1
|
Zhang X, Xu B, Zhou H, Zhou X, Wang Q, Sun J, Liu K, Zha L, Li J, Dai Y, Chen F. Pathogenicity of Duck Adenovirus Type 3 in Chickens. Animals (Basel) 2024; 14:2284. [PMID: 39199818 PMCID: PMC11350851 DOI: 10.3390/ani14162284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Duck adenovirus Type 3 (DAdV-3) severely affects the health of ducks; however, its pathogenicity in chickens remains unknown. The objectives of this study were to evaluate the pathogenicity and major pathological changes caused by DAdV-3 in chickens. Viral DNA was extracted from the liver of the Muscovy duck, and the fiber-2 and hexon fragments of DAdV-3 were amplified through polymerase chain reaction (PCR). The evolutionary tree revealed that the isolated virus belonged to DAdV-3, and it was named HE-AN-2022. The mortality rate of chicks that received inoculation with DAdV-3 subcutaneously via the neck was 100%, while the mortality rate for eye-nose drop inoculation was correlated with the numbers of infection, with 26.7% of chicks dying as a result of exposure to multiple infections. The main symptoms exhibited prior to death were hepatitis-hydropericardium syndrome (HHS), ulceration of the glandular stomach, and a swollen bursa with petechial hemorrhages. A histopathological examination revealed swelling, necrosis, lymphocyte infiltration, and basophilic inclusion bodies in multiple organs. Meanwhile, the results of quantitative real-time PCR (qPCR) demonstrated that DAdV-3 could affect most of the organs in chickens, with the gizzard, glandular stomach, bursa, spleen, and liver being the most susceptible to infection. The surviving chicks had extremely high antibody levels. After the chickens were infected with DAdV-3 derived from Muscovy ducks, no amino acid mutation was observed in the major mutation regions of the virus, which were ORF19B, ORF66, and ORF67. On the basis of our findings, we concluded that DAdV-3 infection is possible in chickens, and that it causes classic HHS with ulceration of the glandular stomach and a swollen bursa with petechial hemorrhages, leading to high mortality in chickens. The major variation domains did not change in Muscovy ducks or in chickens after infection. This is the first study to report DAdV-3 in chickens, providing a new basis for preventing and controlling this virus.
Collapse
Affiliation(s)
- Xiwen Zhang
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Bin Xu
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Huiqin Zhou
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Xiang Zhou
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Qingfeng Wang
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Jiayu Sun
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Kewei Liu
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Lisha Zha
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Jinchun Li
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| | - Yin Dai
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230036, China;
| | - Fangfang Chen
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.X.); (H.Z.); (X.Z.); (Q.W.); (J.S.); (K.L.); (L.Z.); (J.L.)
| |
Collapse
|
2
|
Hou X, Wang L, Zhang R, Liu G, Wang T, Wen B, Chang W, Han S, Han J, Fang J, Qi X, Wang J. Differential innate immune responses to fowl adenovirus serotype 4 infection in Leghorn male hepatocellular and chicken embryo fibroblast cells. Poult Sci 2024; 103:103741. [PMID: 38670055 PMCID: PMC11066554 DOI: 10.1016/j.psj.2024.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.
Collapse
Affiliation(s)
- Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gen Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangzhou, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Tan Y, Raheem MA, Rahim MA, Xin H, Zhou Y, Hu X, Dai Y, Ataya FS, Chen F. Isolation, characterization, evaluation of pathogenicity, and immunomodulation through interferon production of duck adenovirus type-3 (DAdV-3). Poult Sci 2024; 103:103411. [PMID: 38215507 PMCID: PMC10825357 DOI: 10.1016/j.psj.2023.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Duck adenovirus type-3 (DAdV-3) is a poorly characterized duck virus. A comprehensive analysis of the DAdV-3 pathogenicity and host immune response could be a valuable addition. Herein, DAdV-3 was isolated from Muscovy duck and virus-specific genes were confirmed by polymerase chain reaction (PCR). The obtained gene fragments were sequenced and compared with the reference sequence. Results confirmed that the clinically isolated virus was DAdV-3, named as HF-AN-2020. To evaluate DAdV-3 host immune response, the expression levels of MDA5, STING, IRF7, MAVS, and NF-κB, and inflammatory cytokines (IFN-β, IFN-γ, and IL-1β) were determined by quantitative reverse transcriptase PCR (qRT-PCR). The expression levels of IFN-β and IFN-γ were 32.6- and 28.6-fold, respectively, higher (P < 0.01) than the control group. It was found that the upregulation of STING and NF-κB pathways was directly involved in the regulation of inflammatory cytokines (IFN-β, IFN-γ, and IL-1β). Furthermore, the gene regulation pathways consecutively upregulated the expression levels of MDA5, STING, IRF7, MAVS, and NF-κB up to 31.6, 10.5, 31.4, 2.2, and 2.6-fold, respectively, higher (P < 0.01) than the control group. The TCID50 of DAdV-3 for Muscovy duck and chicken was 10-3.24/0.1 mL with 0% mortality, indicating low pathogenicity in both Muscovy ducks and chickens, but DAdV-3 can induce higher expression of interferons. Genome analysis showed mutations in 4 amino acids located in ORF19B (Ser to Thr), ORF66 (Leu to Phe, Ile to Leu), and ORF67 (Gly to stop codon). This study provides essential and basic information for further research on the mechanism of the cellular immune responses against adenoviruses.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Tsinghua- Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Muhammad Ajwad Rahim
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Huang Xin
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yuhang Zhou
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Xuerui Hu
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yin Dai
- Anhui Academy of Agricultural Sciences, Hefei 230036, Anhui, PR China
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fangfang Chen
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
4
|
Lai J, He X, Zhang R, Zhang L, Chen L, He F, Li L, Yang L, Ren T, Xiang B. Chicken Interferon-Alpha and -Lambda Exhibit Antiviral Effects against Fowl Adenovirus Serotype 4 in Leghorn Male Hepatocellular Cells. Int J Mol Sci 2024; 25:1681. [PMID: 38338959 PMCID: PMC10855402 DOI: 10.3390/ijms25031681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Hydropericardium hepatitis syndrome (HHS) is primarily caused by fowl adenovirus serotype 4 (FAdV-4), causing high mortality in chickens. Although vaccination strategies against FAdV-4 have been adopted, HHS still occurs sporadically. Furthermore, no effective drugs are available for controlling FAdV-4 infection. However, type I and III interferon (IFN) are crucial therapeutic agents against viral infection. The following experiments were conducted to investigate the inhibitory effect of chicken IFN against FadV-4. We expressed recombinant chicken type I IFN-α (ChIFN-α) and type III IFN-λ (ChIFN-λ) in Escherichia coli and systemically investigated their antiviral activity against FAdV-4 infection in Leghorn male hepatocellular (LMH) cells. ChIFN-α and ChIFN-λ dose dependently inhibited FAdV-4 replication in LMH cells. Compared with ChIFN-λ, ChIFN-α more significantly inhibited viral genome transcription but less significantly suppressed FAdV-4 release. ChIFN-α- and ChIFN-λ-induced IFN-stimulated gene (ISG) expression, such as PKR, ZAP, IRF7, MX1, Viperin, IFIT5, OASL, and IFI6, in LMH cells; however, ChIFN-α induced a stronger expression level than ChIFN-λ. Thus, our data revealed that ChIFN-α and ChIFN-λ might trigger different ISG expression levels, inhibiting FAdV-4 replication via different steps of the FAdV-4 lifecycle, which furthers the potential applications of IFN antiviral drugs in chickens.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Lai J, Yang L, Chen F, He X, Zhang R, Zhao Y, Gao G, Mu W, Chen X, Luo S, Ren T, Xiang B. Prevalence and Molecular Characteristics of FAdV-4 from Indigenous Chicken Breeds in Yunnan Province, Southwestern China. Microorganisms 2023; 11:2631. [PMID: 38004643 PMCID: PMC10673041 DOI: 10.3390/microorganisms11112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fashun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Gan Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Nanto-Hara F, Yamazaki M, Murakami H, Ohtsu H. Chronic heat stress induces renal fibrosis and mitochondrial dysfunction in laying hens. J Anim Sci Biotechnol 2023; 14:81. [PMID: 37268977 DOI: 10.1186/s40104-023-00878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Heat stress in laying hens negatively affects egg production and shell quality by disrupting the homeostasis of plasma calcium and phosphorus levels. Although the kidney plays an important role in calcium and phosphorus homeostasis, evidence regarding the effect of heat stress on renal injury in laying hens is yet to be elucidated. Therefore, the aim of this study was to evaluate the effects of chronic heat stress on renal damage in hens during laying periods. METHODS A total of 16 white-leghorn laying hens (32 weeks old) were randomly assigned to two groups (n = 8). One group was exposed to chronic heat stress (33 °C for 4 weeks), whereas the other group was maintained at 24 °C. RESULTS Chronic heat exposure significantly increased plasma creatinine and decreased plasma albumin levels (P < 0.05). Heat exposure also increased renal fibrosis and the transcription levels of fibrosis-related genes (COLA1A1, αSMA, and TGF-β) in the kidney. These results suggest that renal failure and fibrosis were induced by chronic heat exposure in laying hens. In addition, chronic heat exposure decreased ATP levels and mitochondrial DNA copy number (mtDNA-CN) in renal tissue, suggesting that renal mitochondrial dysfunction occurs under conditions of heat stress. Damaged mitochondria leak mtDNAs into the cytosol and mtDNA leakage may activate the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway. Our results showed that chronic heat exposure activated the cGAS-STING pathway as indicated by increased expression of MDA5, STING, IRF7, MAVS, and NF-κB levels. Furthermore, the expression of pro-inflammatory cytokines (IL-12) and chemokines (CCL4 and CCL20) was upregulated in heat-stressed hens. CONCLUSIONS These results suggest that chronic heat exposure induces renal fibrosis and mitochondrial damage in laying hens. Mitochondrial damage by heat stress may activate the mtDNA-cGAS-STING signaling and cause subsequent inflammation, which contributes to the progression of renal fibrosis and dysfunction.
Collapse
Affiliation(s)
- Fumika Nanto-Hara
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan.
| | - Makoto Yamazaki
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hitoshi Murakami
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Haruhiko Ohtsu
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
7
|
Localization of Chicken Rab22a in Cells and Its Relationship to BF or Ii Molecules and Genes. Animals (Basel) 2023; 13:ani13030387. [PMID: 36766276 PMCID: PMC9913282 DOI: 10.3390/ani13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Rab22a is an important small GTPase protein the molecule that is involved in intracellular transportation and regulation of proteins. It also plays an important role in antigens uptake, transportation, regulation of endosome morphology, and also regulates the transport of antigens to MHC (Major Histocompatibility Complex) molecules. To investigate the role of Rab22a, the intracellular co-localization of chicken Rab22a (cRab22a) molecule and its relationship to BF and chicken invariant chain (cIi) molecules was studied. A 3D protein structure of Rab22a was constructed by using informatics tools (DNASTAR 4.0 and DNAMAN). Based on the model, the corresponding recombinant eukaryotic plasmids were constructed by point mutations in the protein's structural domains. HEK 293T cells were co-transfected with plasmids pEGFP-C1-cIi to observe the intracellular co-localization. Secondly, the DC2.4 Mouse Dendritic Cell and Murine RAW 264.7 cells were transfected with recombinant plasmids of pmCherry-cRab22a and pmCherry-mRab22a respectively. Subsequently, the intracellular localization of cRab22a in early and late endosomes was observed with specific antibodies against EEA1 and LAMP1 respectively. For gene expression-based studies, the cRab22a gene was down-regulated and up-regulated in HD11 cells, following the detection of transcription levels of the BFa (MHCIa) and cIi genes by real-time quantitative PCR (RT-qPCR). The interactions of the cRab22a gene with BFa and cIi were detected by co-immunoprecipitation (Co-IP) and Western blot. The results showed that the protein structures of chicken and mouse Rab22a were highly homologous (95.4%), and both localize to the early and late endosomes. Ser41 and Tyr74 are key amino acids in the Switch regions of Rab22a which maintain its intracellular localization. The down-regulation of cRab22a gene expression significantly reduced (p < 0.01) the transcription of BFa (MHCIa) and cIi in HD11 cells. However, when the expression of the cRab22a gene was increased 55 times as compared to control cells, the expression of the BFa (MHCIa) gene was increased 1.7 times compared to the control cells (p < 0.01), while the expression of the cIi gene did not significantly differ from control (p > 0.05). Western blot results showed that cRab22a could not directly bind to BFa and cIi. So, cRab22a can regulate BFa and cIi protein molecules indirectly. It is concluded that cRab22a was localized with cIi in the endosome. The Switch regions of cRab22a are the key domains that affect intracellular localization and colocalization of the cIi molecule.
Collapse
|
8
|
Transcriptome Analysis Reveals Critical Factors For Survival After Adenovirus Serotype 4 Infection. Poult Sci 2022; 102:102150. [PMID: 36989855 PMCID: PMC10070941 DOI: 10.1016/j.psj.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Fowl adenovirus serotype-4 (FAdV-4) is highly lethal to poultry, making it one of the leading causes of economic losses in the poultry industry. However, a small proportion of poultry can survive after FAdV-4 infection. It is unclear whether there are genetic factors that protect chickens from FAdV-4 infection. Therefore, the livers from chickens uninfected with FAdV-4 (Normal), dead after FAdV-4 infection (Dead) or surviving after FAdV-4 infection (Survivor) were collected for RNA-seq, and 2,649 differentially expressed genes (DEGs) were identified. Among these, many immune-related cytokines and chemokines were significantly upregulated in the Dead group compared with the Survivor group, which might indicate that death is related to an excessive inflammatory immune response (cytokine storm). Subsequently, the KEGG results for DEGs specifically expressed in each comparison group indicated that cell cycle and apoptosis-related DEGs were upregulated and metabolism-related DEGs were downregulated in the Dead group, which also validated the reliability of the samples. Furthermore, GO and KEGG results showed DEGs expressed in all three groups were mainly associated with cell cycle. Among them, BRCA1, CDK1, ODC1, and MCM3 were screened as factors that might influence FAdV-4 infection. The qPCR results demonstrated that these 4 factors were not only upregulated in the Dead group but also significantly upregulated in the LMH cells after 24 h infection by FAdV-4. Moreover, interfering with BRCA1, CDK1, ODC1, and MCM3 significantly attenuated viral replication of FAdV-4. And interfering of BRCA1, CDK1, and MCM3 had more substantial hindering effects. These results provided novel insights into the molecular changes following FAdV-4 infection but also shed light on potential factors driving the survival of FAdV-4 infection in chickens.
Collapse
|
9
|
Niu D, Feng J, Duan B, Shi Q, Li Y, Chen Z, Ma L, Liu H, Wang Y. Epidemiological survey of avian adenovirus in China from 2015 to 2021 and the genetic variability of highly pathogenic Fadv-4 isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105277. [PMID: 35367686 DOI: 10.1016/j.meegid.2022.105277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
The prevalence of poultry adenovirus in China is determined using clinical diagnosis, molecular biological testing, serological testing, and LMH cell virus isolation. These methods can track and test key poultry and waterfowl breeding areas across the country. From 2015 to 2021, 9613 suspected adenovirus samples were collected from 28 provinces. After the first generation of gene sequencing, a total of 2210 hexo gene fragments were obtained. Among them, FAdV-1 type accounted for 7.65%, FAdV-2 type accounted for 5.34%, FAdV-3 type accounted for 2.04%, FAdV-4 type accounted for 38.24%, FAdV-5 type accounted for 2.17%, FAdV-6 type accounted for 0.32%, FAdV-7 type accounted for 0.77%, FAdV-8a type accounted for 10.63%, FAdV-8b type accounted for 11.58%, FAdV-9 type accounted for 0.50%, FAdV-10 type accounted for 8.10%, and FAdV-11 type accounted for 12.67%. A total of 877 FAdV strains were isolated from FAdV suspected samples by seeding LMH cells, and there were 475 FAdV-4 strains among them. A total of 473 isolates were highly pathogenic FAdV-4, and the percentage of amino acid homology with the highly pathogenic FAdV-4 reference strains was >99.1%. Two isolates were non-pathogenic, and the amino acid homology with the ON1 reference strain was >99.6%. Part of the amino acid positions of the hexon gene have mutations, including positions 188, 193, 195, 238, and 240.
Collapse
Affiliation(s)
- Dengyun Niu
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China
| | - Jingjing Feng
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China.
| | - Baomin Duan
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China
| | - Qiuying Shi
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China
| | - Ying Li
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China
| | - Zhuo Chen
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China
| | - Lifang Ma
- Tianjin Bohai Joint Institute of Agriculture and Animal Husbandry Industry Co., Ltd, Tianjin 300308, China
| | - Haixia Liu
- Tianjin Ringpu Biotechnology Co., Ltd, Tianjin 300308, China
| | - Yanxiao Wang
- Tianjin Ringpu Biotechnology Co., Ltd, Tianjin 300308, China
| |
Collapse
|
10
|
Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-Translational Modifications of STING: A Potential Therapeutic Target. Front Immunol 2022; 13:888147. [PMID: 35603197 PMCID: PMC9120648 DOI: 10.3389/fimmu.2022.888147] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic-reticulum resident protein, playing essential roles in immune responses against microbial infections. However, over-activation of STING is accompanied by excessive inflammation and results in various diseases, including autoinflammatory diseases and cancers. Therefore, precise regulation of STING activities is critical for adequate immune protection while limiting abnormal tissue damage. Numerous mechanisms regulate STING to maintain homeostasis, including protein-protein interaction and molecular modification. Among these, post-translational modifications (PTMs) are key to accurately orchestrating the activation and degradation of STING by temporarily changing the structure of STING. In this review, we focus on the emerging roles of PTMs that regulate activation and inhibition of STING, and provide insights into the roles of the PTMs of STING in disease pathogenesis and as potential targeted therapy.
Collapse
Affiliation(s)
- Jiaqi Kang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yun Zhao, ; Jianan Ren, ; Xiuwen Wu,
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yun Zhao, ; Jianan Ren, ; Xiuwen Wu,
| | - Jianan Ren
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yun Zhao, ; Jianan Ren, ; Xiuwen Wu,
| |
Collapse
|
11
|
The pros and cons of cytokines for fowl adenovirus serotype 4 infection. Arch Virol 2021; 167:281-292. [PMID: 34839444 DOI: 10.1007/s00705-021-05318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has spread on chicken farms worldwide, causing huge economic losses. Currently, the exact mechanism of pathogenesis of FAdV-4 remains unknown. Despite the severe inflammatory damage observed in chickens infected with pathogenic FAdV-4, few studies have focused on the host immune system-virus interactions and cytokine secretion. Host immunity acts as one of the most robust defense mechanisms against infection by pathogens, and cytokines are important in their elimination. However, excessive inflammatory cytokine secretion could contribute to the pathogenesis of FAdV-4. Understanding of the roles of cytokines produced during FAdV-4 infection is important for the study of pathogenicity and for developing strategies to control FAdV-4. Several previous studies have addressed the immune responses to FAdV-4 infection, but there has not been a systematic review of this work. The present review provides a detailed summary of the current findings on cytokine production induced by FAdV-4 infection to accelerate our understanding of FAdV-4 pathogenesis.
Collapse
|