1
|
Guo S, Cong B, Zhu L, Zhang Y, Yang Y, Qi X, Wang X, Xiao L, Long C, Xu Y, Sheng X. Whole transcriptome sequencing of testis and epididymis reveals genes associated with sperm development in roosters. BMC Genomics 2024; 25:1029. [PMID: 39497056 PMCID: PMC11533344 DOI: 10.1186/s12864-024-10836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development. RESULTS In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from "Jing Hong No.1" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility. CONCLUSIONS Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.
Collapse
Affiliation(s)
- Shihao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Bailin Cong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Liyang Zhu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Yang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yaxi Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Li C, Lv C, Larbi A, Liang J, Yang Q, Wu G, Quan G. Revisiting the Injury Mechanism of Goat Sperm Caused by the Cryopreservation Process from a Perspective of Sperm Metabolite Profiles. Int J Mol Sci 2024; 25:9112. [PMID: 39201798 PMCID: PMC11354876 DOI: 10.3390/ijms25169112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat sperm by analyzing changes of the metabolic characteristics in sperm during the cryopreservation process. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) technique was performed to explore metabolite profiles of fresh sperm (C group), equilibrated sperm (E group), and frozen-thawed sperm (F group). In total, 2570 metabolites in positive mode and 2306 metabolites in negative mode were identified, respectively. After comparative analyses among these three groups, 374 differentially abundant metabolites (DAMs) in C vs. E, 291 DAMs in C vs. F, and 189 DAMs in E vs. F were obtained in the positive mode; concurrently, 530 DAMs in C vs. E, 405 DAMs in C vs. F, and 193 DAMs in E vs. F were obtained in the negative mode, respectively. The DAMs were significantly enriched in various metabolic pathways, including 31 pathways in C vs. E, 25 pathways in C vs. F, and 28 pathways in E vs. F, respectively. Among them, 65 DAMs and 25 significantly enriched pathways across the three comparisons were discovered, which may be tightly associated with sperm characteristics and function. Particularly, the functional terms such as TCA cycle, biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycine, serine and threonine metabolism, alpha-linolenic acid metabolism, and pyruvate metabolism, as well as associated pivotal metabolites like ceramide, betaine, choline, fumaric acid, L-malic acid and L-lactic acid, were focused on. In conclusion, our research characterizes the composition of metabolites in goat sperm and their alterations induced by the cryopreservation process, offering a critical foundation for further exploring the molecular mechanisms of metabolism influencing the quality and freezing tolerance of goat sperm. Additionally, the impacts of equilibration at low temperature on sperm quality may need more attentions as compared to the freezing and thawing process.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Allai Larbi
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, El Jadida 24000, Morocco;
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Qige Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming 650500, China;
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
3
|
Piégu B, Lefort G, Douet C, Milhes M, Jacques A, Lareyre JJ, Monget P, Fouchécourt S. A first complete catalog of highly expressed genes in eight chicken tissues reveals uncharacterized gene families specific for the chicken testis. Physiol Genomics 2024; 56:445-456. [PMID: 38497118 DOI: 10.1152/physiolgenomics.00151.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Based on next-generation sequencing, we established a repertoire of differentially overexpressed genes (DoEGs) in eight adult chicken tissues: the testis, brain, lung, liver, kidney, muscle, heart, and intestine. With 4,499 DoEGs, the testis had the highest number and proportion of DoEGs compared with the seven somatic tissues. The testis DoEG set included the highest proportion of long noncoding RNAs (lncRNAs; 1,851, representing 32% of the lncRNA genes in the whole genome) and the highest proportion of protein-coding genes (2,648, representing 14.7% of the protein-coding genes in the whole genome). The main significantly enriched Gene Ontology terms related to the protein-coding genes were "reproductive process," "tubulin binding," and "microtubule cytoskeleton." Using real-time quantitative reverse transcription-polymerase chain reaction, we confirmed the overexpression of genes that encode proteins already described in chicken sperm [such as calcium binding tyrosine phosphorylation regulated (CABYR), spermatogenesis associated 18 (SPATA18), and CDK5 regulatory subunit associated protein (CDK5RAP2)] but whose testis origin had not been previously confirmed. Moreover, we demonstrated the overexpression of vertebrate orthologs of testis genes not yet described in the adult chicken testis [such as NIMA related kinase 2 (NEK2), adenylate kinase 7 (AK7), and CCNE2]. Using clustering according to primary sequence homology, we found that 1,737 of the 2,648 (67%) testis protein-coding genes were unique genes. This proportion was significantly higher than the somatic tissues except muscle. We clustered the other 911 testis protein-coding genes into 495 families, from which 47 had all paralogs overexpressed in the testis. Among these 47 testis-specific families, eight contained uncharacterized duplicated paralogs without orthologs in other metazoans except birds: these families are thus specific for chickens/birds.NEW & NOTEWORTHY Comparative next-generation sequencing analysis of eight chicken tissues showed that the testis has highest proportion of long noncoding RNA and protein-coding genes of the whole genome. We identified new genes in the chicken testis, including orthologs of known mammalian testicular genes. We also identified 47 gene families in which all the members were overexpressed, if not exclusive, in the testis. Eight families, organized in duplication clusters, were unknown, without orthologs in metazoans except birds, and are thus specific for chickens/birds.
Collapse
Affiliation(s)
- Benoît Piégu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Gaëlle Lefort
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Cécile Douet
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Marine Milhes
- US 1426, GeT-PlaGe, Genotoul, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castanet-Tolosan, France
| | - Aurore Jacques
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Jean-Jacques Lareyre
- UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Philippe Monget
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Sophie Fouchécourt
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
4
|
Zhang G, Liu P, Liang R, Ying F, Liu D, Su M, Chen L, Zhang Q, Liu Y, Liu S, Zhao G, Li Q. Transcriptome analysis reveals the genes involved in spermatogenesis in white feather broilers. Poult Sci 2024; 103:103468. [PMID: 38359768 PMCID: PMC10875292 DOI: 10.1016/j.psj.2024.103468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Semen volume is an important economic trait of broilers and one of the important indices for continuous breeding. The objective of this study was to identify genes related to semen volume through transcriptome analysis of the testis tissue of white feather broilers. The testis samples with the highest semen volume (H group, n = 5) and lowest semen volume (L group, n = 5) were selected from 400-day-old roosters for transcriptome analysis by RNA sequencing. During the screening of differentially expressed genes (DEGs) between the H and L groups, a total of 386 DEGs were identified, among which 348 were upregulated and 38 were downregulated. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the immune response, leukocyte differentiation, cell adhesion molecules and collagen binding played vital roles in spermatogenesis. The results showed that 4 genes related to spermatogenesis, namely, COL1A1, CD74, ARPC1B and APOA1, were significantly expressed in Group H, which was consistent with the phenotype results. Our findings may provide a basis for further research on the genetic mechanism of semen volume in white feather broilers.
Collapse
Affiliation(s)
- Gaomeng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Peihao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruiping Liang
- Beijing Changping District Center for Animal Disease Prevention and Control, Beijing, P. R. China
| | - Fan Ying
- MiLe Xinguang Agricultural and Animal Industrials Corporation, Mile, P. R. China
| | - Dawei Liu
- MiLe Xinguang Agricultural and Animal Industrials Corporation, Mile, P. R. China
| | - Meng Su
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Qi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yuhong Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Sha Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| |
Collapse
|
5
|
Guo S, Liu Y, Xu Y, Gai K, Cong B, Xing K, Qi X, Wang X, Xiao L, Long C, Guo Y, Chen L, Sheng X. Identification of key genes affecting sperm motility in chicken based on whole-transcriptome sequencing. Poult Sci 2023; 102:103135. [PMID: 37856906 PMCID: PMC10590750 DOI: 10.1016/j.psj.2023.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Sperm motility is an important index for the evaluation of semen quality. Improving sperm motility is important to improve reproductive performance, promote breeding process, and reduce production cost. However, the molecular mechanisms regulating sperm motility in chickens remain unclear. In this study, histological observation and whole-transcriptome analysis were performed on testicular tissue of chickens with high and low sperm motility. Histological observations showed that roosters with high sperm motility exhibited better semen quality than those with low sperm motility. In addition, the germinal epithelial cells of roosters with low sperm motility were loosely arranged and contained many vacuoles. RNA-seq results revealed the expression of 23,033 mRNAs, 2,893 lncRNAs, and 515 miRNAs in chicken testes. Among them, there were 417 differentially expressed mRNAs (DEmRNAs), 106 differentially expressed lncRNAs (DElncRNAs), and 15 differentially expressed miRNAs (DEmiRNAs) between high and low sperm motility testes. These differentially expressed genes were involved in the G protein-coupled receptor signaling pathway, cilia structure, Wnt signaling, MAPK signaling, GnRH signaling, and mTOR signaling. By integrating the competitive relationships between DEmRNAs, DElncRNAs, and DEmiRNAs, we identified the regulatory pathway of MSTRG.3077.3/MSTRG.9085.1-gga-miR-138-5p-CADM1 and MSTRG.2290.1-gga-miR-142-3p-GNAQ/PPP3CA as crucial in the modulation of chicken sperm motility. This study provides new insights into the function and mechanism of ceRNAs in regulating sperm motility in chicken testes.
Collapse
Affiliation(s)
- Shihao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yizheng Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yaxi Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Gai
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Bailin Cong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Li Chen
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
6
|
Hu X, Zhu L, Ouyang Q, Wang J, Hu J, Hu B, Hu S, He H, Li L, Liu H, Wang J. Comparative transcriptome analysis identified crucial genes and pathways affecting sperm motility in the reproductive tract of drakes with different libido. Poult Sci 2023; 102:102560. [PMID: 36881978 PMCID: PMC9993030 DOI: 10.1016/j.psj.2023.102560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Libido can affect the semen quality of male, and the sperm motility in semen quality parameters is a reliable index to evaluate the fertility of male. In drakes, the sperm motility is gradually acquired in testis, epididymis, and spermaduct. However, the relationship between libido and sperm motility in drakes has not been reported and the mechanisms of testis, epididymis, and spermaduct regulating the sperm motility of drakes are unclear. Therefore, the purpose of the present study was to compare the semen quality of drakes with libido level 4 (LL4) and libido level 5 (LL5), and tried to identify the mechanisms regulating the sperm motility in drakes by performing RNA-seq in testis, epididymis, and spermaduct. Phenotypically, the sperm motility of drakes (P < 0.01), weight of testis (P < 0.05), and organ index of epididymis (P < 0.05) in the LL5 group were significantly better than those in LL4 group. Moreover, compared with the LL4 group, the ductal square of seminiferous tubule (ST) in testis was significantly bigger in the LL5 group (P < 0.05), and the seminiferous epithelial thickness (P < 0.01) of ST in testis and lumenal diameter (P < 0.05) of ductuli conjugentes/dutus epididymidis in epididymis were significantly longer in the LL5 group. In transcriptional regulation, in addition to KEGG pathways related to metabolism and oxidative phosphorylation, lots of KEGG pathways associated with immunity, proliferation, and signaling were also significantly enriched in testis, epididymis, and spermaduct, respectively. Furthermore, through the integrated analysis of coexpression network and protein-protein interaction network, 3 genes (including COL11A1, COL14A1, and C3AR1) involved in protein digestion and absorption pathway and Staphylococcus aureus infection pathway were identified in testis, 2 genes (including BUB1B and ESPL1) involved in cell cycle pathway were identified in epididymis, and 13 genes (including DNAH1, DNAH3, DNAH7, DNAH10, DNAH12, DNAI1, DNAI2, DNALI1, NTF3, ITGA1, TLR2, RELN, and PAK1) involved in Huntington disease pathway and PI3K-Akt signaling pathway were identified in spermaduct. These genes could play crucial roles in the sperm motility of drakes with different libido, and all data the present study obtained will provide new insights into the molecular mechanisms regulating sperm motility of drakes.
Collapse
Affiliation(s)
- Xinyue Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Lipeng Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Junqi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China.
| |
Collapse
|