1
|
Huang Z, Zhang C, Sun M, Ma A, Chen L, Jiang W, Xu M, Bai X, Zhou J, Zhang W, Tang S. Proteomic analysis illustrates the potential involvement of motor proteins in cleft palate development. Sci Rep 2024; 14:21868. [PMID: 39300178 DOI: 10.1038/s41598-024-73036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Cleft palate (CP) is a congenital condition characterized by a complex etiology and limited diagnostic and therapeutic options. In this study, we delved into the molecular mechanisms associated with retinoic acid (RA)-induced CP in Kun Ming mice. Proteomic analysis of control and RA-induced CP samples at embryonic day 15.5 revealed 25 upregulated and 19 downregulated proteins. Further analysis identified these differentially expressed proteins (DEPs) as being involved in extracellular matrix organization, actin cytoskeleton, and myosin complex. Moreover, these DEPs were found to be enriched in pathways related to motor protein activity and extracellular matrix-receptor interaction. Protein-protein interaction network analysis identified 10 hub proteins, including motor proteins and ECM-related proteins, which exhibited higher expression levels in CP compared to control tissues. These findings provide insights into the molecular mechanisms underlying CP and highlight potential targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Chuzhao Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Meng Sun
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Wenshi Jiang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Mengjing Xu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, 410013, Hunan, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China.
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China.
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China.
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China.
- Plastic Surgery Institute of Shantou University Medical College, DongXiaBei Road, Shantou, 515000, Guangdong, China.
- Shantou Plastic Surgery Clinical Research Center, DongXiaBei Road, Shantou, 515000, Guangdong, China.
| |
Collapse
|
2
|
Wang Y, Cai Z, Sang X, Deng W, Zeng L, Wang J, Zhang J. Lc-ms-based lipidomics analyses revealed changes in lipid profiles in Asian sea bass (Lates calcarifer) with dielectric barrier discharge (DBD) atmospheric plasma treatment. Food Chem 2024; 439:138098. [PMID: 38043272 DOI: 10.1016/j.foodchem.2023.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
A comprehensive LC-MS-based lipidomics analysis of Asian sea bass (Lates calcarifer) muscle after dielectric barrier discharge (DBD) atmospheric plasma treatment was performed. Through the analysis, 1500 lipid species were detected, phosphatidylcholine (PC, 27.80%) was the most abundant lipid, followed by triglyceride (TG, 20.50%) and phosphatidylethanolamine (PE, 17.10%). Among them, 125 lipid species were detected and identified as differentially abundant lipids in Asian sea bass (ASB). PCA and OPLS-DA showed that ASB lipids changed significantly after DBD treatment. Moreover, glycerophospholipid metabolism was key metabolic pathways, as PC, PE, and lysophosphatidylcholine (LPC) were key lipid metabolites. The findings concerning fatty acids revealed that the saturated fatty acids (SFA) content of ASB after DBD treatment increased by 8.54%, while the content of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decreased by 13.77% and 9.16%, respectively. Our study establishes a foundation for the lipid oxidation mechanism of ASB following DBD treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Chen NN, Ma XD, Miao Z, Zhang XM, Han BY, Almaamari AA, Huang JM, Chen XY, Liu YJ, Su SW. Doxorubicin resistance in breast cancer is mediated via the activation of FABP5/PPARγ and CaMKII signaling pathway. Front Pharmacol 2023; 14:1150861. [PMID: 37538178 PMCID: PMC10395833 DOI: 10.3389/fphar.2023.1150861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.
Collapse
Affiliation(s)
- Nan-Nan Chen
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin-Di Ma
- Breast Center, Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuang Miao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiang-Mei Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bo-Ye Han
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ahmed Ali Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia-Min Huang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue-Yan Chen
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yun-Jiang Liu
- Breast Center, Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Su-Wen Su
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Yan X, Xu Y, Zhen Z, Li J, Zheng H, Li S, Hu Q, Ye P. Slaughter performance of the main goose breeds raised commercially in China and nutritional value of the meats of the goose breeds: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3748-3760. [PMID: 36178068 DOI: 10.1002/jsfa.12244] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 05/03/2023]
Abstract
A number of goose breeds are raised commercially in China. However, the data on the slaughter performance of the goose breeds and the nutritional value of their meats lack a thorough comparative analysis. In this systematic review, the slaughter performance of the goose breeds and nutritional value of their meats were comparatively analyzed to provide an overview of the characteristics of the goose breeds raised commercially in China. Fifteen goose breeds were selected from 27 research articles published up to January 2022 on the slaughter performance of the goose breeds raised commercially in China and their nutrient composition after literature searching, literature screening, variety selection, and data collation. The slaughter indexes of the goose breeds and the basic nutrient composition, amino acid composition, and fatty acid composition of the meats of the goose breeds were standardized using min-max normalization and compared. The results suggest that the slaughter indexes and nutritional indicators of the meats of Yangzhou white goose, Xupu goose, Landaise geese, and Sichuan white goose are more balanced than those of the meats of the other goose breeds. The results of this review can lay the foundation for optimizing the breeding methods of the commercially raised goose breeds and processing methods of the meats of the geese. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Yaguang Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
5
|
iTRAQ-based proteomic analysis reveals the underlying mechanism of postmortem tenderization of refrigerated porcine Longissimus thoracis et lumborum muscle. Meat Sci 2023; 197:109068. [PMID: 36495834 DOI: 10.1016/j.meatsci.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The isobaric tags for relative and absolute quantitation (iTRAQ) technology was used for differential proteomic analysis of refrigerated porcine Longissimus thoracis et lumborum (LTL) muscle at different time points postmortem (45 min, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h) to mechanistically elucidate the postmortem tenderization. Compared with the proteins identified in porcine LTL muscle at 45 min postmortem (control), 862 proteins were significantly expressed at 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h postmortem. Moreover, clustering and path analysis showed that the quality traits of porcine LTL muscle, including pH, shear force, myofibril fragmentation index, correlated significantly with 2, 6 and 6 differentially expressed proteins, respectively, with the lowest or highest expression at 8 h or 12 h postmortem. Overall, the tenderness of refrigerated porcine LTL muscle might be significantly affected by changes in quality traits at 8 h and 12 h postmortem.
Collapse
|
6
|
Wei W, Zha C, Jiang A, Chao Z, Hou L, Liu H, Huang R, Wu W. A Combined Differential Proteome and Transcriptome Profiling of Fast- and Slow-Twitch Skeletal Muscle in Pigs. Foods 2022; 11:foods11182842. [PMID: 36140968 PMCID: PMC9497725 DOI: 10.3390/foods11182842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle fiber types can contribute in part to affecting pork quality parameters. Biceps femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow muscle or red muscle) are two typical skeletal muscles characterized by obvious muscle fiber type differences in pigs. However, the critical proteins and potential regulatory mechanisms regulating porcine skeletal muscle fibers have yet to be clearly defined. In this study, the isobaric Tag for Relative and Absolute Quantification (iTRAQ)-based proteome was used to identify the key proteins affecting the skeletal muscle fiber types with Bf and Sol, by integrating the previous transcriptome data, while function enrichment analysis and a protein–protein interaction (PPI) network were utilized to explore the potential regulatory mechanisms of skeletal muscle fibers. A total of 126 differentially abundant proteins (DAPs) between the Bf and Sol were identified, and 12 genes were found to be overlapping between differentially expressed genes (DEGs) and DAPs, which are the critical proteins regulating the formation of skeletal muscle fibers. Functional enrichment and PPI analysis showed that the DAPs were mainly involved in the skeletal-muscle-associated structural proteins, mitochondria and energy metabolism, tricarboxylic acid cycle, fatty acid metabolism, and kinase activity, suggesting that PPI networks including DAPs are the main regulatory network affecting muscle fiber formation. Overall, these data provide valuable information for understanding the molecular mechanism underlying the formation and conversion of muscle fiber types, and provide potential markers for the evaluation of meat quality.
Collapse
Affiliation(s)
- Wei Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-84399762
| |
Collapse
|
7
|
Ge K, Geng Z. Proteomic analysis of the liver regulating lipid metabolism in Chaohu ducks using two-dimensional electrophoresis. Open Life Sci 2022; 17:960-972. [PMID: 36060646 PMCID: PMC9386610 DOI: 10.1515/biol-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we aimed to characterize the liver protein profile of Chaohu ducks using two-dimensional electrophoresis and proteomics. The livers were quickly collected from 120 healthy, 84-day-old Chaohu ducks. The intramuscular fat (IMF) content of the left pectoralis muscle was determined using the Soxhlet extraction method. The total protein of liver tissues from the high and low IMF groups was extracted for proteomics. Functional enrichment analysis of the differentially expressed proteins (DEPs) was conducted using gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG). In total, 43 DEPs were identified. Functional enrichment analysis indicated that these DEPs were significantly related to four lipid metabolic processes: carboxylic acid metabolic process, ATP metabolic process, oxoacid metabolic process, and organic acid metabolic process. Three pathways correlated with lipid metabolism were identified using KEGG analysis: glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. Eight key proteins associated with lipid metabolism were identified: ALDOB, GAPDH, ENO1, RGN, TPI1, HSPA9, PRDX1, and GPX1. Protein–protein interaction analysis revealed that the glycolysis/gluconeogenesis pathway mediated the interaction relationship. Key proteins and metabolic pathways were closely related to lipid metabolism and showed a strong interaction in Chaohu ducks.
Collapse
Affiliation(s)
- Kai Ge
- Department of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Yu'an District, Liuan, Anhui Province, 237012, China
| | - Zhaoyu Geng
- Department of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| |
Collapse
|
8
|
Tatiyaborworntham N, Oz F, Richards MP, Wu H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem X 2022; 14:100317. [PMID: 35571332 PMCID: PMC9092974 DOI: 10.1016/j.fochx.2022.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022] Open
Abstract
Lipolysis in meat and meat products is a phenomenon involving hydrolysis of lipids, notably via enzymatic catalysis that takes place even postmortem. During refrigerated and frozen storage of meat, in particular fish, endogenous lipolytic enzymes actively degrade triacylglycerols and phospholipids resulting in accumulation of free fatty acids and other hydrolytic products. A classical conjecture suggests that lipolysis enhances lipid oxidation which is involved in quality deterioration of fresh meat and, to some degrees, flavor development of certain meat products. Recent studies (<5 years) have shown that under some circumstances, lipolysis of certain lipolytic enzymes can inhibit lipid oxidation in muscle models, which provides more insight in lipid oxidation mechanisms in muscle matrices as well as implies potential strategies for improving meat quality. This review will discuss such paradoxical effects and potential mechanisms of lipolysis on lipid oxidation in meat and meat products.
Collapse
Affiliation(s)
- Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Mark P. Richards
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Meat Science and Animal Biologics Discovery, 1933 Observatory Dr. Madison, WI 53706, United States
| | - Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
9
|
Chen R, Song Y, Yang M, Wen C, Liu Q, Zhuang S, Zhou Y. Effect of Dietary Betaine on Muscle Protein Deposition, Nucleic Acid and Amino Acid Contents, and Proteomes of Broilers. Animals (Basel) 2022; 12:ani12060736. [PMID: 35327133 PMCID: PMC8944442 DOI: 10.3390/ani12060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the effect of betaine supplementation on growth performance, muscle protein deposition, muscle nucleic acid and amino acid contents, and muscle proteome of broilers, 160 one-day-old male partridge shank broiler chickens were randomly divided into 2 groups with 8 replicates of 10 broilers each. Broilers were fed a basal diet alone, or a basal diet supplemented with 1000 mg/kg betaine. Compared with the control group, the betaine group significantly increased (p < 0.05) the broilers average daily gain, the levels of serum insulin-like growth factor-1 (IGF-1), growth hormone (GH), total protein (TP), the contents of muscle absolute protein deposition, RNA, Ser, Glu, Met, and Phe, and the ratio of RNA/DNA, and decreased (p < 0.05) the feed conversion ratio and serum blood urea nitrogen content. Moreover, proteomic analysis revealed 35 differentially abundant proteins (DAPs) in the betaine group compared with the control group, including 27 upregulated proteins and 8 downregulated proteins (p < 0.05). These DAPs were mainly related to cell differentiation, small molecule metabolic process, and tissue development. In conclusion, diets supplemented with 1000 mg/kg betaine improved growth performance and muscle protein deposition of broilers. Increased serum GH, IGF-1, and TP contents, and alterations in muscle nucleic acids, amino acids, and protein abundance levels were involved in this process.
Collapse
|