1
|
Wu Y, Huang C, Wei Y, Kang Z, Zhang W, Xie J, Xiong L, Zhou M, Zhang G, Chen R. Comparative analysis of the growth differences between hybrid Ningdu Yellow chickens and their parentals. Poult Sci 2024; 103:104239. [PMID: 39454533 PMCID: PMC11546192 DOI: 10.1016/j.psj.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 10/28/2024] Open
Abstract
Although the local high quality chicken breed in China has excellent flavor, its growth rate is inferior to that of foreign breeds. To improve the growth rate of local chicken breeds, it is crucial to study the mechanism of chicken muscle development. Herein, Ningdu Yellow chicken was used as the research object, and a new hybrid breed (W) was obtained by crossing the G, H and D lines, which combined the excellent physiological characteristics of its parents. Combined analysis of Ningdu Yellow chickens and their parents was carried out. Chickens from 105-day-old lines (W, G, H) were selected, and breast meat and serum were extracted for transcriptome sequencing and metabolome determination to study their growth differences. The live weight, carcass weight, half-eviscerated weight, eviscerated weight, and breast muscle weight of W were significantly higher than those of G and H. Differential expression analysis identified 1700 differentially expressed genes (DEG), and gene ontology and kyoto encyclopedia of genes and genomes (KEGG) analyses identified 33 and 1 pathways related to growth and development and steroid biosynthesis, respectively. Next, pairwise analysis identified 57 KEGG pathways, among which the MAPK signaling, steroid hormone biosynthesis, tight junction, and PPAR signaling pathways were involved in growth and development. Cluster analysis found that genes highly expressed in the W group were associated with regulation of the actin cytoskeleton, riboflavin metabolism, steroid biosynthesis, and glycerophospholipid metabolism. The top 2 clusters obtained by protein-protein interaction analysis were important for the growth and development of chickens. Finally, the metabolomic analysis found key differentially accumulated metabolites (DAM) that might be account for the growth differences. Further integrated analysis identified key DEGs and DAMs that might be responsible for the observed growth differences. This study identified genes governing growth traits in Ningdu Yellow chickens, laying a theoretical foundation for the development of chicken breeding, the utilization of hybrid supporting lines, and promotion of the Chinese chicken industry.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Cong Huang
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Yue Wei
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Zhaofeng Kang
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Weihong Zhang
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Jinfang Xie
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Ligen Xiong
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Min Zhou
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, 330100, China
| | - Guosheng Zhang
- Agricultural Technology Extension Center of Jiangxi Province, Jiangxi Agricultural University, Nanchang, Jiangxi, 330046, China
| | - Rongjun Chen
- Department of Biological Technology, Huida Industry Co., Ltd., Ningdu, Jiangxi, 342800, China
| |
Collapse
|
2
|
Volkova NA, Romanov MN, Vetokh AN, Larionova PV, Volkova LA, Abdelmanova AS, Sermyagin AA, Griffin DK, Zinovieva NA. Genome-Wide Association Study Reveals the Genetic Architecture of Growth and Meat Production Traits in a Chicken F 2 Resource Population. Genes (Basel) 2024; 15:1246. [PMID: 39457370 PMCID: PMC11507135 DOI: 10.3390/genes15101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES For genomic selection to enhance the efficiency of broiler production, finding SNPs and candidate genes that define the manifestation of main selected traits is essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity traits of roosters from a chicken F2 resource population (n = 152). METHODS The population was obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits of interest and economic importance. RESULTS At the threshold value of p < 9.2 × 10-7, 83 SNPs associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and its components). Moreover, 34 SNPs were associated with a group of three or more traits, including 15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators. Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2. CONCLUSIONS The found SNPs and candidate genes can serve as genetic markers for growth and meat performance characteristics in chicken breeding in order to achieve genetic improvement in broiler production.
Collapse
Affiliation(s)
- Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anastasia N. Vetokh
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Polina V. Larionova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Ludmila A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexander A. Sermyagin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg 196601, Russia;
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| |
Collapse
|
3
|
Xiong X, Lan Y, Wang Z, Xu J, Gong J, Chai X. Bacteroidales reduces growth rate through serum metabolites and cytokines in Chinese Ningdu yellow chickens. Poult Sci 2024; 103:103905. [PMID: 38870614 PMCID: PMC11225896 DOI: 10.1016/j.psj.2024.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Increasing evidence has indicated that the gut microbiome plays an important role in chicken growth traits. However, the cecal microbial taxa associated with the growth rates of the Chinese Ningdu yellow chickens are unknown. In this study, shotgun metagenomic sequencing was used to identify cecal bacterial species associated with the growth rate of the Chinese Ningdu yellow chickens. We found that nine cecal bacterial species differed significantly between high and low growth rate chickens, including three species (Succinatimonas hippei, Phocaeicola massiliensis, and Parabacteroides sp. ZJ-118) that were significantly enriched in high growth rate chickens. We identified six Bacteroidales that were significantly enriched in low growth rate chickens, including Barnesiella sp. An22, Barnesiella sp. ET7, and Bacteroidales bacterium which were key biomarkers in differentiating high and low growth rate chickens and were associated with alterations in the functional taxa of the cecal microbiome. Untargeted serum metabolome analysis revealed that 8 metabolites showing distinct enrichment patterns between high and low growth rate chickens, including triacetate lactone and N-acetyl-a-neuraminic acid, which were at higher concentrations in low growth rate chickens and were positively and significantly correlated with Barnesiella sp. An22, Barnesiella sp. ET7, and Bacteroidales bacterium. Furthermore, the results suggest that serum cytokines, such as IL-5, may reduce growth rate and are related to changes in serum metabolites and gut microbes (e.g., Barnesiella sp. An22 and Barnesiella sp. ET7). These results provide important insights into the effects of the cecal microbiome, serum metabolism and cytokines in Ningdu yellow chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China.
| | - Yuehang Lan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Zhangfeng Wang
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Jishang Gong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Xuewen Chai
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| |
Collapse
|
4
|
Lu T, Abdalla Gibril BA, Xu J, Xiong X. Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact. Genes (Basel) 2024; 15:746. [PMID: 38927682 PMCID: PMC11202585 DOI: 10.3390/genes15060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
As societal progress elevates living standards, the focus on meat consumption has shifted from quantity to quality. In broiler production, optimizing meat quality has become paramount, prompting efforts to refine various meat attributes. Recent advancements in sequencing technologies have revealed the genome's complexity, surpassing previous conceptions. Through experimentation, numerous genetic elements have been linked to crucial meat quality traits in broiler chickens. This review synthesizes the current understanding of genetic determinants associated with meat quality attributes in broilers. Researchers have unveiled the pivotal insights detailed herein by employing diverse genomic methodologies such as QTL-based investigations, candidate gene studies, single-nucleotide polymorphism screening, genome-wide association studies, and RNA sequencing. These studies have identified numerous genes involved in broiler meat quality traits, including meat lightness (COL1A2 and ACAA2), meat yellowness (BCMO1 and GDPD5), fiber diameter (myostatin and LncIRS1), meat pH (PRDX4), tenderness (CAPN1), and intramuscular fat content (miR-24-3p and ANXA6). Consequently, a comprehensive exploration of these genetic elements is imperative to devise novel molecular markers and potential targets, promising to revolutionize strategies for enhancing broiler meat quality.
Collapse
Affiliation(s)
| | | | | | - Xinwei Xiong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China
| |
Collapse
|
5
|
Xiao L, Qi L, Fu R, Nie Q, Zhang X, Luo W. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China. Poult Sci 2024; 103:103740. [PMID: 38701629 PMCID: PMC11087722 DOI: 10.1016/j.psj.2024.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Meat quality traits are essential for producing high-quality broilers, but the genetic improvement has been limited by the complexity of measurement methods and the numerous traits involved. To systematically understand the meat quality characteristics of different broiler breeds, this study collected data on slaughter performance, skin color, fat deposition, and meat quality traits of 434 broilers from 12 different breeds in South China. The results showed that there was no significant difference in the live weight and slaughter weight of various broiler breeds at their respective market ages. Commercial broiler breeds such as Xiaobai and Huangma chickens had higher breast muscle and leg muscle rates. The skin and abdominal fat of Huangma chickens cultivated in the consumer market in South China exhibited significantly higher levels of yellowness compared to other varieties. Concerning fat traits, we observed that Wenchang chickens exhibited a strong ability to fat deposition, while the younger breeds showed lower fat deposition. Additionally, there were significant positive correlations found among different traits, including traits related to weight, traits related to fat, and skin color of different parts. Hierarchical clustering analysis revealed that fast-growing and large broiler Xiaobai chickens formed a distinct cluster based on carcass characteristics, skin color, and meat quality traits. Principal component analysis (PCA) was used to extract multiple principal components as substitutes for complex meat quality indicators, establishing a chicken meat quality evaluation model to differentiate between different breeds of chickens. At the same time, we identified 46, 22, and 20 SNP loci and their adjacent genes that were significantly associated with muscle mass traits, fat deposition, and skin color through genome-wide association studies (GWAS). The above results are helpful for systematically understanding the differences and characteristics of meat quality traits among different breeds.
Collapse
Affiliation(s)
- Liangchao Xiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Wu X, Zhou Y, Lu Z, Zhang Y, Zhang T. Effect of pre-slaughter fasting time on carcass yield, blood parameters and meat quality in broilers. Anim Biosci 2024; 37:315-322. [PMID: 37946434 PMCID: PMC10766492 DOI: 10.5713/ab.23.0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of pre-slaughter fasting time on carcass yield, meat quality, blood parameters and glucose metabolism in broilers. METHODS Four hundred and fifty Arbor Acres (AA) broilers at 42 days of age were divided into 5 groups with 6 replicates in each group and 15 chickens as one replicate. Following this period, broilers from each group were distributed among five groups according to preslaughter fasting period as 4, 8, 12, 16, or 20 h. RESULTS With increasing fasting time, the carcass yield (p<0.01), the breast muscles yield (p<0.01) and the thigh yield (p<0.01) of the broilers were all linearly increased. With increasing fasting time, the L* values (p<0.01), cooking loss (p = 0.020), moisture content (p<0.01) in the leg muscles linearly downregulated, while the drip loss (p = 0.043), pH45 min (p<0.01) and pH24 h (p<0.01) were linearly upregulated. A trend for a lower (p = 0.071) shear force in the leg muscles was also observed in broilers fasted for longer time. Similar results were also found in breast muscles. The different fasting treatments did not influence the breast muscles glycogen content (p>0.10), while the increase of fasting time resulted in a linear decrease of the blood glucose (p = 0.021) and, more specifically, the glycogen content of the liver and leg muscles (p<0.001). With increasing fasting time, the aspartate transaminase (p<0.01), uric acid (p<0.01), and triglycerides (p<0.01) in serum linearly downregulated, while the alanine aminotransferase was linearly upregulated. CONCLUSION The results of this study show a significant influence of fasting time on carcass yield and meat quality in broilers. Moderate fasting (8 to 12 h) before slaughter can reduce the weight loss of broilers. Prolonged fasting (≥16 h) increased body weight loss, decreased slaughtering performance and fluctuating blood indexes of broilers.
Collapse
Affiliation(s)
- Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100,
China
| | - Yahao Zhou
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100,
China
| | - Zhentao Lu
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100,
China
| | - Yunting Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100,
China
| | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
| |
Collapse
|
7
|
Yang W, Hou L, Wang B, Wu J, Zha C, Wu W. Integration of transcriptome and machine learning to identify the potential key genes and regulatory networks affecting drip loss in pork. J Anim Sci 2024; 102:skae164. [PMID: 38865489 PMCID: PMC11214104 DOI: 10.1093/jas/skae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Low level of drip loss (DL) is an important quality characteristic of meat with high economic value. However, the key genes and regulatory networks contributing to DL in pork remain largely unknown. To accurately identify the key genes affecting DL in muscles postmortem, 12 Duroc × (Landrace × Yorkshire) pigs with extremely high (n = 6, H group) and low (n = 6, L group) DL at both 24 and 48 h postmortem were selected for transcriptome sequencing. The analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were performed to find the overlapping genes using the transcriptome data, and functional enrichment and protein-protein interaction (PPI) network analysis were conducted using the overlapping genes. Moreover, we used machine learning to identify the key genes and regulatory networks related to DL based on the interactive genes of the PPI network. Finally, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, the insulin signaling pathway, and the calcium signaling pathway were identified, and a single-gene set enrichment analysis (GSEA) was performed to further annotate the functions of these potential key genes. The GSEA results showed that these genes are mainly related to ubiquitin-mediated proteolysis and oxidative reactions. Taken together, our results indicate that the potential key genes influencing DL are mainly related to insulin signaling mediated differences in glycolysis and ubiquitin-mediated changes in muscle structure and improve the understanding of gene expression and regulation related to DL and contribute to future molecular breeding for improving pork quality.
Collapse
Affiliation(s)
- Wen Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Binbin Wang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Xiong X, Ma J, He Q, Chen X, Wang Z, Li L, Xu J, Xie J, Rao Y. Characteristics and potential biomarkers of flavor compounds in four Chinese indigenous chicken breeds. Front Nutr 2023; 10:1279141. [PMID: 37899822 PMCID: PMC10600453 DOI: 10.3389/fnut.2023.1279141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Chinese indigenous chickens have a long history of natural and artificial selection and are popular for their excellent meat quality and unique flavor. This study investigated six meat quality-related traits in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens. Two-dimensional gas chromatography-time-of-flight mass spectrometry was used to detect unique flavors in 24 breast muscle samples from the same phenotyped chickens. Overall, 685, 618, 502, and 487 volatile organic compounds were identified in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components were separated into eight categories, including hydrocarbons and aldehydes. Multivariate analyses of the identified flavor components revealed some outstanding features of these breeds. For example, the hydrocarbons (22.09%) and aldehydes (14.76%) were higher in Ningdu yellow chickens and the highest content of N, N-dimethyl-methylamine was in Ningdu yellow, Baier yellow, and Shengze 901 chickens, indicating the maximum attribution to the overall flavor (ROAV = 439.57, 289.21, and 422.80). Furthermore, we found that 27 flavor compounds differed significantly among the four Chinese breeds, including 20 (e.g., 1-octen-3-ol), two (e.g., 2-methyl-naphthalene), four (e.g., 2,6-lutidine), and one (benzophenone) flavor components were showed significant enrichment in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components enriched in each breed were key biomarkers distinguishing breeds and most were significantly correlated with meat quality trait phenotypes. These results provide novel insights into indigenous Chinese chicken meat flavors.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jinge Ma
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Qin He
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhangfeng Wang
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Longyun Li
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jiguo Xu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| |
Collapse
|
9
|
Li H, Wang Q, Li W, Xia X. Cryoprotective Effect of NADES on Frozen-Thawed Mirror Carp Surimi in Terms of Oxidative Denaturation, Structural Properties, and Thermal Stability of Myofibrillar Proteins. Foods 2023; 12:3530. [PMID: 37835183 PMCID: PMC10572836 DOI: 10.3390/foods12193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Quality degradation due to the formation and growth of ice crystals caused by temperature fluctuations during storage, transportation, or retailing is a common problem in frozen surimi. While commercial antifreeze is used as an ingredient in frozen surimi, its high sweetness does not meet the contemporary consumer demand for low sugar and low calories. Therefore, the development of new green antifreeze agents to achieve an enhanced frozen-thawed stability of surimi has received more attention. The aim of this study was to develop a cryoprotectant (a mixture of citric acid and trehalose) to enhance the frozen-thawed stability of surimi by inhibiting the oxidative denaturation and structural changes of frozen-thawed mirror carp (Cyprinus carpio L.) surimi myofibrillar protein (MP). The results showed that the amounts of free amine, sulfhydryl, α-helix, intrinsic fluorescence intensity, and thermal stability in the control significantly decreased after five F-T cycles, while the Schiff base fluorescence intensity, amounts of disulfide bonds and surface hydrophobicity significantly increased (p < 0.05). Compared to sucrose + sorbitol (SS), the natural deep eutectic solvents (NADES) effectively inhibited protein oxidation. After five F-T cycles, the α-helix content and Ca2+-ATPase activity of the NADES samples were 4.32% and 80.0%, respectively, higher, and the carbonyl content was 17.4% lower than those of the control. These observations indicate that NADES could inhibit oxidative denaturation and enhance the structural stability of MP.
Collapse
Affiliation(s)
| | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (Q.W.); (W.L.)
| |
Collapse
|
10
|
Xiong X, Zhou M, Zhu X, Tan Y, Wang Z, Gong J, Xu J, Wen Y, Liu J, Tu X, Rao Y. RNA Sequencing of the Pituitary Gland and Association Analyses Reveal PRKG2 as a Candidate Gene for Growth and Carcass Traits in Chinese Ningdu Yellow Chickens. Front Vet Sci 2022; 9:892024. [PMID: 35782572 PMCID: PMC9244401 DOI: 10.3389/fvets.2022.892024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Growth and carcass traits are of great economic importance to the chicken industry. The candidate genes and mutations associated with growth and carcass traits can be utilized to improve chicken growth. Therefore, the identification of these genes and mutations is greatly importance. In this study, a total of 17 traits related to growth and carcass were measured in 399 Chinese Ningdu yellow chickens. RNA sequencing (RNA-seq) was performed to detect candidate genes using 12 pituitary gland samples (six per group), which exhibited extreme growth and carcass phenotypes: either a high live weight and carcass weight (H group) or a low live weight and carcass weight (L group). A differential expression analysis, utilizing RNA-seq, between the H and L groups identified 428 differentially expressed genes (DEGs), including 110 up-regulated genes and 318 down-regulated genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the identified genes showed a significant enrichment of 158 GO terms and two KEGG pathways, including response to stimulus and neuroactive ligand-receptor interaction, respectively. Furthermore, RNA-seq data, qRT–PCR, and quantitative trait transcript (QTT) analysis results suggest that the PRKG2 gene is an important candidate gene for growth and carcass traits of Chinese Ningdu yellow chickens. More specifically, association analyses of a single nucleotide polymorphism (SNP) in PRKG2 and growth and carcass traits showed that the SNP rs16400745 was significantly associated with 12 growth and carcass traits (P < 0.05), such as carcass weight (P = 9.68E-06), eviscerated weight (P = 3.04E-05), and semi-eviscerated weight (P = 2.14E-04). Collectively, these results provide novel insights into the genetic basis of growth in Chinese Ningdu yellow chickens and the SNP rs16400745 reported here could be incorporated into the selection programs involving this breed.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
- *Correspondence: Xinwei Xiong
| | - Min Zhou
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yafang Wen
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jianxiang Liu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Xutang Tu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
- Yousheng Rao
| |
Collapse
|