1
|
van Emous RA, Kemp C, van Meerveld J, Lesuisse J. Effects of different feeding strategies on behavior and performance in broiler breeder pullets. Poult Sci 2024; 103:104336. [PMID: 39342688 PMCID: PMC11465149 DOI: 10.1016/j.psj.2024.104336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
This study examined the effects of different feeding strategies (diluted diets and feeding frequency) on the behavior and performance of broiler breeder pullets. A total of 3,200 1-day-old female pullets (Ross 308) were randomly distributed over 16 floor pens in 4 rooms and allocated to 1 of 4 treatments: (1) control diet once a day (CON), (2) 20% diluted diet once a day (20-ON), (3) 20% diluted diet twice a day (20-TW), and (4) 30% diluted diet twice a day (30-TW). All the pullets of the different treatments were fed to the same body weight (BW) profile. The 30-TW pullets had the highest and the CON pullets the lowest feed intake, with the 20-ON and 20-TW pullets showing intermediate values. Total water intake was the highest for the 30-TW pullets, followed by the 20-TW and 20-ON pullets, and was the lowest for the CON pullets (P < 0.001). The pullets fed twice a day had the highest total water-to-feed ratio, and the pullets fed once a day had the lowest ratio (P = 0.003). Feeding pullets twice a day yielded the highest average BW uniformity, while the pullets fed once a day had the lowest BW uniformity (P = 0.003). Total mortality was lower in the 20-TW and 30-TW pullets than in the 20-ON pullets, which was primarily caused by fewer dead and graded pullets. The pullets fed twice a day showed overall more eating, more drinking and less sitting, object pecking, and aggressive pecking. The behavior pattern during the daylight period was different for the pullets fed twice a day. Pullets on the diluted feeding strategies were less eager to approach the novel feeder and ate less feed (P = 0.002). In conclusion, feeding pullets with adjusted feeding strategies (feeding twice a day and up to 30% diluted diets) resulted in improved behavior and welfare expressed in decreased stereotypic pecking behavior, and lower eagerness to approach the novel feeder with lower feed intake, with improved BW uniformity and decreased mortality.
Collapse
Affiliation(s)
- R A van Emous
- Department of Animal Nutrition, Wageningen Livestock Research, NL-6708 WD Wageningen, The Netherlands.
| | - C Kemp
- Aviagen Ltd, Newbridge, Edinburgh, Scotland, EH28 8SZ
| | | | - J Lesuisse
- Aviagen Ltd, Newbridge, Edinburgh, Scotland, EH28 8SZ
| |
Collapse
|
2
|
Colditz IG, Campbell DLM, Ingham AB, Lee C. Review: Environmental enrichment builds functional capacity and improves resilience as an aspect of positive welfare in production animals. Animal 2024; 18:101173. [PMID: 38761442 DOI: 10.1016/j.animal.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
The success of the animal in coping with challenges, and in harnessing opportunities to thrive, is central to its welfare. Functional capacity describes the capacity of molecules, cells, organs, body systems, the whole animal, and its community to buffer against the impacts of environmental perturbations. This buffering capacity determines the ability of the animal to maintain or regain functions in the face of environmental perturbations, which is recognised as resilience. The accuracy of physiological regulation and the maintenance of homeostatic balance underwrite the dynamic stability of outcomes such as biorhythms, feed intake, growth, milk yield, and egg production justifying their assessment as indicators of resilience. This narrative review examines the influence of environmental enrichments, especially during developmental stages in young animals, in building functional capacity and in its subsequent expression as resilience. Experience of enriched environments can build skills and competencies across multiple functional domains including but not limited to behaviour, immunity, and metabolism thereby increasing functional capacity and facilitating resilience within the context of challenges such as husbandry practices, social change, and infection. A quantitative method for measuring the distributed property of functional capacity may improve its assessment. Methods for analysing embedded energy (emergy) in ecosystems may have utility for this goal. We suggest functional capacity provides the common thread that links environmental enrichments with an ability to express resilience and may provide a novel and useful framework for measuring and reporting resilience. We conclude that the development of functional capacity and its subsequent expression as resilience is an aspect of positive animal welfare. The emergence of resilience from system dynamics highlights a need to shift from the study of physical and mental states to the study of physical and mental dynamics to describe the positive dimension of animal welfare.
Collapse
Affiliation(s)
- I G Colditz
- Agriculture and Food, CSIRO, Armidale, NSW 2350, Australia.
| | - D L M Campbell
- Agriculture and Food, CSIRO, Armidale, NSW 2350, Australia
| | - A B Ingham
- Agriculture and Food, CSIRO, St. Lucia, QLD 4067, Australia
| | - C Lee
- Agriculture and Food, CSIRO, Armidale, NSW 2350, Australia
| |
Collapse
|
3
|
Maina AN, Schulze H, Kiarie EG. Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult Sci 2024; 103:103383. [PMID: 38176370 PMCID: PMC10806125 DOI: 10.1016/j.psj.2023.103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The study examined the effects of feeding broiler breeder pullets hydrolyzed whole yeast (HY) from hatch to 22 wk of age (WOA). A total of 524-day-old Ross 708 pullets were placed in floor pens (∼24 birds/pen) for the starter (0-4 WOA) and grower (5-18 WOA) phases, then transferred to the egg production facility and redistributed to ∼20 birds/pen for the prelay phase (19-22 WOA). Two diets were allocated to pens (0-18 WOA; n = 11) and (19-22 WOA; n-12). The diets were a control corn and soybean meal diet formulated to meet specifications and control plus 0.05% HY (HY). Birds had ad libitum access to feed in the first week and daily feed allocation based on pen BW from 2 WOA. Birds had free access to water throughout the trial. Body weight (BW) and uniformity (BW CV) were monitored. Boosters for infectious bronchitis and New Castle disease vaccines were administered at 18 WOA, and samples of pullets bled for antibody titer 5-day later. One pullet/pen was randomly selected, weighed, bled for plasma biochemistry, and necropsied for organ weights, ceca digesta for short-chain fatty acids (SCFA), and leg bones morphometry. In the starter and grower phases, birds fed HY were lighter and gained less (P < 0.05) than control birds. However, there were no diet effects (P > 0.05) on growth, the BW prelay phase, or BW uniformity throughout the trial. There were no (P > 0.05) diet effects on breast, gastrointestinal, liver and bursa weights, serum antibody titers, plasma biochemistry, SCFA and bone attributes. However, pullets fed HY had heavier (P = 0.047) spleen and tended to have lower (P = 0.080) plasma concentrations of aspartate aminotransferase (AST) relative to control pullets. In conclusion, the parameters assessed showed no negative consequences of feeding HY to broiler breeder pullets. However, effects on the spleen and plasma AST may indicate modest modulation of immunity and metabolism. The impact of the provision of HY during broiler breeder pullet phase on reproductive performance and chick quality should be investigated.
Collapse
Affiliation(s)
- Anderson N Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
Mörschbächer AP, Berghahn E, Shibuya FY, Cardoso ML, Ulguim GK, de Freitas Michelon N, Torgeski N, Vivian TP, Wissmann D, de Camargo FCDLS, de Andrade GM, Sturza DAF, Dos Santos HF, Dilkin P, Timmers LFSM, Granada CE. Feeding laying hens with lactobacilli improves internal egg quality and animal health. World J Microbiol Biotechnol 2023; 40:5. [PMID: 37925366 DOI: 10.1007/s11274-023-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Feeding animals with lactobacilli strains is a biotechnological strategy to improve production, food quality, and animal health. Thus, this study aimed to select new lactic acid bacteria (LAB) able to improve laying hens health and egg production. Forty Bovans White layers (two days old) were randomly divided into four experimental groups that receive an oral gavage with saline solution (control group) or with one of the three lactobacilli selected (KEG3, TBB10, and KMG127) by their antagonistic activity against the foodborne pathogen Bacillus cereus GGD_EGG01. 16 S rRNA sequencing identified KEG3 as Lentilactobacillus sp., and TBB10 and KMG127 as Lactiplantibacillus sp. The data showed that feeding birds with LAB increased weight uniformity and improved the internal quality of the eggs (high yolk index and Haugh unit) compared with the control group (p < 0.05). Beta-diversity analysis showed that LAB supplementation modifies the cecal microbiota of laying hens. The prokaryotic families Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and Lactobacillaceae were most important to the total dissimilarity of the cecal microbial community (calculated by SIMPER test). At end of in vivo experiments, it was possible to conclude that the feed of laying hens with Lentilactobacillus sp. TBB10 and Lentilactobacillus sp. KEG3 can be an important biotechnological tool for improving food quality and animal health.
Collapse
Affiliation(s)
- Ana Paula Mörschbächer
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Fabio Yuji Shibuya
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria - UFSM, Santa Maria, Brazil
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mateus Luis Cardoso
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gustavo Kutscher Ulguim
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Nathalia de Freitas Michelon
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natália Torgeski
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tamiris Prussiano Vivian
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daiani Wissmann
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Flávia Constância de Los Santos de Camargo
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gabriela Monteiro de Andrade
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Helton Fernandes Dos Santos
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Paulo Dilkin
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | |
Collapse
|
5
|
Avila LP, Sweeney KM, Evans CR, White DL, Kim WK, Regmi P, Williams SM, Nicholds J, Wilson JL. Body composition, gastrointestinal, and reproductive differences between broiler breeders fed using everyday or skip-a-day rearing programs. Poult Sci 2023; 102:102853. [PMID: 37423014 PMCID: PMC10344816 DOI: 10.1016/j.psj.2023.102853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023] Open
Abstract
Broiler breeder feed restriction practices have intensified as broiler feed efficiency has been improved. Skip-a-day (SAD) rearing regimen has controlled breeder growth, although this practice has become questionable for the modern breeder. We compared everyday (ED) and SAD programs and evaluated their impact on pullet growth performance, body composition, gastrointestinal tract development, and reproduction. At d 0, Ross 708 (Aviagen) pullet chicks (n = 1,778) were randomly assigned to 7 floor pens. Three pens were fed using the ED and 4 pens with SAD program through wk 21 using a chain-feeder system. ED and SAD grower diets were formulated to be isonutritious, with the only difference that ED diets had more crude fiber. Pullets (n = 44 per pen) were moved to 16 hen pens by treatment at wk 21 with 3 YP males (Aviagen) in each pen. All birds were fed common laying diets. In addition to BW data, sampled pullets and hens were scanned using dual energy X-ray absorptiometry (DEXA) to obtain body bone density and composition. Hen performance and hatchery metrics were recorded through wk 60. ED birds were heavier with similar nutrient intake from wk 10 to 45 (P ≤ 0.013). Pullet uniformity was unaffected by feeding method (P ≥ 0.443). SAD pullets had less body fat at wk 19 (P = 0.034) compared to ED pullets, likely as a metabolic consequence of intermittent feeding. SAD birds had lower bone density at wk 7, 15, and 19 (P ≤ 0.026). At 4 wk of age, SAD pullets had less intestinal villi goblet cells compared to ED pullets (P ≤ 0.050), possibly explained by the effect that feed removal has on cell migration rates. Overall egg-specific gravity (P = 0.057) and hatch of fertile % (P = 0.088) tended to be higher in eggs from ED hens. Altogether, ED feeding increased young pullet intestinal goblet cells and increased both bone density and body fat at wk 19. ED program improved pullet feed conversion (2.6% less feed) and increased eggshell quality and hatch of fertile.
Collapse
Affiliation(s)
- L P Avila
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - K M Sweeney
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - C R Evans
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - D L White
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - P Regmi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - S M Williams
- Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - J Nicholds
- Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - J L Wilson
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt CG, Herskin MS, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Tiemann I, de Jong I, Gebhardt‐Henrich SG, Keeling L, Riber AB, Ashe S, Candiani D, García Matas R, Hempen M, Mosbach‐Schulz O, Rojo Gimeno C, Van der Stede Y, Vitali M, Bailly‐Caumette E, Michel V. Welfare of broilers on farm. EFSA J 2023; 21:e07788. [PMID: 36824680 PMCID: PMC9941850 DOI: 10.2903/j.efsa.2023.7788] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
This Scientific Opinion considers the welfare of domestic fowl (Gallus gallus) related to the production of meat (broilers) and includes the keeping of day-old chicks, broiler breeders, and broiler chickens. Currently used husbandry systems in the EU are described. Overall, 19 highly relevant welfare consequences (WCs) were identified based on severity, duration and frequency of occurrence: 'bone lesions', 'cold stress', 'gastro-enteric disorders', 'group stress', 'handling stress', 'heat stress', 'isolation stress', 'inability to perform comfort behaviour', 'inability to perform exploratory or foraging behaviour', 'inability to avoid unwanted sexual behaviour', 'locomotory disorders', 'prolonged hunger', 'prolonged thirst', 'predation stress', 'restriction of movement', 'resting problems', 'sensory under- and overstimulation', 'soft tissue and integument damage' and 'umbilical disorders'. These WCs and their animal-based measures (ABMs) that can identify them are described in detail. A variety of hazards related to the different husbandry systems were identified as well as ABMs for assessing the different WCs. Measures to prevent or correct the hazards and/or mitigate each of the WCs are listed. Recommendations are provided on quantitative or qualitative criteria to answer specific questions on the welfare of broilers and related to genetic selection, temperature, feed and water restriction, use of cages, light, air quality and mutilations in breeders such as beak trimming, de-toeing and comb dubbing. In addition, minimal requirements (e.g. stocking density, group size, nests, provision of litter, perches and platforms, drinkers and feeders, of covered veranda and outdoor range) for an enclosure for keeping broiler chickens (fast-growing, slower-growing and broiler breeders) are recommended. Finally, 'total mortality', 'wounds', 'carcass condemnation' and 'footpad dermatitis' are proposed as indicators for monitoring at slaughter the welfare of broilers on-farm.
Collapse
|
7
|
Chen JT, He PG, Jiang JS, Yang YF, Wang SY, Pan CH, Zeng L, He YF, Chen ZH, Lin HJ, Pan JM. In vivo prediction of abdominal fat and breast muscle in broiler chicken using live body measurements based on machine learning. Poult Sci 2022; 102:102239. [PMID: 36335741 PMCID: PMC9646972 DOI: 10.1016/j.psj.2022.102239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to predict the carcass characteristics of broilers using support vector regression (SVR) and artificial neural network (ANN) model methods. Data were obtained from 176 yellow feather broilers aged 100-day-old (90 males and 86 females). The input variables were live body measurements, including external measurements and B-ultrasound measurements. The predictors of the model were the weight of abdominal fat and breast muscle in male and female broilers, respectively. After descriptive statistics and correlation analysis, the datasets were randomly divided into train set and test set according to the ratio of 7:3 to establish the model. The results of this study demonstrated that it is feasible to use machine learning methods to predict carcass characteristics of broilers based on live body measurements. Compared with the ANN method, the SVR method achieved better prediction results, for predicting breast muscle (male: R2 = 0.950; female: R2 = 0.955) and abdominal fat (male: R2 = 0.802; female: R2 = 0.944) in the test set. Consequently, the SVR method can be considered to predict breast muscle and abdominal fat of broiler chickens, except for abdominal fat in male broilers. However, further revaluation of the SVR method is suggested.
Collapse
Affiliation(s)
- Jin-Tian Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Peng-Guang He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Jin-Song Jiang
- Hangzhou LightTalk Biotechnology Co., Ltd., Hangzhou 310020, China
| | - Ye-Feng Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Shou-Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Cheng-Hao Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Li Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Ye-Fan He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Zhong-Hao Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Hong-Jian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Jin-Ming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China,Corresponding author:
| |
Collapse
|