1
|
Aziz‐Aliabadi F, Noruzi H, Hassanabadi A. Meat Quality, Intestinal Microbiology and Serum Biochemical Parameters of Broilers Fed Different Levels of Green Tea (Camellia sinensis) and Mulberry (Morus alba) Leaves Powder. Vet Med Sci 2025; 11:e70213. [PMID: 39821507 PMCID: PMC11737304 DOI: 10.1002/vms3.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Today, customers pay more attention to the feed composition and carcasses of poultry, and the interest in using natural and safe compounds such as medicinal plants and their extracts in animal feed is increasing. OBJECTIVES The present experiment was conducted to assess the effect of green tea (Camellia sinensis) and mulberry (Morus alba) leaves powder on the meat quality, intestinal microbiology and serum biochemical parameters in broilers. METHODS The experiment was conducted with 648 one-day-old Ross 308 broiler male chicks with a factorial arrangement including three levels of green tea powder (GTP) and three levels of mulberry leaf powder (MLP), with nine treatments and six replications in a completely randomized design for 42 days. Treatments included: (1) no GTP + no MLP (control), (2) 1% GTP + no MLP, (3) 2% GTP + no MLP, (4) no GTP + 1% MLP, (5) 1% GTP + 1% MLP, (6) 2% GTP + 1% MLP, (7) no GTP + 2% MLP, (8) 1% GTP + 2% MLP and (9) 2% GTP + 2% MLP. RESULTS The results showed that the lowest lightness (L*), drip loss and total cholesterol levels, and the highest Lactobacillus population were observed in treatments: 1% GTP + no MLP, 2% GTP + no MLP, 1% GTP + 1% MLP, 2% GTP + 1% MLP, no GTP + 2% MLP, 1% GTP + 2% MLP and 2% GTP + 2% MLP (p < 0.05). The groups receiving 1% GTP + 1% MLP, 2% GTP + 1% MLP, no GTP + 2% MLP, 1% GTP + 2% MLP and 2% GTP + 2% MLP had the highest pH 24 h (p < 0.05). The chickens fed with 1% and 2% GTP showed lower low-density lipoprotein cholesterol (LDL) and malondialdehyde (MAD) levels (p < 0.05). CONCLUSIONS The results showed that using the GTP and MLP in the diet of broilers could improve meat quality traits and beneficial ileal bacteria populations and reduce serum lipid and MDA levels.
Collapse
Affiliation(s)
- Fatemeh Aziz‐Aliabadi
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Hadi Noruzi
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Ahmad Hassanabadi
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
2
|
Song R, Jiang Y, Zhang B, Jiao Z, Yang X, Zhang N. Effects of Hypericum attenuatum Choisy extract on the immunologic function and intestinal microflora of broilers under oxidative stress. Poult Sci 2024; 103:104189. [PMID: 39191003 PMCID: PMC11395763 DOI: 10.1016/j.psj.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated the impact of Hypericum attenuatum Choisy extract (HYG) on immunological function and the cecum microflora in broilers. A total of 240 one-day-old AA broilers were randomly divided into 5 groups with 6 replicates of 8 broilers each: 1) the CN group, in which broilers were injected with saline and fed a basal diet; 2) the PC group, in which broilers were injected with lipolyaccharide (LPS) and fed a basal diet; 3) the HYG1 group, in which broilers were injected with LPS and fed a 400 mg/kg HYG-supplemented diet; 4) the HYG2 group, in which broilers were injected with LPS and fed a 800 mg/kg HYG-supplemented diet; 5) the HYG3 group, in which broilers were injected with LPS and fed a 1,200 mg/kg HYG-supplemented diet. Broilers were injected with 1 mg/kg LPS or the same amount saline 12 hours before sampling on d 21 and 42. The results revealed that dietary 400 mg/kg HYG supplementation alleviated spleen index and thymus index abnormalities, balanced the disturbance of serum immunoglobulin (Ig)M and IgA levels, and regulated the cytokine balance in the serum, liver, spleen and jejunum tissues included induced by LPS. Dietary supplementation with 400 mg/kg HYG also downregulated the relative expression of the inhibitor of kappa B kinase alpha (IKKα) and interleukin (IL)-6 mRNAs in the liver and upregulated the relative expression of the inhibitor kappa B alpha (IκBα) and IL-10 mRNAs in the spleen. Dietary HYG improved the cecal microflora balance at 42 d by increasing the relative abundance of beneficial bacteria, such as Alistipes and Phascolarctobacterium, while reducing the relative abundance of harmful bacteria, such as Helicobacter and Colidextribacter. Spearman correlation analysis revealed a negative correlation between activation of the NF-κB inhibitory pathway in the liver and the presence of Phascolarctobacterium, Erysipelatoclostridium, Subdoligranulum and Parabacteroides. Conclusions: The incorporation of 400 mg/kg HYG into the diet was optimal in improving broiler immunological function.
Collapse
Affiliation(s)
- Rui Song
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China; Agricultural Technology Extension Center, Shuyang County Agriculture and Rural Affairs Bureau, Shuyang 223600, China
| | - Yanzhen Jiang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zimeng Jiao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Xing Yang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Xing D, Fu B, Zhou D, Li E, Li Q, Ruan D, Liao S, Zou Y. Effects of mulberry leaf powder water extract supplementation on the growth performance, immunity, antioxidant, meat quality and intestinal microbiota of yellow feather broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:1692-1703. [PMID: 38937951 DOI: 10.1111/jpn.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A 50-day feeding trial was conducted to evaluate the effects of mulberry leaf powder water extract (MLE) on the growth performance, immunity, antioxidant, meat quality and intestinal microbiota of yellow feather broilers. A total of 720 birds (initial body weight 40.07 ± 0.05 g) were randomly distributed into four groups with six replicates per group and 30 birds per replicate. Four diets were formulated with 0% (CON), 200 mg/kg MLE (MLE200), 400 mg/kg MLE (MLE400) and 600 mg/kg MLE (MLE600) supplementation. Results showed that the addition of 200-600 mg/kg MLE to the diet significantly increased the body weight (BW) and average daily weight gain (ADG), but feed to gain ratio (F/G) were linearly decreased (p = 0.045) as dietary MLE increased. Birds fed MLE400 had higher (p < 0.05) total antioxidant capacity (T-AOC), interleukin-10 (Il-10), secretory immunoglobulin A (SIgA) and complement 3 (C3) contents than those fed CON, whereas MLE400 had lower malondialdehyde (MDA) content than CON (p < 0.05). Analysis of 16 S rDNA indicated that supplementation with 200 mg/kg MLE increased the Shannon indices in the caecum (p < 0.05). Supplementation with MLE decreased the abundance of the phylum Proteobacteria and genus Helicobacter, and increased the abundance of the phylum Bacteroidetes in the caecum in broiler chickens (p < 0.05). The drip loss rate in the MLE600 was significantly diminished (p < 0.05), whereas the shear force was significantly elevated (p < 0.05). In summary, dietary supplementation with MLE can effectively improve growth performance, intestinal immunity, serum antioxidant capacity, meat quality and intestinal microbiota of yellow feather broilers. The most appropriate MLE supplementation level was 400 mg/kg. This study provides a practical strategy for the dietary application of MLE in yellow feather broilers.
Collapse
Affiliation(s)
- Dongxu Xing
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bing Fu
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Donglai Zhou
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Erna Li
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qingrong Li
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sentai Liao
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuxiao Zou
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Zhang W, Wang D, Hao E, Shi L, Chen H, Zhang W, Chen Y. Positive effects and mechanism of mulberry leaf extract on alleviating fatty liver hemorrhagic syndrome in laying hens. Poult Sci 2024; 103:103998. [PMID: 39018653 PMCID: PMC11305280 DOI: 10.1016/j.psj.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
This experiment was conducted to investigate the effects of mulberry leaf extract (MLE) on alleviating fatty liver hemorrhagic syndrome (FLHS) in laying hens. The 576 Jing Fen laying hens of 56 weeks of age with good health and similar weights (1.76 ± 0.17 kg) were randomly divided into 6 groups, with 8 replicates in each group and 12 chickens in each replicate. The experiment lasted 56 d. The control group was fed a corn-soybean meal diet. The FLHS group was fed a high energy-low protein (HELP) diet, and the other four experimental groups were fed HELP diets supplemented with 0.04, 0.40, 0.80, and 1.20% MLE, respectively. The results showed that HELP treatment significantly induced liver injury, which indicated that the FLHS model was successfully established. MLE supplementation could alleviate the FLHS by reducing the liver index, abdominal fat percentage, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in the serum (P < 0.05), and subsequently increase the egg production rate (P < 0.05). The laying hens fed 0.8% MLE exhibited the greatest production performance (P < 0.05) and could improve serum lipid levels. In addition, the genes associated with fatty acid synthesis (ACC, HMGR and SREBP-1C) were downregulated (P < 0.05), and genes related to fatty acid oxidation (CPT1A, AMPK, and ATGL) were found to be upregulated (P < 0.05). Supplementation with 1.2% MLE significantly reduced the relative abundance of Firmicutes and Desulfurized Bacillus (P < 0.05) and significantly increased the relative abundance of Fecal Bacillus (P < 0.05). In conclusion, MLE may regulate the mRNA expression of lipid metabolism-related genes through the AMPK signaling pathway and improve cecal microbiota balance and serum lipid levels to alleviate FLHS in laying hens and subsequently improve egg production performance.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Weiwei Zhang
- Xiangda Hezhong Biotechnology Co. Ltd, Shijiazhuang, Hebei, 050800, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
5
|
Cao Y, Zhao X, Zheng K, Wu J, Lv Z, Huang X, Jiang Y, Fang W, Cao Y, Jiang J. The Effect of Mulberry Silage Supplementation on the Carcass Fatness and Long-Chain Fatty Acid Composition of Growing Lambs Compared with Traditional Corn Silage. Foods 2024; 13:2739. [PMID: 39272504 PMCID: PMC11395012 DOI: 10.3390/foods13172739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Lamb meat has become very popular with consumers in recent years due to its nutritional benefits. As a lean red meat, lamb is an important natural source of polyunsaturated and saturated fatty acids, which can be modified by adjustments in livestock feed. This study used proteomic and metabolic analyses to compare a basal ration supplemented with either mulberry silage or corn silage. Supplementation with mulberry silage led to a reduction in subcutaneous carcass fatness compared with corn silage. Additionally, changes in the proteome associated with fatty acid metabolism and oxidation resulted in decreased levels of saturated and trans fatty acids, while significantly increasing the levels of α-linolenic acid (ALA) and oleic acid and reducing linoleic acid content.
Collapse
Affiliation(s)
- Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Changchun 136100, China
| | - Xiaoou Zhao
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Changchun 136100, China
| | - Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianliang Wu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiqiang Lv
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongqing Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwen Fang
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Changchun 136100, China
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Changchun 136100, China
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Hou J, Ji X, Chu X, Wang B, Sun K, Wei H, Zhang Y, Song Z, Wen F. Mulberry Leaf Dietary Supplementation Can Improve the Lipo-Nutritional Quality of Pork and Regulate Gut Microbiota in Pigs: A Comprehensive Multi-Omics Analysis. Animals (Basel) 2024; 14:1233. [PMID: 38672381 PMCID: PMC11047539 DOI: 10.3390/ani14081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Mulberry leaves, a common traditional Chinese medicine, represent a potential nutritional strategy to improve the fat profile, also known as the lipo-nutrition, of pork. However, the effects of mulberry leaves on pork lipo-nutrition and the microorganisms and metabolites in the porcine gut remain unclear. In this study, multi-omics analysis was employed in a Yuxi black pig animal model to explore the possible regulatory mechanism of mulberry leaves on pork quality. Sixty Yuxi black pigs were divided into two groups: the control group (n = 15) was fed a standard diet, and the experimental group (n = 45) was fed a diet supplemented with 8% mulberry leaves. Experiments were performed in three replicates (n = 15 per replicate); the two diets were ensured to be nutritionally balanced, and the feeding period was 120 days. The results showed that pigs receiving the diet supplemented with mulberry leaves had significantly reduced backfat thickness (p < 0.05) and increased intramuscular fat (IMF) content (p < 0.05) compared with pigs receiving the standard diet. Lipidomics analysis showed that mulberry leaves improved the lipid profile composition and increased the proportion of triglycerides (TGs). Interestingly, the IMF content was positively correlated with acyl C18:2 and negatively correlated with C18:1 of differential TGs. In addition, the cecal microbiological analysis showed that mulberry leaves could increase the abundance of bacteria such as UCG-005, Muribaculaceae_norank, Prevotellaceae_NK3B31_group, and Limosilactobacillus. Simultaneously, the relative levels of L-tyrosine-ethyl ester, oleic acid methyl ester, 21-deoxycortisol, N-acetyldihydrosphingosine, and mulberrin were increased. Furthermore, we found that mulberry leaf supplementation significantly increased the mRNA expression of lipoprotein lipase, fatty acid-binding protein 4, and peroxisome proliferators-activated receptor γ in muscle (p < 0.01). Mulberry leaf supplementation significantly increased the mRNA expression of diacylglycerol acyltransferase 1 (p < 0.05) while significantly decreasing the expression of acetyl CoA carboxylase in backfat (p < 0.05). Furthermore, mulberry leaf supplementation significantly upregulated the mRNA expression of hormone-sensitive triglyceride lipase and peroxisome proliferator-activated receptor α (p < 0.05) in backfat. In addition, mulberry leaf supplementation led to increased serum leptin and adiponectin (p < 0.01). Collectively, this omic profile is consistent with an increased ratio of IMF to backfat in the pig model.
Collapse
Affiliation(s)
- Junjie Hou
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Xiang Ji
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Xiaoran Chu
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Binjie Wang
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Kangle Sun
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Haibo Wei
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Yu Zhang
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Zhen Song
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Fengyun Wen
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
7
|
Huang Y, He Y, Peng Z, Hu H, Yang M, Pan H, Zhao S, Li Y. Effect of Pu-erh tea pomace on the composition and diversity of cecum microflora in Chahua chicken No. 2. Front Vet Sci 2023; 10:1289546. [PMID: 38099001 PMCID: PMC10720613 DOI: 10.3389/fvets.2023.1289546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Pu-erh tea pomace (PTP), a solid substance after extracting functional substances or steeping tea, is rich in crude protein, and crude fiber, and could be used as considerable bioactive substances in animal production. However, its application as poultry feed and its role in regulating the characteristics of gut microorganisms is unclear. The present study investigated the effects of PTP on growth performance and gut microbes of chicken. A total of 144 Chahua chickens No. 2 were individually housed and divided into three groups which were fed diets containing 0% (CK), 1% PTP (T1), and 2% PTP (T2), respectively. The serum and cecum contents were collected after slaughter for analysis. The results indicated that growth performance and carcass traits were not affected by the PTP content. Serum total triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in the T1 and T2 groups were significantly lower than in the CK group (p < 0.05). The gut microbiota α-diversity in the T2 group was significantly lower than in the CK group (p < 0.05). Based on partial least squares-discriminant analysis (PLS-DA), we observed significant segregation in gut bacterial communities among the groups. At the phylum level, Bacteroidetes and Firmicutes were dominant in the cecum, occupying about 85% of the cecum flora. The relative abundance of Bacteroidetes tended to increase. At the genus level, the relative abundance of Bacteroides is the highest in the CK、T1 and T2 groups. The relative abundances of Bacteroides and Prevotellaceae_UCG-001 microorganisms in the T2 group were significantly higher than in the CK group (p < 0.05). However, the relative abundance of CHKCI001 microorganisms in the T2 group was significantly lower compared to the CK group (p < 0.05). TG content was significantly positively correlated with CHKCI001 relative abundance, and significantly negatively correlated with Prevotellaceae_UCG-001 relative abundance (p < 0.05). Moreover, the LDL-C content was significantly positively correlated with CHKCI001 relative abundance (p < 0.05). In conclusion, PTP could decrease the cholesterol levels in the blood by improving the composition of gut microbiota, which provides a reference for the application of PTP in the poultry industry.
Collapse
Affiliation(s)
- Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zeqin Peng
- College of Biotechnology and Engineering, West Yunnan University, Lincang, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongneng Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|