1
|
Lee TY, Lee YS, Wu CP, Chan KW, Chen KL. Bacillus amyloliquefaciens CU33 Fermented Feather-Soybean Meal Product Improves the Crude Protein Digestibility, Diarrhea Status, and Growth Performance of Goat Kids. Animals (Basel) 2024; 14:2809. [PMID: 39409759 PMCID: PMC11475471 DOI: 10.3390/ani14192809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the effects of replacing fish meal with fermented feather meal-soybean meal product (FFSMP) from Bacillus amyloliquefaciens CU33 in the starter on growth performance, relative health performance, and digestibility of Alpine goat kids. In trial 1, thirty-two Alpine goat kids (male) were randomly assigned to dietary supplementation of 2% feather meal-soybean meal mix (FSM), 2% fish meal, or replacing fish meal with 50% or 100% FFSMP (FFSMP-50 or FFSMP-100) in starter (n = 8). In trial 2, sixteen goat kids were selected after trial 1 and used in this digestion trial which began from 12 weeks old. The treatments were the same as in trial 1 (n = 4). In trial 1, the growth performance of the FFSMP groups was better than the FSM group at 0 to 10 weeks (p < 0.05). The fecal consistency index of the FFSMP-100 group was better than the FSM group at 0 to 5 weeks and 5 to 10 weeks. In trial 2, the crude protein (CP) digestibility of the FSM group decreased (p < 0.05). In conclusion, dietary supplementation with 2% FFSMP in goat kids' diets can improve the growth performance, the CP digestibility, and diarrhea status, and it can completely replace the fish meal in starter diets.
Collapse
Affiliation(s)
- Tsung-Yu Lee
- Animal Nutrition Division, Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan 712009, Taiwan;
| | - Yueh-Sheng Lee
- Ph.D. Program of Agriculture Science, National Chiayi University, Chiayi 600355, Taiwan;
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi 600355, Taiwan;
| | - Kun-Wei Chan
- Department of Veterinary Medicine, National Chiayi University, Chiayi 600355, Taiwan;
| | - Kuo-Lung Chen
- Department of Animal Science, National Chiayi University, Chiayi 600355, Taiwan;
| |
Collapse
|
2
|
Lee YS, Ku KL, Chu CS, Chen KL. The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers. Animals (Basel) 2024; 14:2079. [PMID: 39061541 PMCID: PMC11273593 DOI: 10.3390/ani14142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the physiochemical characterizations of the fermented product (FP) produced by the high-yield surfactin strain Bacillus subtilis LYS1 (LYS1), as well as its effects on growth performance, carcass traits, intestinal morphology, tibial bone characteristics, and clinical blood biochemistry in broilers. Accordingly, the optimal supplementation of FP for improving growth performance, intestinal villi development, and tibial bone strength in broilers was elucidated using a broken-line quadratic (BLQ) ascending model. Three hundred and sixty 0-day-old Ross 308 broiler chicks, with equal numbers of both sexes, were randomly assigned to dietary supplementation of 2.5% fish meal or 0, 1, 1.5, 2, or 2.5% FP. Each treatment had six replicates, and the experimental period was 5 wk. The LYS1 count, surfactin content, and surfactin composition of the FP were 9.1 log CFU/g, 11.23 mg/g, and C12 to C18, respectively. The FP-supplemented groups improved feed intake, weight gain (WG), and production efficiency factor at 0 to 5 weeks old (p < 0.05) compared with the 0% group. The villus height/crypt depth (V/C) in the jejunum and ileum of the FP-supplemented groups was higher than in the 0% group (p < 0.05). The tibiotarsal index, Ca, and P in the tibia showed a linear effect with increased FP supplementation (p < 0.05). Moreover, the tibiotarsus weight/length index (TWLI) showed a quadratic effect with increased FP supplementation (p < 0.05). The optimal supplementation of FP for WG, V/C in the jejunum and ileum, and TWLI was 1.8, 1.9, and 1.6%, respectively. In conclusion, dietary supplementation with 1 to 2.5% LYS1 FP in broilers can improve their growth performance and the development of intestinal villi. Moreover, 1.9% is the optimal supplementation of LYS1 FP in the diet, based on the fitting results obtained with the BLQ model.
Collapse
Affiliation(s)
- Yueh-Sheng Lee
- Ph.D. Program of Agriculture Science, National Chiayi University, Chiayi 600355, Taiwan;
| | - Kuo-Lung Ku
- Department of Applied Chemistry, National Chiayi University, Chiayi 600355, Taiwan;
| | - Chi-Shih Chu
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 600355, Taiwan;
| | - Kuo-Lung Chen
- Department of Animal Science, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
3
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Ahmad R, Yu YH, Hua KF, Chen WJ, Zaborski D, Dybus A, Hsiao FSH, Cheng YH. Management and control of coccidiosis in poultry - A review. Anim Biosci 2024; 37:1-15. [PMID: 37641827 PMCID: PMC10766461 DOI: 10.5713/ab.23.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Daniel Zaborski
- Department of Ruminants Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin,
Poland
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-310 Szczecin,
Poland
| | - Felix Shih-Hsiang Hsiao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| |
Collapse
|
5
|
Dias KMM, Oliveira CH, Calderano AA, Rostagno HS, O’Connor KE, Davis R, Walsh M, Britton J, Altieri EA, Albino LFT. Effects of Hydroxytyrosol Supplementation on Performance, Fat and Blood Parameters of Broiler Chickens. Animals (Basel) 2023; 14:119. [PMID: 38200849 PMCID: PMC10778069 DOI: 10.3390/ani14010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The study aimed to evaluate the effects of dietary supplementation of hydroxytyrosol (HT) on performance, fat, and blood parameters of broilers. In total, 960 male chicks were distributed into four treatments groups with 12 replicates with 20 birds per pen, with varying HT levels (0, 5, 10, and 50 mg/kg of feed) added to the basal diet from 1 to 42 days old. Feed intake, body weight gain, and feed conversion ratio were evaluated. Enzymes related to liver injury were evaluated in blood. Fatty acid profile and malondialdehyde (MDA) concentration were determined in the breast meat. Dietary supplementation of HT did not improve broilers' performance (p > 0.05). Birds fed 50 mg HT/kg had lower AST, ALT, and GGT concentrations (p ≤ 0.05), whereas broilers fed 5, 10, and 50 mg HT/kg, had lower TBIL concentrations (p ≤ 0.05). Breast meat of broilers fed 50 mg HT/kg had lower lipid content, saturated fatty acid, unsaturated fatty acids, MDA concentrations (p ≤ 0.05), and polyunsaturated fatty acids (p < 0.0001). In summary, supplementation of 5, 10, and 50 mg HT/kg does not improve the performance of broilers, but the dose of 50 mg HT/kg helps the liver against inflammation and improves fat parameters.
Collapse
Affiliation(s)
- Kelly M. M. Dias
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (C.H.O.); (A.A.C.); (H.S.R.); (L.F.T.A.)
| | - Carlos H. Oliveira
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (C.H.O.); (A.A.C.); (H.S.R.); (L.F.T.A.)
| | - Arele A. Calderano
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (C.H.O.); (A.A.C.); (H.S.R.); (L.F.T.A.)
| | - Horacio S. Rostagno
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (C.H.O.); (A.A.C.); (H.S.R.); (L.F.T.A.)
| | - Kevin E. O’Connor
- Nova Mentis Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, D04 F438 Dublin, Ireland; (K.E.O.); (R.D.); (M.W.); (J.B.); (E.A.A.)
| | - Reeta Davis
- Nova Mentis Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, D04 F438 Dublin, Ireland; (K.E.O.); (R.D.); (M.W.); (J.B.); (E.A.A.)
| | - Meg Walsh
- Nova Mentis Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, D04 F438 Dublin, Ireland; (K.E.O.); (R.D.); (M.W.); (J.B.); (E.A.A.)
| | - James Britton
- Nova Mentis Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, D04 F438 Dublin, Ireland; (K.E.O.); (R.D.); (M.W.); (J.B.); (E.A.A.)
| | - Enrico A. Altieri
- Nova Mentis Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, D04 F438 Dublin, Ireland; (K.E.O.); (R.D.); (M.W.); (J.B.); (E.A.A.)
| | - Luiz F. T. Albino
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (C.H.O.); (A.A.C.); (H.S.R.); (L.F.T.A.)
| |
Collapse
|
6
|
Lee YS, Ku KL, Chen PY, Chen KL. The fermented product of high-yield surfactin strain Bacillus subtilis LYS1 improves the growth performance and intestinal villi morphology in broilers. Poult Sci 2023; 102:102839. [PMID: 37660450 PMCID: PMC10491725 DOI: 10.1016/j.psj.2023.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023] Open
Abstract
This study aimed to select Bacillus spp. for surfactin production by solid-state fermentation and to investigate the physiochemical characterizations of the fermented product (FP) and its effect on growth performance, carcass trait, intestinal morphology, and clinical blood biochemistry of broilers. Accordingly, the correlations between the functional components of FP and the growth performance of broilers are elucidated. Four hundred eighty 1-day-old Ross 308 broiler chicks were randomly assigned to dietary supplementation of 2.5% fish meal, 2.5% unfermented product, or 2.5% FP produced by Bacillus subtilis LYS1 (LYS1), Bacillus amyloliquefaciens Da16, B. subtilis Lo6 (Lo6), B. subtilis NSN7, B. subtilis subsp. natto N21, or B. subtilis N12. Each treatment had 6 replicates. The experimental period was 5 wk. Results showed that the Lo6 showed the highest protease activity among all fermented groups. The LYS1 showed the highest surfactin yields (10.69 mg/g) among all fermented groups (P < 0.05). The weight gain (WG), feed conversion ratio (FCR), and production efficiency factor (PEF) of LYS1 group were significantly better than unfermented group at 0 to 3 and 0 to 5-wk-old (P < 0.05). The Bacillus-like counts and surfactin content of FP were moderately correlated to WG (0.7 > r > 0.3), FCR (-0.3 > r > -0.7), and PEF (0.7 > r > 0.3) at 0 to 3 and 0 to 5-wk-old (P < 0.05). The protease activity of FP was moderately correlated to WG (0.7 > r > 0.3), FCR (-0.3 > r > -0.7), and PEF (0.7 > r > 0.3) at 0 to 3-wk-old (P < 0.05). The villus height to crypt depth ratio in duodenum and jejunum of fish meal group and LYS1 group were higher than unfermented group (P < 0.05). In conclusion, LYS1 shows the highest surfactin yields. Diets supplemented with 2.5% LYS1 FP can improve the growth performance and the development of intestinal villi in broilers. Moreover, this study proves that the surfactin content, Bacillus-like counts, and protease activity of FP show a correlation to the growth performance of broilers.
Collapse
Affiliation(s)
- Yueh-Sheng Lee
- Ph.D. Program of Agriculture Science, National Chiayi University, Chiayi city, Taiwan
| | - Kuo-Lung Ku
- Department of Applied Chemistry, National Chiayi University, Chiayi city, Taiwan
| | - Po-Yuan Chen
- Research Institute, Taiwan Sugar Corporation, Tainan City, Taiwan
| | - Kuo-Lung Chen
- Department of Animal Science, National Chiayi University, Chiayi city, Taiwan.
| |
Collapse
|
7
|
Huang X, Li H, Han T, Wang J, Ma Z, Yu X. Isolation and identification of protease-producing Bacillus amyloliquefaciens LX-6 and its application in the solid fermentation of soybean meal. Front Bioeng Biotechnol 2023; 11:1226988. [PMID: 37520297 PMCID: PMC10372485 DOI: 10.3389/fbioe.2023.1226988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Soybean meal (SM) is considered an ideal substitute for fish meal; however, its application is mainly limited because of its antigen proteins, glycinin and β-conglycinin. To improve the value of SM in the aquaculture industry, we employed an aerobic bacterial strain (LX-6) with protease activity of 1,390.6 ± 12.5 U/mL. This strain was isolated from soil samples and identified as Bacillus amyloliquefaciens based on morphological and physiological biochemical characteristics and 16S rDNA gene sequence analyses. Subsequently, we quantified the extent of glycinin and β-conglycinin degradation and the total protein and water-soluble protein content after SM fermentation with B. amyloliquefaciens LX-6. At 24 h of fermentation, the macromolecular antigen proteins of SM were almost completely degraded; the maximum degradation rates of glycinin and β-conglycinin reached 77.9% and 57.1%, respectively. Accordingly, not only did the concentration of water-soluble proteins increase from 5.74% to 44.45% after 48 h of fermentation but so did the concentrations of total protein and amino acids compared to those of unfermented SM. Field emission scanning electron microscopy revealed that the LX-6 strain gradually disrupted the surface structure of SM during the fermentation process. In addition, B. amyloliquefaciens LX-6 exhibited broad-spectrum antagonistic activity and a wide pH tolerance, suggesting its application in SM fermentation for fish meal replacement.
Collapse
Affiliation(s)
- Xinyi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Huijie Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Hu H, Wu C, Ge F, Ren Y, Li W, Li J. Poly-γ-glutamic acid-producing Bacillus velezensis fermentation can improve the feed properties of soybean meal. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
9
|
Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study aimed to investigate the effects of a two-stage fermented feather meal-soybean meal product (TSFP) on the performance, clinical blood biochemistry, and immunity of sows and piglets. TSFP was fermented by Saccharomyces cerevisiae Y10 for three days in the second stage, which showed similar results to the five-day fermentation of B. coagulans (p > 0.05). Fifty hybrid sows (Duroc × KHAPS black pig) were randomly assigned into dietary supplementation groups of 2% fish meal or different levels of TSFP at 0%, 1%, 2%, or 3%. The results showed that body weight gain and feed conversion ratio of 2% and 3% TSFP groups were better than the control group and fish meal group during the gestation period (d 80–114) (p < 0.05). During the lactation period, the 3% TSFP group showed the best weaning litter weight (p < 0.05). In sows, interferon-γ and immunoglobulin G (IgG) of 2% and 3% TSFP groups were higher than the control group and fish meal group (p < 0.05). In piglets, in groups of 2% and 3% TSFP blood urea decreased (p < 0.05). The IgG of fermented groups was superior to the control group (p < 0.05). The oxidative burst of phagocytes in the 3% TSFP was higher than those of the control and fish meal groups (p < 0.05). In conclusion, TSFP supplementation exhibits the advantages of performance and immunity of lactating sows and piglets. Furthermore, adding 3% TSFP in the feed showed the best performance.
Collapse
|
10
|
Tufarelli V, Passantino L, Zupa R, Crupi P, Laudadio V. Suitability of dried olive pulp in slow-growing broilers: performance, meat quality, oxidation products, and intestinal mucosa features. Poult Sci 2022; 101:102230. [PMID: 36334431 PMCID: PMC9630774 DOI: 10.1016/j.psj.2022.102230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022] Open
Abstract
To assess the effect of dietary dried olive pulp (DOP) on growth performance, meat traits and oxidation, and intestinal mucosa features, a total of 180 male slow-growing broiler chickens (Hubbard) were divided into 3 groups and fed 3 isonitrogenous and isoenergetic diets from 14 d of age until slaughter (49 d). The treatments varied according to 3 DOP levels: a control diet without DOP (DOP0, 0%) and 2 test diets containing 5 and 10% of DOP (DOP5 and DOP10, respectively). Duodenal morphometric indices were measured at the end of the feeding period and included: villus height, crypt depth, villus-to-crypt ratio, and villus surface area. Dietary DOP had no adverse effect on growth performance, dressing percentage, or breast yield of broilers. The breast muscle pH at 24 h was significantly higher in birds fed DOP10 diet compared to those on DOP0 and DOP5 diets. Meat color was also affected by dietary treatments. Feeding DOP did not influence breast meat fatty acid composition, whereas meat from DOP-fed broilers resulted less susceptible to lipid and protein oxidation compared to control diet. Including DOP up to 10% in diet resulted in higher duodenal villus height, crypt depth, and villus height to crypt depth ratio as well as villus surface area. Based on our findings, dietary DOP supported productive traits of slow-growing broilers preserving meat from oxidation and improving intestinal morphometric features. As a result, the current study assessed that olive by-product can be used in broiler ration, resulting in a valuable ingredient as replacement for conventional feeds, which could reduce feeding costs due to the low cost of the olive by-product. Thus, using olive by-products as poultry feed may become economically feasible for producers where the olive oil industries play an important economic role.
Collapse
Affiliation(s)
- V Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", 70010, Bari, Italy.
| | - L Passantino
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", 70010, Bari, Italy
| | - R Zupa
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", 70010, Bari, Italy
| | - P Crupi
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari 70124, Italy
| | - V Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", 70010, Bari, Italy
| |
Collapse
|