1
|
Rueda García AM, Fracassi P, Scherf BD, Hamon M, Iannotti L. Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems. Nutrients 2024; 16:3346. [PMID: 39408313 PMCID: PMC11478523 DOI: 10.3390/nu16193346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background. It is well-established that a range of macronutrients, micronutrients and bioactive compounds found in animal-source foods play unique and important roles in human health as part of a healthy diet. Methods. This narrative review focuses on terrestrial animal source foods (TASFs). It particularly analyzes five groups: poultry eggs, milk, unprocessed meat, foods from hunting and wildlife farming, and insects. The objectives were as follows: (1) examine the nutrient composition of TASFs within and across livestock species, drawing on the country and regional food composition databases; (2) analyze the influence of intrinsic animal characteristics and production practices on TASF nutritional quality. Results. TASFs are rich in high-quality proteins and fats, as well as micronutrients such as vitamin B12, iron or zinc. This study found differences in the nutritional quality of TASFs by livestock species and animal products, as well as by characteristics of livestock production systems. Our findings suggest that there may be public health opportunities by diversifying TASF consumption across species and improving certain aspects of the production systems to provide products that are both more sustainable and of higher quality. Conclusions. Future research should adopt a more holistic approach to examining the food matrix and the dietary patterns that influence TASF digestibility. It is necessary to include meat from hunting and wildlife farming and insects in global food composition databases, as limited literature was found. In addition, scarce research focuses on low- and middle-income countries, highlighting the need for further exploration of TASF food composition analysis and how intrinsic animal characteristics and livestock production system characteristics impact their nutritional value.
Collapse
Affiliation(s)
- Ana María Rueda García
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (P.F.); (B.D.S.); (M.H.)
| | - Patrizia Fracassi
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (P.F.); (B.D.S.); (M.H.)
| | - Beate D. Scherf
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (P.F.); (B.D.S.); (M.H.)
| | - Manon Hamon
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (P.F.); (B.D.S.); (M.H.)
| | - Lora Iannotti
- E3 Nutrition Lab, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Ma H, Lin B, Yan Z, Tong Y, Liu H, He X, Zhang H. Phenotypic Identification, Genetic Characterization, and Selective Signal Detection of Huitang Duck. Animals (Basel) 2024; 14:1747. [PMID: 38929366 PMCID: PMC11201145 DOI: 10.3390/ani14121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The Huitang duck (HT), a long-domesticated elite local breed from Hunan Province, China, with excellent meat quality, has not had its population genetic structure and genomic selective sweeps extensively studied to date. This study measured the phenotypic characteristics of HT and conducted comparative analysis between HT and 16 different duck breeds, including wild, indigenous, and meat breeds, to characterize its population structure and genetic potential. The results revealed that HT is a dual-purpose indigenous breed with a genetic background closely related to the Youxian sheldrake and Linwu ducks. In the selective sweep analysis between HT and Linwu ducks, genes such as PLCG2, FN1, and IGF2BP2, which are associated with muscle growth and development, were identified near the 27 selection signals. The comparison between HT and Jinding ducks revealed 68 selective signals that contained important genes associated with ovarian development (GRIK4, MAP3K8, and TGIF1) and egg-laying behaviors (ERBB4). Selective sweep analysis between HT and Youxian sheldrake ducks found 93 selective regions covering genes related to both meat (IGF1R and IGFBP5) and egg-production (FOXO3 and ITPR1) traits. Our study may provide novel knowledge for exploring the population structure and genetic potential of HT, offering a theoretical basis for its breeding strategies in the future.
Collapse
Affiliation(s)
- Haojie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Bingjin Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Zhiyao Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Yueyue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Huichao Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
| |
Collapse
|
3
|
Zhang Y, Qi S, Fan S, Jin Z, Bao Q, Zhang Y, Zhang Y, Xu Q, Chen G. Comparison of growth performance, meat quality, and blood biochemical indexes of Yangzhou goose under different feeding patterns. Poult Sci 2024; 103:103349. [PMID: 38157788 PMCID: PMC10765298 DOI: 10.1016/j.psj.2023.103349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The East China region is the main market for the breeding and consumption of meat geese in China, in order to provide data reference for small and medium-sized farms and farmers to choose breeding methods and growth performance. This study selected 300 Yangzhou geese as materials and determined the number of geese in each group according to different modes. The meat quality, blood biochemical indicators, and economic benefits of 4 common feeding methods (Group I: full concentrate feeding; Group II: concentrate feeding in the first stage + 3% fat addition in the later stage; Group III: concentrate feeding + pasture supplementation; Group IV: grazing feeding + concentrate) in East China were analyzed. The results are as follows: The average daily weight gain of Yangzhou geese in Group IV at 5 to 8 wk old was the highest, with the highest feed utilization rate. The body weight at 8 wk old was significantly higher than that of the group III (P < 0.05). The total mortality rate of Group I and II remained at a relatively low level, while the mortality rates of Group III and IV exceeded 17%. The SR, FECR, and FECW of female geese in Groups II, III, and IV were significantly higher than those in Control group I (P < 0.05). Different feeding methods have little effect on the quality of goose breast muscles, while in terms of leg muscles, Group II has the highest binding force, significantly higher than Group I (P < 0.05). The rate of chest muscle loss in group III was significantly higher than that in groups I and II (P < 0.05). However, the pH of leg muscles in groups I, II and III was significantly higher than that in group IV (P < 0.05). Group II has the highest protein and collagen content, and Group I has the highest fat content. Except for the significantly higher histidine content in Groups I And II compared to those in Groups III and IV (P < 0.05), there was almost no significant difference in amino acid content among the groups (P > 0.05). There was no significant difference in ALB/GLO content among the 3 groups of Groups II to IV, but they were all significantly higher than those of Group I (P < 0.05). There was no statistically significant difference in other indicators among the groups (P > 0.05). There was no significant difference in the content of Ca, Cu, Fe, P, Zn, and other elements in the muscles between the groups (P > 0.05). This study solved the problems of slow growth, poor meat performance, and low economic benefits in meat goose breeding, providing theoretical basis and data support for meat goose breeding enterprises and farmers to choose appropriate breeding modes.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Shangzong Qi
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Suyu Fan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhiming Jin
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiang Bao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
4
|
Xu L, He J, Duan M, Chang Y, Gu T, Tian Y, Cai Z, Jiang C, Zeng T, Lu L. Effects of lactic acid bacteria-derived fermented feed on the taste and quality of duck meat. Food Res Int 2023; 174:113679. [PMID: 37981371 DOI: 10.1016/j.foodres.2023.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The present study aimed to examine the impact of lactic acid bacteria- fermented feed (FF) on the taste and quality of duck meat, in addition to elucidating the potential metabolomic mechanism at play. The findings revealed that ducks fed with FF exhibited elevated pH levels and reduced cooking loss in their meat when compared to the control group. In addition, the sensory evaluation and e-tongue analysis revealed that the tenderness, juiciness, umami, richness, saltiness, and sweetness of duck meat were all enhanced by feeding FF. Moreover, an examination of the metabolome using 1H nuclear magnetic resonance (1H NMR) identified the principal differential metabolites that exhibited a correlation with taste, which included 2-aminoadipate, glucose, glycine, N-acetylcysteine, niacinamide, proline, and threonine. Furthermore, the differential metabolites that exhibited the greatest enrichment in duck meat could be primarily traced to glutathione metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism. The potential factors contributing to the effect of FF and basic commercial duck feed (CF) were found to be primarily regulated via the aforementioned metabolic pathways. The study, therefore, offers a viable approach for enhancing the taste and quality of duck meat.
Collapse
Affiliation(s)
- Ligen Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunqing Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Huang L, Guo Q, Wu Y, Jiang Y, Bai H, Wang Z, Chen G, Chang G. Carcass traits, proximate composition, amino acid and fatty acid profiles, and mineral contents of meat from Cherry Valley, Chinese crested, and crossbred ducks. Anim Biotechnol 2023; 34:2459-2466. [PMID: 35816470 DOI: 10.1080/10495398.2022.2096625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Duck meat is known for its taste and high nutritive value. To preserve local genetic diversity while maintaining commercial viability, we obtained a crossbreed (CB) between high-performing Cherry Valley (CV) and traditional Chinese crested (CC) ducks. We compared carcass traits and meat quality characteristics of CB and parental breeds. Meat from the above ducks at their respective marketable ages was evaluated for proximate composition, amino acid and fatty acid profiles, and selected mineral content. The live weights, carcass weights, and breast muscle percentage of CB were higher than CC but lower than CV; the leg muscle of CB was lower than CV and CC. CB had higher intramuscular fat content than CV; its collagen content was lower than CC but higher than CV in breast and thigh muscles. Additionally, the saturated fatty acid content of CB muscle was lower than CV and higher than CC. CB contained more monounsaturated fatty acids than CV and CC. Zn content was higher in CB breast than CV and CC. CB, obtained by crossing CV and CC, has partial advantages over both the breeds suggesting that these characteristics aligned with standards to breed ducks with high-quality meat.
Collapse
Affiliation(s)
- Lan Huang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yun Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hao Bai
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Yan X, Xu Y, Zhen Z, Li J, Zheng H, Li S, Hu Q, Ye P. Slaughter performance of the main goose breeds raised commercially in China and nutritional value of the meats of the goose breeds: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3748-3760. [PMID: 36178068 DOI: 10.1002/jsfa.12244] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 05/03/2023]
Abstract
A number of goose breeds are raised commercially in China. However, the data on the slaughter performance of the goose breeds and the nutritional value of their meats lack a thorough comparative analysis. In this systematic review, the slaughter performance of the goose breeds and nutritional value of their meats were comparatively analyzed to provide an overview of the characteristics of the goose breeds raised commercially in China. Fifteen goose breeds were selected from 27 research articles published up to January 2022 on the slaughter performance of the goose breeds raised commercially in China and their nutrient composition after literature searching, literature screening, variety selection, and data collation. The slaughter indexes of the goose breeds and the basic nutrient composition, amino acid composition, and fatty acid composition of the meats of the goose breeds were standardized using min-max normalization and compared. The results suggest that the slaughter indexes and nutritional indicators of the meats of Yangzhou white goose, Xupu goose, Landaise geese, and Sichuan white goose are more balanced than those of the meats of the other goose breeds. The results of this review can lay the foundation for optimizing the breeding methods of the commercially raised goose breeds and processing methods of the meats of the geese. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Yaguang Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
7
|
Chen C, Fan X, Hu Y, Zhou C, Sun Y, Du L, Pan D. Effect of different salt substitutions on the decomposition of lipids and volatile flavor compounds in restructured duck ham. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Gao W, Cao Z, Zhang Y, Zhang Y, Zhao W, Chen G, Li B, Xu Q. Comparison of carcass traits and nutritional profile in two different broiler-type duck lines. Anim Sci J 2023; 94:e13820. [PMID: 36971092 DOI: 10.1111/asj.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 03/29/2023]
Abstract
Cherry Valley ducks (CVDs) and White Kaiya ducks (WKDs) are judged to be fast- and slow-growing lines, respectively. To investigate the carcass traits and nutritional profile at their marketable ages, 12 birds (38 days for CVDs, n = 6; 56 days for WKDs, n = 6) were randomly selected and slaughtered. Indicators such as breast muscle weight, shear force, and proximate composition were comprehensively detected. Although the carcass and breast muscle weight in WKDs were significantly lower, remarkably higher intramuscular fat and tenderness and less moisture content were observed in WKDs. Besides, WKDs contained higher contents of Cu, Zn, and Ca, whereas CVDs contained higher leucine (Leu) and histidine (His) compositions (P < 0.01). Moreover, higher monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) along with lower saturated fatty acids (SFAs) were detected in WKDs (P < 0.01). Taken together, despite light carcass and breast muscle weight, WKDs had advantages in nutritional compositions except for amino acid constituents, including intramuscular fat, MUFAs, and PUFAs, as well as Cu, Zn, and Ca. These data would not only provide genetic resources for breeding new duck lines but also offer a useful reference for making decisions on high-nutrient meat consumption.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Zhengfeng Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Wenming Zhao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou, China
| |
Collapse
|
9
|
Li C, Al-Dalali S, Zhou H, Xu B. Influence of curing on the metabolite profile of water-boiled salted duck. Food Chem 2022; 397:133752. [DOI: 10.1016/j.foodchem.2022.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
10
|
Zhang S, Zhang J, Cao C, Cai Y, Li Y, Song Y, Bao X, Zhang J. Effects of Different Rearing Systems on Lueyang Black-Bone Chickens: Meat Quality, Amino Acid Composition, and Breast Muscle Transcriptome. Genes (Basel) 2022; 13:genes13101898. [PMID: 36292783 PMCID: PMC9601429 DOI: 10.3390/genes13101898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The quality of poultry products depends on genotype, rearing system, and environment. The aim of this study was to investigate the effects of different rearing systems on meat quality, amino acid composition, and breast muscle transcriptome from Lueyang black-bone chickens. Lueyang black-bone chickens (n = 900) were randomly divided into three groups (cage, flat-net, and free-range groups), with three replicates per group (100 chickens per replicate). At 16 weeks, a total of 36 healthy chickens (six males and six females per group) were collected, and their breast muscles were sampled to detect meat quality parameters, amino acid composition, and fatty acid contents. Furthermore, breast muscles from six random hens in each group were used for RNA-seq analysis. The results revealed that the values of pH, shear force, inosine monophosphate (IMP), palmitic acid, and linoleic acid in the free-range group were significantly higher than those in the caged group (p < 0.05). Fat content in the free-range group was significantly lower than in the caged and flat-net groups (p < 0.05). Glutamate (Glu) levels, the amino acid crucial for the umami taste, was significantly higher in the free-range group than in the caged group (p < 0.05). Meanwhile, there was no significant difference between the free-range and flat-net groups (p > 0.05). The breast muscle transcriptome results showed that there were 291, 131, and 387 differently expressed genes (DEGs) among the three comparison groups (caged vs. free-range, flat-net vs. caged, and flat-net vs. free-range, respectively) that were mainly related to muscle development and amino acid metabolism pathways. To validate the accuracy of the transcriptome data, eight genes (GOS2, ASNS, NMRK2, GADL1, SMTNL2, SLC7A5, AMPD1, and GLUL) which relate to fat deposition, skeletal muscle function, and flavor formation were selected for Real-time Quantitative PCR (RT-qPCR) verification. In conclusion, these results suggested that rearing systems significantly influenced the meat quality and gene expression of Lueyang black-bone chickens. All the data proved that free-range and flat-net systems may provide better flavor to consumers by affecting the deposition of flavor substances and the expression of related genes. These findings will provide a valuable theoretical basis for the rearing system selection in the poultry industry.
Collapse
|
11
|
Research Note: Effects of cage and floor rearing systems on growth performance, carcass traits, and meat quality in small-sized meat ducks. Poult Sci 2021; 101:101520. [PMID: 34788710 PMCID: PMC8591506 DOI: 10.1016/j.psj.2021.101520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022] Open
Abstract
This study was performed to evaluate the effects of different rearing methods on the growth performance, carcass yield, and meat quality of small-sized meat ducks. A total of 420 healthy 21-day-old birds was randomly allocated to 2 treatment groups (6 replicates per treatment, sex ratio 1/1) and subjected to 2 rearing methods (furnished cage and plastic wire-floor) until d 63. Growth performance was measured in all birds. Three males and 3 females from each replicate were randomly selected and evaluated to determine the carcass yield and meat quality. In terms of growth performance, the rearing method affected the final body weight, average daily feed intake, and average daily gain, which were higher in the cage group (P < 0.05) than in the floor group, with a similar feed/gain in both groups. For slaughter performance, ducks in the cage group showed a higher abdominal fat yield and lower gizzard yield than those in the floor group (P < 0.05). For meat quality, the L* value of the breast muscle was higher in the cage group than in the floor group (P < 0.05). The pH recorded at 1 h was lower and pH recorded at 24 h was higher in the cage group (P < 0.05). The shear force and water loss rate were both lower in the cage group (P < 0.05). Additionally, the moisture content was lower and intramuscular fat content was higher in ducks fed in cages (P < 0.05). Our results indicate that the cage rearing system improved the growth performance and meat quality of ducks, which is appropriate for small-sized meat ducks.
Collapse
|