1
|
Huang J, Xu T, Guo F, Bi R, Lu H, Li P, Abbas W, Hu Z, Liu L, Sengers MJ, Xie X, Cheng T, Guo Y, Wang Z. Effects of drinking water supplemented with essential oils and organic acids mixtures on growth performance and intestinal health of broilers challenged with necrotic enteritis. Poult Sci 2024; 104:104712. [PMID: 39721270 PMCID: PMC11732541 DOI: 10.1016/j.psj.2024.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
It is urgent to develop effective antibiotic alternatives for the control of subclinical necrotic enteritis (NE) in chickens after in-feed antibiotics have been banned. The current study investigated the efficacy of drinking water supplemented with essential oils and organic acids mixtures (EOA) on growth performance and intestinal health of broilers challenged with necrotic enteritis (NE). A total of 360 one-day-old Arbor Acres male broilers were randomly divided into 5 treatment groups, including non-challenged control group (T0), challenged NE group (T1), and challenged NE chickens treated with 0.2 % EOA1 (T2) or 0.2 % EOA2 (T3) in drinking water, along with NE-challenged chickens treated with 45 mg/kg bacitracin methylene disalicylate (BMD) in the diet (T4). Results showed that drinking water supplemented with either EOA1 or EOA2 significantly decreased Clostridium perfringens load in ileal content (P < 0.05). EOA2 markedly reduced jejunal crypt depth, serum lipopolysaccharide (LPS) content, ileal IL-1β mRNA level and myeloperoxidase (MPO) activity, significantly increased Mucin-2 mRNA abundance in ileum of NE infected broilers (P < 0.05) when compared with single NE-infected group. The 16S sequencing analysis revealed that, compared with single NE-challenge group and the antibiotic BMD group, the addition of EOA1 in drinking water significantly increased the Shannon index and Simpson index of ileal microbiota in NE-infected broilers (P < 0.05), while drinking water supplemented with either EOA1 or EOA2 significantly decreased Streptococcus relative abundance of NE-infected broilers (P < 0.05). In summary, drinking water with EOA2 might alleviate the intestinal injury induced by NE challenge, and the gut health-improving effects of EOA2 were better than that of EOA1.
Collapse
Affiliation(s)
- Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haisheng Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengfei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - M J Sengers
- Delvigent Biotechnology Co., Ltd., Hebei, China
| | - Xiang Xie
- Delvigent Biotechnology Co., Ltd., Hebei, China
| | | | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Khairullah AR, Yanestria SM, Effendi MH, Moses IB, Jati Kusala MK, Fauzia KA, Ayuti SR, Fauziah I, Martua Silaen OS, Priscilia Riwu KH, Aryaloka S, Eka Puji Dameanti FNA, Raissa R, Hasib A, Furqoni AH. Campylobacteriosis: A rising threat in foodborne illnesses. Open Vet J 2024; 14:1733-1750. [PMID: 39308719 PMCID: PMC11415892 DOI: 10.5455/ovj.2024.v14.i8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 09/25/2024] Open
Abstract
Campylobacteriosis is a foodborne illness that is contracted by eating contaminated food, particularly animal products like meat from diseased animals or corpses tainted with harmful germs. The epidemiology of campylobacteriosis varies significantly between low-, middle-, and high-income countries. Campylobacter has a complicated and poorly known survival strategy for getting past host barriers and causing sickness in humans. The adaptability of Campylobacter to unfavorable environments and the host's immune system seems to be one of the most crucial elements of intestinal colonization. A Campylobacter infection may result in fever, nausea, vomiting, and mild to severe bloody diarrhea in humans. Effective and rapid diagnosis of Campylobacter species infections in animal hosts is essential for both individual treatment and disease management at the farm level. According to the most recent meta-analysis research, the main risk factor for campylobacteriosis is travel, which is followed by eating undercooked chicken, being exposed to the environment, and coming into close contact with livestock. Campylobacter jejuni, and occasionally Campylobacter coli, are the primary causes of Campylobacter gastroenteritis, the most significant Campylobacter infection in humans for public health. The best antibiotic medications for eradicating and decreasing Campylobacter in feces are erythromycin, clarithromycin, or azithromycin. The best strategy to reduce the number of human infections caused by Campylobacter is to restrict the amount of contamination of the poultry flock and its products, even if the majority of infections are contracted through handling or ingestion of chicken.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Siti Rani Ayuti
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Surabaya, Indonesia
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Abdullah Hasib
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdul Hadi Furqoni
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
3
|
Peh E, Szott V, Reichelt B, Friese A, Ploetz M, Roesler U, Kittler S. Combined application of bacteriophages with a competitive exclusion culture and carvacrol with organic acids can reduce Campylobacter in primary broiler production. Sci Rep 2024; 14:9218. [PMID: 38649444 PMCID: PMC11035546 DOI: 10.1038/s41598-024-59563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
For reducing Campylobacter (C.) in the food production chain and thus the risk to the consumer, the combined application of different measures as a multiple-hurdle approach is currently under discussion. This is the first study to investigate possible synergistic activities in vivo, aiming at reducing intestinal C. jejuni counts by administering (i) bacteriophages (phages) in combination with a competitive exclusion (CE) product and (ii) carvacrol combined with organic acids. The combined application of the two selected phages (Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1) and the CE product significantly reduced C. jejuni loads by 1.0 log10 in cecal and colonic contents as well as in cloacal swabs at the end of the trial (33 and 34 days post hatch). The proportion of bacterial isolates showing reduced phage susceptibility ranged from 10.9% (isolates from cecal content) to 47.8% (isolates from cloacal swabs 32 days post hatch) for the Fletchervirus phage, while all tested isolates remained susceptible to the Firehammervirus phage. The use of carvacrol combined with an organic acid blend (sorbic acid, benzoic acid, propionic acid, and acetic acid) significantly reduced Campylobacter counts by 1.0 log10 in cloacal swabs on day 30 only.
Collapse
Affiliation(s)
- E Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - V Szott
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - B Reichelt
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - A Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - M Ploetz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - U Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - S Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
4
|
Bogun K, Peh E, Meyer-Kühling B, Hartmann J, Hirnet J, Plötz M, Kittler S. Investigating bacteriophages as a novel multiple-hurdle measure against Campylobacter: field trials in commercial broiler plants. Sci Rep 2024; 14:3182. [PMID: 38326411 PMCID: PMC10850366 DOI: 10.1038/s41598-024-53365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Campylobacter mitigation along the food production chain is considered effective for minimizing the public health burden of human campylobacteriosis. This study is the first combining different measures in a multiple-hurdle approach, using drinking water additives and feed additives in single and combined application schemes in commercial broiler plants. Broiler chickens in the study groups were naturally contaminated with Campylobacter. Application of an organic acid blend via drinking water, consisting of sodium propionate, potassium sorbate, and sodium diacetate, resulted in significant reductions of up to 4.9 log10 CFU/mL in fecal samples and in cecal samples at slaughter. The application of a phage mixture, consisting of Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1, resulted in reductions of up to 1.1 log10 CFU/mL in fecal samples 1 day after dosing. The sole administration of curcumin via feed resulted in small and inconsistent reductions. In the group receiving a combination of all tested measures, reductions of up to 1.1 log10 CFU/mL were observed. Based on the results of our field trials, it was shown that both the sole application and the combined application of mitigation measures in primary production can reduce the Campylobacter load in broiler chickens, while no synergism could be observed.
Collapse
Affiliation(s)
- Katrin Bogun
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Juliane Hirnet
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
5
|
Mantzios T, Tsiouris V, Papadopoulos GA, Economou V, Petridou E, Brellou GD, Giannenas I, Biliaderis CG, Kiskinis K, Fortomaris P. Investigation of the Effect of Three Commercial Water Acidifiers on the Performance, Gut Health, and Campylobacter jejuni Colonization in Experimentally Challenged Broiler Chicks. Animals (Basel) 2023; 13:2037. [PMID: 37370547 DOI: 10.3390/ani13122037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the effect of three commercial water acidifiers on the performance, gut health, and C. jejuni colonization in experimentally challenged broiler chicks. A total of 192 one-day-old broiler chicks (Ross 308®) were randomly allocated into 6 treatment groups with 4 replicates according to the following experimental design: group A, birds were not challenged and received tap water; group B, birds were challenged and received tap water; groups C, D, E, and F, birds were challenged and received tap water treated with 0.1% v/v SPECTRON®, with 0.1-0.2% v/v ProPhorce™ SA Exclusive, with 0.1-0.2% v/v Premium acid, and with 0.1-0.2% v/v Salgard® Liquid, respectively. The continuous water acidification evoked undesirable effects on broilers' performance and to an increased number of birds with ulcers and erosions in the oral cavity and the upper esophageal area. ProPhorce™ SA Exclusive and Premium acid significantly reduced the C. jejuni counts in the crop, whereas Salgard® Liquid significantly reduced the C. jejuni counts in the ceca of birds. At slaughter age, only Premium acid significantly reduced C. jejuni counts in the ceca of birds. All the tested products ameliorated the changes induced by C. jejuni infection in the pH in the ceca of birds. It can be concluded that besides the effectiveness of the tested products in controlling C. jejuni in broilers, their continuous application evoked undesirable effects on broilers' performance, leading to the need to modify the dosage scheme in future investigations.
Collapse
Affiliation(s)
- Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Georgios A Papadopoulos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Costas G Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Paschalis Fortomaris
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
6
|
Du K, Foote MS, Mousavi S, Buczkowski A, Schmidt S, Peh E, Kittler S, Bereswill S, Heimesaat MM. Combination of organic acids benzoate, butyrate, caprylate, and sorbate provides a novel antibiotics-independent treatment option in the combat of acute campylobacteriosis. Front Microbiol 2023; 14:1128500. [PMID: 37007531 PMCID: PMC10050375 DOI: 10.3389/fmicb.2023.1128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionThe food-borne Gram-negative bacterial pathogen Campylobacter jejuni may cause the acute enterocolitis syndrome campylobacteriosis in infected humans. Given that human C. jejuni infections are rising globally which hold also true for resistance rates against antibiotic compounds such as macrolides and fluoroquinolones frequently prescribed for the treatment of severe infectious enteritis, novel antibiotics-independent therapeutic strategies are needed. Distinct organic acids are well known for their health-beneficial including anti-microbial and immunomodulatory properties. In our present study, we investigated potential pathogen-lowering and anti-inflammatory effects of benzoic acid, butyric acid, caprylic acid, and sorbic acid either alone or in combination during acute murine campylobacteriosis.MethodsTherefore, secondary abiotic IL-10–/– mice were perorally infected with C. jejuni strain 81–176 and subjected to a 4-day-course of respective organic acid treatment.Results and discussionOn day 6 post-infection, mice from the combination cohort displayed slightly lower pathogen loads in the duodenum, but neither in the stomach, ileum nor large intestine. Remarkably, the clinical outcome of C. jejuni induced acute enterocolitis was significantly improved after combined organic acid treatment when compared to the placebo control group. In support, the combinatory organic acid treatment dampened both, macroscopic and microscopic inflammatory sequelae of C. jejuni infection as indicated by less colonic shrinkage and less pronounced histopathological including apoptotic epithelial cell changes in the colon on day 6 post-infection. Furthermore, mice from the combination as compared to placebo cohort exhibited lower numbers of innate and adaptive immune cells such as neutrophilic granulocytes, macrophages, monocytes, and T lymphocytes in their colonic mucosa and lamina propria, respectively, which also held true for pro-inflammatory cytokine secretion in the large intestines and mesenteric lymph nodes. Notably, the anti-inflammatory effects were not restricted to the intestinal tract, but could also be observed systemically given pro-inflammatory mediator concentrations in C. jejuni infected mice from the combination organic acid treatment that were comparable to basal values. In conclusion, our in vivo study provides first evidence that an oral application of distinct organic acids in combination exhibits pronounced anti-inflammatory effects and hence, constitutes a promising novel antibiotics-independent therapeutic strategy in the combat of acute campylobacteriosis.
Collapse
Affiliation(s)
- Ke Du
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Minnja S. Foote
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Agnes Buczkowski
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Hofmann & Sommer GmbH & Co. KG, Büro Berlin, Berlin, Germany
| | - Sebastian Schmidt
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Hofmann & Sommer GmbH & Co. KG, Büro Berlin, Berlin, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- *Correspondence: Markus M. Heimesaat,
| |
Collapse
|
7
|
Molecular Targets in Campylobacter Infections. Biomolecules 2023; 13:biom13030409. [PMID: 36979344 PMCID: PMC10046527 DOI: 10.3390/biom13030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Human campylobacteriosis results from foodborne infections with Campylobacter bacteria such as Campylobacter jejuni and Campylobacter coli, and represents a leading cause of bacterial gastroenteritis worldwide. After consumption of contaminated poultry meat, constituting the major source of pathogenic transfer to humans, infected patients develop abdominal pain and diarrhea. Post-infectious disorders following acute enteritis may occur and affect the nervous system, the joints or the intestines. Immunocompromising comorbidities in infected patients favor bacteremia, leading to vascular inflammation and septicemia. Prevention of human infection is achieved by hygiene measures focusing on the reduction of pathogenic food contamination. Molecular targets for the treatment and prevention of campylobacteriosis include bacterial pathogenicity and virulence factors involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. This repertoire of intervention measures has recently been completed by drugs dampening the pro-inflammatory immune responses induced by the Campylobacter endotoxin lipo-oligosaccharide. Novel pharmaceutical strategies will combine anti-pathogenic and anti-inflammatory effects to reduce the risk of both anti-microbial resistance and post-infectious sequelae of acute enteritis. Novel strategies and actual trends in the combat of Campylobacter infections are presented in this review, alongside molecular targets applied for prevention and treatment strategies.
Collapse
|