13995288707
| | - Xun Wu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China;
| | - Cuili Pan
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China; (C.P.); (S.W.)
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China; (C.P.); (S.W.)
| | - Lu Ma
- Department of Business Management, Shizuishan Institute of Industry and Trade, Shizuishan 753000, China;
| |
Collapse
|
6
|
Massimino W, Andrieux C, Biasutti S, Davail S, Bernadet MD, Pioche T, Ricaud K, Gontier K, Morisson M, Collin A, Panserat S, Houssier M. Impacts of Embryonic Thermal Programming on the Expression of Genes Involved in Foie gras Production in Mule Ducks. Front Physiol 2021; 12:779689. [PMID: 34925068 PMCID: PMC8678469 DOI: 10.3389/fphys.2021.779689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
Embryonic thermal programming has been shown to improve foie gras production in overfed mule ducks. However, the mechanisms at the origin of this programming have not yet been characterized. In this study, we investigated the effect of embryonic thermal manipulation (+1°C, 16 h/24 h from embryonic (E) day 13 to E27) on the hepatic expression of genes involved in lipid and carbohydrate metabolisms, stress, cell proliferation and thyroid hormone pathways at the end of thermal manipulation and before and after overfeeding (OF) in mule ducks. Gene expression analyses were performed by classic or high throughput real-time qPCR. First, we confirmed well-known results with strong impact of OF on the expression of genes involved in lipid and carbohydrates metabolisms. Then we observed an impact of OF on the hepatic expression of genes involved in the thyroid pathway, stress and cell proliferation. Only a small number of genes showed modulation of expression related to thermal programming at the time of OF, and only one was also impacted at the end of the thermal manipulation. For the first time, we explored the molecular mechanisms of embryonic thermal programming from the end of heat treatment to the programmed adult phenotype with optimized liver metabolism.
Collapse
Affiliation(s)
- William Massimino
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Charlotte Andrieux
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Sandra Biasutti
- Univ Pau & Pays Adour, E2S UPPA, IUT Génie Biologique, Mont-de-Marsan, France
| | - Stéphane Davail
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | | | - Tracy Pioche
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Gontier
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Anne Collin
- BOA, INRAE, Université de Tours, Nouzilly, France
| | - Stéphane Panserat
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Marianne Houssier
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
7
|
Deng N, Jiang H, Wu P, Yang Q, Li S, Li J, Wang X, Han B, Han B, Lv Z, Zhang Z. Inhibition of the Nrf2/p38MAPK pathway involved in deltamethrin-induced apoptosis and fibrosis in quail kidney. Food Chem Toxicol 2021; 155:112382. [PMID: 34216712 DOI: 10.1016/j.fct.2021.112382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Deltamethrin (DLM) is a broad-spectrum and effective pyrethroid insecticide. However, DLM has good residual activity on most surfaces and many insects, so it poses a threat to the environment and health of animals and human. Exposure to DLM can cause kidney injury, but the mechanism is not well understood. Therefore, we investigated the possible mechanism of quail kidney injury induced by chronic exposure to different doses of DLM for 12 weeks. The results showed that chronic exposure to DLM induced apoptosis and fibrosis of quail kidney through the promotion of oxidative stress by down-regulating nuclear factor erythroid 2 related factor 2 (Nrf2), up-regulating the phosphorylation of p38 mitogen-activated protein kinases (p38MAPK). Furthermore, DLM-induced kidney apoptosis in quails as evidenced by increased expression of B-cell lymphoma gene 2-associated X while decreased expression of B-cell lymphoma-extra large. Simultaneously, DLM-induced kidney fibrosis in quails as evidenced by increased expression of fibrosis maker proteins. Overall, the results demonstrate that chronic DLM exposure induces kidney apoptosis and fibrosis via inhibition of the Nrf2/p38MAPK pathway. This study provides a new understanding for the mechanism of DLM-induced quail kidney injury and also provides a theoretical basis for treatment of the DLM poisoning.
Collapse
Affiliation(s)
- Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
8
|
Zhang H, Ji W, Li X, Feng Y, Wang J, Liu H, Bao J. Immunosuppression, oxidative stress, and apoptosis in pig kidney caused by ammonia: Application of transcriptome analysis in risk assessment of ammonia exposure. Toxicol Appl Pharmacol 2021; 428:115675. [PMID: 34389318 DOI: 10.1016/j.taap.2021.115675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 07/10/2021] [Accepted: 08/07/2021] [Indexed: 11/30/2022]
Abstract
Ammonia (NH3) is a recognized environmental contaminant around the world and has adverse effects on animal and human health. However, the mechanism of the renal toxicity of NH3 is not well understood. Pigs are considered an ideal model for biomedical and toxicological research because of the similarity to humans in physiological and biochemical basis. Therefore, in this study, twelve pigs were selected as research objects and randomly divided into two groups, namely the control group and the NH3 group. The formal experiment lasted 30 days. The effects of excessive NH3 inhalation on the kidney of fattening pig were evaluated by chemical analysis, ELISA, transcriptome analysis and real-time quantitative PCR (qRT-PCR) from the renal antioxidant level, renal function, blood ammonia content and gene level. Our results showed that excessive NH3 exposure could cause an increase in blood NH3 content, a reduction in renal GSH-Px, SOD and GSH, as well as an increase in MDA levels and an increase in serum creatinine, urea and uric acid levels. In addition, transcriptome analysis showed that NH3 exposure caused changes in 335 differentially expressed genes (DEGs) (including 126 up-regulated DEGs and 109 down-regulated DEGs). Some highly expressed DEGs were enriched into GO terms associated with immune function, oxidative stress, and apoptosis and were verified by qRT-PCR. The qRT-PCR results were comsistent with the transcriptome results. Our results indicated that NH3 exposure could cause changes in renal transcriptional profiles and kidney function, and induce kidney damage in the fattening pigs through oxidative stress, immune dysfunction and apoptosis. Our present study provides novel insights into the immunotoxicity mechanism of NH3 on kidney.
Collapse
Affiliation(s)
- Hengyi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanru Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, PR China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, PR China.
| |
Collapse
|